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ABSTRACT

An intrinsic mass generation mechanism for exotic ELKO dark matter fields is scrutinized, in the context
of the very special relativity (VSR). Our results are reported on unraveling inequivalent spin structures
that educe an additional term on the associated Dirac operator. Contrary to the spinor fields of mass
dimension 3/2, this term is precluded to be absorbed as a shift of some gauge vector potential, regarding
the equations for the dark spinor fields. It leads to some dynamical constraints that can be intrinsically
converted into a dark spinor mass generation mechanism, with the encoded symmetries maintained by
the VSR. The dynamical mass is embedded in the VSR framework through a natural coupling to the kink
solution of a A¢* theory for a scalar field ¢. Our results evince the possibility of novel effective scenarios,
derived from exotic couplings among dark spinor fields and scalar field topological solutions.

Dirac operator

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The investigation on the nature of dark matter components,
as well as the comprehension regarding all their intrinsic rela-
tions with the elements of the cosmic inventory, belongs to one of
challenging current problems in theoretical physics [1-4]. A novel
form of matter called ELKO, the acronym of Eigenspinoren des
Ladungskonjugationsoperators, which designates the eigenspinors of
the charge conjugation operator, seems to fulfill the requirements
for a dark matter component, in the scope of the interplay among
general relativity, astrophysics and particle physics [5-9,12-18].
These references for instance evince that ELKO spinor fields main
interaction via the gravitational field makes them naturally dark,
which enforces dark spinor fields investigation in a cosmologi-
cal setting, where interesting solutions and also models where
the spinor is coupled conformally to gravity are provided. Once
embedded in the quantum field theory, besides leading to some
non-local properties [19-22], the standard formulation of ELKO
predicts modified dispersion relations. Furthermore, it allows for
accomplishing dual-helicity mass dimension one eigenspinors of
the spin-1/2 charge conjugation operator. The possibility of exotic
interactions with the Higgs scalar field, and suppressed interac-
tions with gauge fields, accredits such matter fields as potential
candidates to describe dark matter [19-22]. At standard model
(SM) energy scales, ELKO should behave as a representation of the
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Lorentz group through the setup of a preferred direction related
to its wave equation [19-25]. It is recovered by the conjecture of
the very special relativity (VSR) [26,27]. The Lorentz symmetries
underlying the SM matter and gauge fields, as well as the alge-
braic structure underlying VSR [25] supported by the event space
underlying dark matter and dark gauge fields, have been continu-
ously evaluated, in order to describe the embedding of dark spinor
fields into the SM [28,29].

The VSR operates at the Planck scale to reproduce the SM as
an associated effective theory. It is supposed to be operative not
solely at ultra-high energies, but also beyond SM energy scales,
where dark matter interactions may eventually take place. In the
context of elementary interactions between fermionic and gauge
fields, as well as to preserve the intrinsic darkness with respect to
the SM gauge fields [25], it is possible to construct a VSR invari-
ant fermionic field with unitary mass dimension and spin-1/2: the
ELKO.

To shed some primordial light on ELKO dark matter field prop-
erties, one may reckon that in spacetimes with non-trivial topology
there ought to be an additional degree of freedom for fermionic
particles [5,30-34]. Such novel element emerges when, for in-
stance, SM spinor fields are parallelly transported: a complemen-
tary one-form field £~ (x)d&(x) is accrued on the Dirac opera-
tor, educed by the non-trivial topology [5,30-34]. Here d denotes
the exterior derivative operator and & is a scalar field. When SM
Dirac spinor fields are taken into account, the vector gauge field
V term is affected by the transformation V — V + %Eildé.
which indeed corresponds to the addition of an gauge potential
extra term. Such an exotic term may be therefore absorbed by
an external abelian gauge potential, representing an element of



https://core.ac.uk/display/81982343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2012.09.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:alexeb@ifi.unicamp.br
mailto:alexeb@ufscar.br
mailto:roldao.rocha@ufabc.edu.br
http://dx.doi.org/10.1016/j.physletb.2012.09.004

A.E. Bernardini, R. da Rocha / Physics Letters B 717 (2012) 238-241 239

the cohomology group H'(M, Z5) [31-35], in the context of the
(exotic) Dirac equation. Notwithstanding, concerning exotic ELKO
dark spinor fields the possibility of such an intrinsic coupling to
SM gauge fields is null. Since gauge fields interactions with ELKO
are suppressed [19-22], ELKO fields are able to probe purely the
spacetime topology [5]. It consistently reinforces the above men-
tioned darkness of such fields. This Letter is organized as follows:
in the next section, the exotic structure underlying ELKO dark
spinor fields [5] is briefly revisited. In Section 3 we identify some
similarities between the exotic Dirac operator and the covariant
derivative embedded into the framework of the VSR, so that the
Klein-Gordon equation for a massive particle can be reproduced.
By identifying the VSR preferential direction with a dynamical de-
pendence on the kink solution of a A¢* theory for a scalar field ¢,
we show that an effective mass for the ELKO spinor can be nat-
urally obtained. It evinces the possibility of novel scenarios for
the mechanism of dynamical mass generation, as well as for ex-
otic couplings with scalar field topological solutions. In Section 4
we conclude and provide novel perspectives on the potentially rel-
evant and prominent results addressed in this Letter.

2. Exotic ELKO dark spinor fields

ELKO spinor fields A(p) are defined as eigenspinors of the
charge conjugation operator C = (_?@ ’g)K, in the precise sense
that CA(p) = A (p), where, given the rotation generators 7, the
Wigner's spin-1/2 time reversal operator @ satisfies @ 70! =
—J*. The operator K is responsible to C-conjugate spinor fields
appearing on the right. The plus [minus] sign stands for self-
conjugate [anti-self-conjugate] spinor fields AS(p) [AA(p)]. The
complete form of ELKO can be explicitly obtained [19-22] through
the solution of the equation of helicity (o - A)ki/s(p) = :tAA/S(p),

where p=p/||p|l. The four boosted spinor fields are!

S/A _ JE+m p S/A
)»{%i}(l)) = om (1 + E—i—m) (0)

where AS/A (0) = (ii@[¢i(0)]*> .

»=(0)

The (Weyl) spinors fields ®@[¢*(0)]* and ¢*(0) have opposite he-
licities.

Prior results moreover evince that ELKO can be expressed
through a linear combination of Dirac particle and antiparticle
fields [5,15-22], and the prescription p, + iV, holds for ELKO:
158 x) = A5/Ap) exp(e>/Aipx*), where €5 = —1 and €? = +1
[19].

Besides the standard ELKO spinor fields A(x), one can get a

second type of ELKO, denoted hereupon by (x), associated to an
inequivalent spin structure, that reflects a modification of the co-
variant derivative [31-34]:
VxA®) "0 ds) A, (1)
where X denotes a vector field. The so-called exotic term in Eq. (1)
is assumed to be re-scaled as %m(é‘](x) dé(x)), an integer of a
Cech cohomology class [5,31-34]. The exotic Dirac operator can be
written thereupon as

. 1
= Vxi(x) — 5[x- (&

. 1
iy“w=iy“vu+5s—l(x)d5(x), (2)

! The boosts presented here are Lorentz boosts, although SIM(2) VSR boosted
ELKO can be derived as in [25]. For our aim in what follows Lorentz boosts suf-
fice, and therefore shall be adopted.

and the exotic Dirac equation then becomes

(iy* vV + (E7' ) de(®) /2 £ml)y(x) =0

where i denotes a Dirac spinor field. As sustained in [30-34],
one can express &(x) = exp(2if(x)) € U(1), so that the exotic term
yields £~ 1(x)de(x) = 2iy*9,6(x). One hence obtains the explicit
form for the coupled system of equations for the exotic ELKO as

S/A

0=
el =1 (3)

((iy" V. +iy*"0,6)s5 im]lea)k

or, more explicitly — taking into account Eq. (2):

w0 0\ iy
0 iytvy O 0 ):?J“‘}
@) 0  iy*v, . o ):f\_,ﬂ
(0) (S) (0) iyHvy, )‘?+,—}
_‘éH'_}
—iml gj;’ﬂ =0
)
~Me)

The exotic operator iy "V, +iy*9,60 +ml annihilates each of the

four exotic Dirac spinor fields used to construct XE/A(X), as pre-
scribed by the standard Dirac dynamics. However, since the op-
erator in (3) couples the {£,F} degrees of freedom [5,19], the
modified exotic Dirac operator does not annihilate ELKO fields.
By observing the off-diagonal nature of the mass term in Eq. (3)
one should notice the differences from a phenomenological off-
diagonal Majorana mass term introduced in the context of the
Dirac equation [5,19].

Since the prerogatives for the ELKO dynamics are established
[5,19], we drive our attention to the procedure for obtaining the
corresponding effective dispersion relation derived from the exotic
Dirac operator. By analogy with the relativistic quantum mechan-
ics terminology, we shall discuss whether the exotic Dirac operator
can be considered as a square root of the Klein-Gordon opera-
tor — in the sense that (iy#*V, +iy#9,0 —mD(iy"V, +iy"as,.0+
ml) = (g"'V,Vy + m?)L. This feature must remain true for the
5LKO and its exotic partner:

((iy"V,, +iy*0,6)8h +mleh) ((iy"V, +iy*™9,6)sh F mlel)
= (g""V, Vy +m?)Is), (4)

since the introduction of an exotic spin structure does not modify
the Klein-Gordon propagator fulfillment by dark spinor fields. The
corresponding Klein-Gordon equation for the exotic ELKO field is
hence provided by

S/A

(O+m?+gh"V, V6 + 010V, + 0100,0) LX) L,

=0.

This equation can reproduce the same Klein-Gordon propagator for
standard and exotic ELKO as well. For the exotic case, it demands
the constraint

S/A

(06 + 00V, +0"60,6 ) () = (5)

which can be formulated without restricting the theory to any par-
ticular condition as those assumed in [5].
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3. The exotic term in the VSR framework

Instead of assuming the constraint given by Eq. (5) howsoever,
one can suppress the effective mass term m from the formalism,
by assuming the exotic Dirac operator

iyHv, =iy (Vy +8,0). (6)

Accordingly, it could be straightforwardly embedded into the
framework of the VSR, when the exotic term 9,6 (x) is identified
with a dynamical preferential direction vector ¢ (x)v,, where ¢ (x)
is a scalar field with mass-dimension equal to one. Thereafter ob-
taining the (preliminarily) massless Klein-Gordon equation from
Eq. (6) as

S/A

(D + guvvuvvd’ + g“”vuav(f)(x) + VM¢V;4))\(X) =0, (7)

one can investigate some constraints on the preferentlal vector v,.

In order to shed some new light on the character of the exotic
function 6(x) in terms of ¢(x), let us identify the scalar field ¢
with the kink solution of the A¢* theory. The re-scaled Lagrangian
density for the scalar field of the A¢* theory has the form

m2\2
—3u¢3“¢—5 <¢ ——) ) (8)

for which m is the mass of the scalar field, A denotes the dimen-
sionless coupling parameter, and s? = guvstsY, with st = v# % =
a*Vu,. The tensor a*" is assumed to be anti-symmetric and uy, is
an unitary quadri-velocity (u? = guvutu’ =1). The corresponding
equation of motion yields

dt?

and the re-scaled kink solution can be written as

2
m¢=<5——V)¢=¥m%~w&y (9)

Ps(x) = %tanh(%q), with g = s"x,,. (10)

Substituting the kink solution above into the ansatz relation

9,0 (x) = ¢(x)v,,, one forthwith finds that
6(x) —log[cosh< m q)} (11)
= 7 .

Therefore one can compute immediately

m? m?

3103,0 + 00 = 752 tanh[q*] + 752(1 — tanh[q?])
2
m” 2
= —s°. 12

: (12)
Since h*V is an anti-symmetric tensor, one should notice that
uyh*’u, = 0. One can thus parameterize the ELKO spinor field
quadri-momentum p,, by p, = uu, in order to have

S/A

8M9(X)V“A £ (0 ocuy h*Vu,, =0. (13)

The results from Eqs. (12)-(13) substituted into Eq. (7) lead to

(u+%ﬂ>sm<m (14)

which is typically the KG equation for a massive particle for which
the dispersion relation would be given by p*p, = (m?s)/2. The
result above eliminates the constraint given by Eq. (5) and repro-
duces the dynamics of the KG equation with a dynamical mass
given by p =ms/«/2.

4. Concluding remarks

The VSR dynamical mass generation mechanism that we have
suggested exactly reproduces the dispersion relations of SM fields,
making the mechanism consistent with the VSR proposal. It in-
deed emulates the conditions for generating dynamical masses
that emerge in the context of dark matter coupling to dark en-
ergy intermediated by scalar fields [36-39]. Obviously, additional
and natural questions may arise in a systematic formulation of
quantum field theories carrying VSR symmetries [25]. The main
outstanding exotic dark spinor field feature is that it can be in-
deed considered in a variety of problems, wherein SM spinor fields
cannot. Observational aspects on such a possibility have been pro-
posed at LHC, where ELKO dark matter fields signatures can be
elicited, at center of mass energy around 7 TeV. It robustly indi-
cates the number of events that stimulates more specific analysis
about the ELKO particle at high energy experiments [40]. ELKO
dark matter fields are manifestly non-local, although they present
locality when the field propagation is along the preferred axis [19,
25,41,42]. Such axis can be chosen as the dynamical preferential
direction v, provided by the exotic term. Innate difficulties to
formulate a complete QFT for ELKO may be circumvented in our
formalism, since such choice makes the ELKO a local field.

Any attempt to construct an appropriate QFT describing ELKO
fermionic fields must accomplish their unexpected and interesting
properties: non-locality, the existence of an inherent preferred axis
(along which ELKO is local), mass dimension one, as well as the
Lorentz symmetry-breaking provided by the ELKO dynamics [6-19,
25,41,42]. The VSR has been evinced as a paramount promising
arena to develop such still lacking theory [25]. Furthermore, such
formalism can be investigated in a Hopf algebras scenario, con-
sidering a state-space with symmetries of the Poincaré group. One
uses the deformed Hopf algebras framework to construct an event-
space with symmetries of the SIM(2) VSR group, in close analogy
to the results already accomplished for the E(2) VSR group [43,44].

The ELKO dark spinor fields characterization is obtained through
the topologically impelled introduction of an additional term
iy#9,0(x) in the Dirac operator, that cannot be absorbed by any
external gauge field. Even acting effectively in producing the ex-
otic dispersion relation that we have obtained, modifications like
iyt9,0(x) — iy"a, (0 (x) + B(x)) with 3,60(x)9*B(x) =0, besides
contributing to the dynamical mass term, can provide the pre-
liminary conditions for the constraint on the metric spacetime
structure, that emerges through the physical assumption that the
exotic dark spinor fields satisfy the Klein-Gordon propagator for
massive particles. Therefore, our results heretofore assert that all
the quantum field theoretical structure, that seems to be most
suitable for describing dark matter, are maintained through the
constraints previously applied to 6(x), when they are applied to
B(x). Reverberating some previous conclusions, it means that the
VSR reflects symmetries associated with rods and clocks for dark
matter in the same way that theory of special relativity does for
SM fields [25,45].
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