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Recently, the ATLAS Collaboration recorded an interesting anomaly in diboson production with excesses 
at the diboson invariant mass around 2 TeV in boosted jets of all the W Z , W +W −, and Z Z channels. 
We offer a theoretical interpretation of the anomaly using a phenomenological right-handed model with 
extra W ′ and Z ′ bosons. Constraints from narrow total decay widths, dijet cross sections, and W /Z + H
production are taken into account. We also comment on a few other possibilities.
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1. Introduction

Recently, the ATLAS Collaboration [1] reported an experimental 
anomaly in diboson production with apparent excesses in boosted 
jets of the W +W − , W ± Z , and Z Z channels at around 2 TeV in-
variant mass of the boson pair.1 It is intriguing because the ex-
cesses are all around 2 TeV. The local excesses are at 3.4, 2.6, 
and 2.9σ levels for W Z , W +W − , and Z Z channels, respectively 
(though the global significance of the discrepancy in the W Z chan-
nel is only 2.5σ ). The experiment used the method of jet substruc-
ture to discriminate the hadronic decays of the W and Z bosons 
from the usual QCD dijets. The advantage is that the hadronic de-
cays of W and Z afford much larger branching ratios for more 
events. However, the jet masses of the W and Z bosons have large 
overlaps such that the Z boson may be misinterpreted as a W bo-
son, and vice versa. Nevertheless, we attempt to provide a logical 
explanation for the anomaly.

The anomaly leads to a logical explanation that there exist 
some exotic particles in some forms of multiplets or under some 
symmetries (because they have similar masses) with relatively 
narrow widths decaying into diboson channels. In this note, we 
propose a phenomenological left–right model that consists of an 
extra SU(2)R gauge group with (W ′, Z ′) bosons. Initially, we first 
perform phenomenological studies of the W ′ and Z ′ boson with 
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1 The CMS Collaboration also saw a moderate excess around 2 TeV in the boosted 
jets of W +W − , W ± Z , and Z Z [2].
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SCOAP3.
respect to the data separately. At the end, we shall give a more 
unified picture of the W ′ and Z ′ bosons coming from a single 
SU(2)R group.

The W ′ boson couples to the right-handed fermions with a 
strength gR , which need not be the same as the weak coupling g . 
The W ′ boson can then be produced via qq̄′ annihilation. Since 
the W ′ boson is at 2 TeV, the production is mainly via valence 
quarks and so we anticipate the production cross section of W ′ +
is roughly two times as large as the W ′ − cross section at the LHC. 
The W ′ boson can mix with the SM W boson via a mixing an-
gle, say, sin φw so that the W ′ boson can decay into W Z with 
a mixing-angle suppression and right-handed fermions. We shall 
show that the W ′ decay into W Z dominates if the mixing angle 
is larger than 10−2. Therefore, it can explain the excess in the W Z
channel without violating the leptonic cross sections [3–6] and the 
dijet-mass search at the LHC [7,8].

The discussion of the Z ′ boson follows closely that of the W ′
boson. It is produced via qq̄ annihilation with a coupling strength 
gR . The Z ′ boson mixes with the SM Z boson via another mixing 
angle φz , and then decays into W +W − to explain the excess in 
the W +W − channel. We adopt a simplified form that the Z ′ only 
couples to the right-handed fermions, though in general it couples 
to both left- and right-handed fermions.

There are, in general, a few important constraints that restrict 
the form the W ′ and Z ′ models: (i) electroweak (EW) precision 
measurements, (ii) leptonic decays of W ′ and Z ′ , and (iii) dijet 
production cross sections, plus W H and Z H production that are 
specific to the current work. The EW precision constraints mainly 
come from the deviations in the properties of the observed W and 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Z bosons through the mixings between W and W ′ bosons, and 
between Z and Z ′ bosons. The measured properties of the W bo-
son restrict the mixing angle between the W and W ′ boson to be 
φw � 1.3 × 10−2 [9], which is the approximate size of the mixing 
that is required to explain the diboson anomaly. On the other hand, 
the constraint on the mixing angle between the Z and Z ′ bosons is 
much stronger. The updated limits for various Z ′ models, in which 
the Z ′ boson has direct couplings to SM particles, are of order 
10−3. This is somewhat smaller than the values required to ex-
plain the diboson anomaly. One possibility to relax this constraint 
is to employ the leptophobic Z ′ model, which is achievable in a 
number of GUT models [10]. In such a case, the constraint on the 
mixing angle can be relaxed to 8 × 10−3 [10], which is close to the 
value required to explain the diboson anomaly. Therefore, we shall 
employ the leptophobic Z ′ model in this work. Furthermore, in the 
leptonic decays of W ′ + → e+νR we assume the right-handed neu-
trinos are heavy enough that the leptonic decays of the W ′ boson 
are also closed.

Note that we take the excess in the Z Z channel as either a fluc-
tuation or the mis-interpretation because of the overlap between 
the W and Z dijets. On the theory side, it is very difficult to have 
a spin-1 particle to decay significantly into Z Z , e.g., the Z ′ bo-
son [11,12] or a techni-rho meson. It is possible to have a spin-0 
Higgs-like boson to decay into Z Z . However, we found that the 
production cross section for a 2 TeV Higgs-like boson via gluon 
fusion is too small to explain the excess in the Z Z channel. There-
fore, we take the liberty to ignore the excess in the Z Z channel.

The organization of this note is as follows. In the next section, 
we describe the interactions of the W ′ and Z ′ bosons, and mixing 
with the SM W and Z bosons. In Section 3, we calculate the dijet 
cross sections to compare with the most updated limits from AT-
LAS [7] and CMS [8]. In Section 4, we calculate the cross sections 
of pp → W ′ → W Z and pp → Z ′ → W +W − and compare to the 
ATLAS data. In Section 5, we give a more unified picture that the 
W ′ and Z ′ bosons come from a single SU(2)R . We conclude in Sec-
tion 6.

At the last stage of this work, the authors came across Ref. [13]
with a similar idea, and Refs. [14,15] in the framework of strong 
dynamics. There are some existing constraints in literature for 
models with extra SU(2) [16], especially the dilepton constraint 
from the LHC experiments. We shall consider the dilepton con-
straint, as well as the dijet constraint using the most recent data 
from the LHC.

2. Interactions of the W ′ and Z ′ bosons and their decays

2.1. The W ′ boson

The extra W2 boson arises from the right-hand SU(2)R . The 
right-handed fermions are arranged in isospin doublet, e.g.,
(uR , dR)T , (νR , eR)T , where νR is the right-handed neutrino. The 
interactions of the W2 with fermions are given by

L ⊃ − gR√
2

f̄ ′γμ P R f W μ
2 (1)

where P L,R = (1 ∓ γ 5)/2 and gR is the coupling strength, which 
need not be the same as the left-handed coupling g but should 
be of a similar size. The W1 and W2 denote the interaction eigen-
states, which rotate into the mass eigenstates W and W ′ via a 
mixing angle φw (W then represents the observed W boson at 
80.4 GeV and the W ′ is the hypothetical 2 TeV boson):(

W1
W

)
=

(
cosφw − sin φw

sinφ cosφ

) (
W
W ′

)
. (2)
2 w w
Current EW constraints on the W –W ′ mixing angle mainly come 
from modifying the properties of the observed W boson. The mea-
surements put a limit about 1.3 ×10−2 [9] on the mixing angle φw , 
which is more or less consistent with the values that we use in 
this study (see Fig. 4). We shall show that such a small mixing an-
gle of order O (10−2) is enough to explain the narrow width of 
the W ′ bump and the excess in the W Z production cross sec-
tion.

On the other hand, due to the mixing with the SM W bo-
son, the heavy W ′ couples to W Z with a coupling strength 
(g cos θw) sin φw , where (g cos θw) is the usual coupling constant 
in the W W Z vertex. On the other hand, the W ′ couples to W H

with a full tree-level strength (gMW ) sin φw cos2 θw
M2

W ′
M2

W
.2 Now we 

can write down the relevant vertices of the W ′ used in this work 
(cosφw � 1),

VW ′ f f ′ : − gR√
2

f̄ ′γ μ P R f εμ(pW ′+) ,

VW ′W Z : +g cos θw sinφw
[
(pW ′+ − pW −)β gμα

+ (pW − − p Z )μgαβ + (p Z − pW ′+)α gμβ
]

× εμ(pW ′+) εα(pW −) εβ(p Z ) ,

VW ′W H : +gMW sinφw

(
cos2 θw

M2
W ′

M2
W

)
gμα εμ(pW ′+)

× εα(pW −) , (3)

where pW ′+,W −,Z denote the 4-momenta of the W
′+, W −, Z

bosons going into the vertex and ε(pW ′+ ), ε(pW − ), and ε(p Z ) de-
note the corresponding polarization 4-vectors.

The partial decay width for W ′ → f f̄ ′ is given by, in massless 
limit of f , f ′


W ′→ f f̄ ′ = N f g2
R MW ′

48π
, (4)

where N f = 3 (1) for quarks (leptons). Here we also assume that 
the right-handed neutrinos are so heavy that W ′ + → e+νR is kine-
matically not allowed. Therefore, the leptonic decay modes of W ′
are closed. The partial width into W Z is [17]


W ′ +→W + Z

= sin2φw

(
g2 cos2 θw

192π

M5
W ′

M2
W M2

Z

)

×
⎡
⎣

(
1 − M2

Z

M2
W ′

− M2
W

M2
W ′

)2

− 4M2
W M2

Z

M4
W ′

⎤
⎦

3/2

×
[

1 + 10

(
M2

Z + M2
W

M2
W ′

)
+ M4

Z + M4
W + 10M2

Z M2
W

M4
W ′

]
. (5)

It is easy to see that in the W ′W Z vertex in Eq. (3) the 
momentum-dependent parts will get enhancement at high energy. 

2 The mixing angle φw between the W and W ′ originates from the off-diagonal 
mass matrix entry, which also gives the tree-level unsuppressed coupling for 
W ′–W –H . We found that φw scales as M2

W /M2
W ′ and the coupling for W ′W H

scales as gMW φw M2
W ′ /M2

W .
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Fig. 1. (Left) Total decay width and partial widths of the 2 TeV W ′ boson versus the sine of the mixing angle φw . (Right) The corresponding branching ratios. Note that the 
W + H appears to be the same as W + Z in the figure. Here we take gR = g . (For interpretation of the colors in this figure, the reader is referred to the web version of this 

article.)
Table 1
The partial widths into W Z/W H and ∑ f f̄ ′ and the total width of the W ′ boson 
for a few representative values of sinφw . We assume 
W ′ +→W + Z = 
W ′ +→W + H
and set gR = g for simplicity.

Case sin φw 
W ′ +→W + Z/W + H
(GeV)

∑
f f̄ ′ 
W ′ +→ f f̄ ′

(GeV)

W ′ +

1 8.901 × 10−3 24.63 50.74 MW ′ /20
2 1.549 × 10−2 74.63 50.74 MW ′ /10
3 2.370 × 10−2 174.6 50.74 MW ′ /5
4 3.148 × 10−2 308.0 50.74 MW ′ /3
5 3.908 × 10−2 474.6 50.74 MW ′ /2

Another decay channel of W ′ is W ′ → W H , the partial width of 
which is given by


W ′ +→W + H = sin2 φw

(
g2

192π
cos4 θw

M5
W ′

M4
W

)

×
⎡
⎣

(
1 + M2

W

M2
W ′

− M2
H

M2
W ′

)2

+ 8
M2

W

M2
W ′

⎤
⎦

×
⎡
⎣(

1 − M2
W

M2
W ′

− M2
H

M2
W ′

)2

− 4
M2

W M2
H

M4
W ′

⎤
⎦

1/2

. (6)

Note that due to the Equivalence Theorem, 
(W ′ + → W +H) �

(W ′ + → W + Z) to the leading order in 1/M2

W ′ .
In order to avoid a too-broad resonance structure for the W ′

boson we require


tot(W ′ +) = 
W ′ +→W + Z + 
W ′ +→W + H

+
∑

f f̄ ′=ud̄,cs̄,tb̄


W ′ +→ f f̄ ′ (7)

to be less than one-tenth of the W ′ mass. We show in Fig. 1 the 
total width of the W ′ boson versus the sine of the mixing angle, 
and the corresponding branching ratios. Note that the W +H ap-
pears to be the same as W + Z in the figure. It is clear that the total 
decay width grows with sin φw rapidly. Therefore, the requirement 
of 
tot(W ′) � MW ′/10 gives

sinφw � 1.5 × 10−2 . (8)

We show in Table 1 a few representative values of sin φw for the 
partial widths into W Z or W H , and 

∑
f f̄ ′ and the total width 

of the W ′ boson. Here we assume gR = g for simplicity. Note that 
the total width has only very mild dependence on gR .
2.2. The Z ′ boson

We repeat the exercise for the Z ′ boson. The interactions of the 
Z2 with the SM fermions are given by

L ⊃ − f̄ γμ(g f ,r P R + g f ,l P L) f Zμ
2 . (9)

The SM Z1 boson mixes with Z2 via a mixing angle φz into the 
mass eigenstates Z and Z ′:(

Z1
Z2

)
=

(
cosφz − sin φz

sinφz cosφz

) (
Z
Z ′

)
. (10)

Unlike the W –W ′ mixing the EW constraints for the Z–Z ′ mix-
ing angle are much stronger, because of all the precision measure-
ments at LEP. The updated limit for various Z ′ models, in which 
the Z ′ boson has direct couplings to SM particles, is of order 10−3

[10]. This is somewhat smaller than the values required to explain 
the diboson anomaly. One possibility to relax this constraint is 
to employ the leptophobic Z ′ model, which is achievable in GUT 
models. In such a case, the constraint on the mixing angle can be 
relaxed to 8 × 10−3 [10], which is not far from the values required 
to solve the diboson anomaly. We shall therefore assume lepto-
phobic couplings of the Z ′ boson. When the mixing angle is of 
that small size, the Z ′ boson has a narrow width.

The Z ′ boson then couples with a strength proportional to g f ,r/l
to the SM quarks, but at a strength suppressed by the mixing angle 
sin φz to the W +W − . However, the Z ′ boson couples to Z H with a 
full tree-level strength for a reason similar to the W ′ boson. Now 
we can write down the relevant vertices of the Z ′ used in this 
work taking cos φz � 1:

VZ ′ f f : − f̄ γ μ(g f ,r P R + g f ,l P L) f εμ(p Z ′) ,

VZ ′W W : +g cos θw sinφz
[
(p Z ′ − pW +)β gμα

+ (pW + − pW −)μgαβ + (pW − − p Z ′)α gμβ
]

× εμ(p Z ′) εα(pW +) εβ(pW −) ,

VZ ′ Z H : + g

cos θw
M Z sinφz

(
M2

Z ′

M2
Z

)
gμα εμ(p Z ′) εα(p Z ) . (11)

The partial widths into f f̄ , W +W − , and Z H are given by


Z ′→ f f̄ = N f

g2
f ,r + g2

f ,l

24π
M Z ′ ,


Z ′→W +W − = sin2 φz

(
g2 cos2 θw

192π

M5
Z ′

M4
W

) (
1 − 4M2

W

M2
Z ′

)3/2

×
(

1 + 20
M2

W

M2 ′
+ 12

M4
W

M4 ′

)
,

Z Z
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Fig. 2. Total decay width and partial widths of the 2 TeV Z ′ boson versus the sine 
of the mixing angle φz . Note that the Z H appears to be the same as W +W − in the 
figure. Here we take gR = g for simplicity. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)


Z ′→Z H = sin2 φz

(
g2 cos2 θw

192π

M5
Z ′

M4
W

)

×
⎡
⎣(

1 + M2
Z

M2
Z ′

− M2
H

M2
Z ′

)2

+ 8
M2

Z

M2
Z ′

⎤
⎦

×
⎡
⎣

(
1 − M2

Z

M2
Z ′

− M2
H

M2
Z ′

)2

− 4
M2

Z M2
H

M4
Z ′

⎤
⎦

1/2

. (12)

In the high energy limit, 
(Z ′ → W +W −) � 
(Z ′ → Z H). The to-
tal decay width of the Z ′ boson is obtained by summing all the 
above partial widths. We show the total decay width and partial 
widths of the Z ′ boson in Fig. 2. The requirement for 
Z ′/M Z ′ <

0.1 implies sin φz � 1.5 × 10−2.
Note that the couplings of Z2 to quarks are model dependent 

(leptonic couplings are zero). We use the simplified form g f ,l = 0, 
g f ,r = gR T (2)

3, f for the interactions according to the right-handed 

current T (2)
3 as in Eq. (9). Our analysis can be generalized to any 

specific model by scaling the corresponding couplings.
The mixing between the Z and Z ′ bosons can be generated 

through a Higgs boson charged under both symmetries. The mixing 
is given by φz = C(gR/g)(MV /MV ′ )2 [18], which C can be a def-
inite number or spanned over a range depending on the ratios of 
the Higgs VEVs. Given that (MV /MV ′ ) ∼ 10−2 and (gR/g) ∼ 0.3–1, 
the mixing angle φz ∼ 10−3–10−2. The mixing angle that we find 
in this work is about 2 × 10−3–10−2 and is mostly consistent with 
the natural value.

3. Limits from dijet production and others

Since we have assumed the leptophobic Z ′ model and that the 
right-handed neutrinos are too heavy for W ′ + → e+νR to occur, 
the constraints from leptonic cross sections [3–6] can be ignored. 
In the following, we first consider the constraints coming from di-
jet production via σ(W ′) × B(W ′ → j j) (and similarly for Z ′). Both 
the ATLAS [7] and CMS [8] have searched for resonances decaying 
into dijets. They pose limits on the current phenomenological W ′
and Z ′ model. We calculate pp → W ′ ± → j j including the width 
effect and show the production cross sections in Fig. 3, in which 
we choose gR = 0.6. The acceptance factor A for each experiment 
is read off from the report of ATLAS and CMS. It is easy to see from 
both panels that when sin φw � 5 ×10−3 the dijet production cross 
section at MW ′ = 2 TeV is safe from the experimental limits. As gR
further increases, the lower limit on sin φw increases, as shown in 
Fig. 4. Note that for gR � 0.5 there is no lower limit on sin φw . 
Fig. 3. Dijet production cross sections σ · B(pp → W ′ ± → j j) · A versus the mass 
of the W ′ boson for a few values of sin φw , where A is the acceptance from the 
experiments. Here we take gR = 0.6. The ATLAS and CMS 95% CL upper limits are 
also shown. (For interpretation of the colors in this figure, the reader is referred to 
the web version of this article.)

Fig. 4. The allowed parameter space in gR versus sin φw for the W ′ boson un-
der the constraints: 
W ′ /MW ′ < 0.1, σ(W ′) × B(W ′ → j j) · A < 60 fb, σ(W ′) ×
B(W ′ → W Z) < 40 fb, and σ(W ′) × B(W ′ → W H) < 7 fb. (For interpretation of 
the colors in this figure, the reader is referred to the web version of this article.)

The Z ′ production cross sections are roughly one half of the W ′
for the same mass of 2 TeV. We do not expect σ(Z ′) × B(Z ′ → j j)
will pose any problems as long as φz � 5 × 10−3 for gR = 0.6.

Yet, there is another constraint mentioned in Ref. [13]: σ(W ′) ×
B(W ′ → W H) < 7 fb. Both ATLAS [19] and CMS [20] searched 
for a resonance that decays into a W /Z boson and Higgs bo-
son. The 95% CL on σ(W ′/Z ′) × B(W ′/Z ′ → W /Z + H) ≈ 5–10 fb. 
As shall be seen next the required cross section for σ(W ′) ×
B(W ′ → W Z) to explain the excess is about 6–7 fb, and a simi-
lar one for σ(Z ′) × B(Z ′ → W +W −). It is therefore safe from the 
W H and Z H constraints. Finally, there was another constraint on 
Z ′ coming from a recent search on Z ′ → W +W − via the semilep-
tonic channel of the W +W − decay and put an upper limit on 
σ(Z ′) × B(Z ′ → W +W −) < 3 fb at 95% CL [21].

We summarize in Fig. 4 the allowed parameter space of gR ver-
sus sin φw for the 2 TeV W ′ boson under the following constraints:
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Fig. 5. The allowed parameter space in gR versus sin φz for the Z ′ bo-
son under the constraints: 
Z ′ /M Z ′ < 0.1, σ(Z ′) × B(Z ′ → j j) · A < 60 fb, 
σ(Z ′) × B(Z ′ → W +W −) < 30 fb, σ(Z ′) × B(Z ′ → Z H) < 7 fb, and σ(Z ′) ×
B(Z ′ → W +W −) < 3 fb. (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

1. 
W ′/MW ′ < 0.1,
2. σ(W ′) × B(W ′ → j j) · A < 60 fb [7,8],
3. σ(W ′) × B(W ′ → W Z) < 40 fb [1], and
4. σ(W ′) × B(W ′ → W H) < 7 fb [19,20].

Similarly, the allowed parameter space in gR versus sin φz for the 
Z ′ boson with the following constraints is shown in Fig. 5.

1. 
Z ′/M Z ′ < 0.1,
2. σ(Z ′) × B(Z ′ → j j) · A < 60 fb [7,8],
3. σ(Z ′) × B(Z ′ → W +W −) < 30 fb [1],
4. σ(Z ′) × B(Z ′ → Z H) < 7 fb [19,20].
5. σ(Z ′) × B(Z ′ → W +W −) < 3 fb [21].

As seen in both figures the dijet cross section rules out large values 
of gR while the narrow width requires sin φw � 10−2. The over-
lapping region easily satisfies the W Z/W W and W H/Z H upper 
limits. As we shall discuss the signal cross sections in the next 
section, the signal cross section for σ(W ′) × B(W ′ → W Z) is of 
order 5–10 fb while that for σ(Z ′) × B(Z ′ → W W ) � 3 fb. We 
show the band of 5–10 fb cross sections onto the Fig. 4. The 
sweet spot is the strip obtained by overlapping the allowed re-
gion and the band of 5–10 fb. While in Fig. 5 we show the band of 
2–5 fb with a cyan curve at 3 fb, because of the addition constraint 
σ(Z ′) × B(Z ′ → W +W −) < 3 fb via semileptonic mode [21].

4. W ′ → W Z and Z ′ → W +W − production

The favorable region of parameter space in gR versus sin φw is 
shown in Fig. 4. We can pick a point in the sweet spot to account 
for the excess observed in the W Z channel. From the ATLAS re-
port, the number of excess events is about 8–9 events around the 
2 TeV peak. The selection efficiency for event topology and boson-
tagging requirements is about 13% for a 2 TeV W ′ boson [1]. With 
a luminosity of 20.3 fb−1 it converts to σ(W ′) × B(W ′ → W Z) ≈
6–7 fb (here we take the hadronic branching ratio of a W boson 
or a Z boson to be 0.7).

In Fig. 4, we show the band of the σ(W ′) × B(W ′ → W Z) =
5–10 fb. The sweet spot is the strip obtained by overlapping the al-
lowed region and the band of “W Z : 5–10 fb”. Let us pick a couple 
of representative points: (i) sinφw = 3 × 10−3 and gR = 0.4 (small 
mixing but large gR ), and (ii) sinφw = 1.3 × 10−2 and gR = 0.2
(large mixing but small gR ). The mixing angle for the second point 
is at the upper limit allowed by the EW constraint. Then we cal-
culate σ(pp → W ′ ± → W ± Z) including the width effect, and add 
to the dijet background shown in the ATLAS report [1]. We show 
the sum of the resonance peak and the dijet background in the left 
panel of Fig. 6. Such a resonance contribution can explain the ex-
cess in the W Z channel. We can see that with small mixing but 
large gR (the cyan histograms) the width of the 2 TeV resonance is 
narrower while that with large mixing but small gR (the red his-
tograms) is broader. Both choices can account for the data points 
within the uncertainties.

We repeat the exercise for the Z ′ . The number of excess events 
is about 7–8 events around the 2 TeV peak. The selection effi-
ciency is about the same as the W ′ . It eventually converts to 
σ(Z ′) × B(Z ′ → W +W −) ≈ 5–6 fb. However, due to a recent 
search [21] using semileptonic decay mode, the 95% CL limit on 
σ(Z ′) × B(Z ′ → W +W −) < 3 fb. Although there is a slight in-
consistency, we pick a couple of representative points such that 
each gives a cross section about 3 fb: (i) sin φz = 2.28 × 10−3 and 
gR = 0.4, and (ii) sinφz = 8 × 10−3 and gR = 0.18 from the sweet 
spot of Fig. 5. Note that the mixing angle of the second point is at 
the upper limit allowed by the EW constraint. We show the sum 
of the resonance peak and the dijet background in the right panel 
of Fig. 6. Such a resonance contribution can roughly explain the 
excess in the W +W − channel within uncertainty.

5. A unified SU(2)1 × SU(2)2 × U (1)X model

Here we show that it is possible to have unified W ′ and Z ′
bosons in a model with an additional SU(2) symmetry, and it 
will approach the models of W ′ and Z ′ that we used in Sec-
tions 2, 3 and 4. We follow closely the discussion in a couple of 
recent works addressing the same anomaly [22]. We start with a 
popular scenario based on the symmetry breaking pattern from 
the gauge group SU(2)1 × SU(2)2 × U (1)X (with gauge coupling 
Fig. 6. Dijet invariant mass distribution for (left) pp → W ′ ± → W ± Z and (right) pp → Z ′ → W +W − with MW ′ = M Z ′ = 2 TeV. Here the finite width effect is included. 
A selection efficiency of 0.13, hadronic branching ratio of 0.7 for each W and Z boson, and a luminosity of 20.3 fb−1 are used. The dijet backgrounds are given in the ATLAS 
report [1].
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g, g′
2, g X respectively), which is first broken into a lower symme-

try SU(2)1 × U (1)Y at the scale above TeV, and then broken again 
at the electroweak scale [23]. The intermediate symmetry is just 
the SM gauge group SU(2)L × U (1)Y . The SM hypercharge conven-
tion is fixed by Q = T (1)

3 + Y
2 = T (1)

3 + T (2)
3 + Y X

2 .
We choose the leptophobic version of the model such that the 

right-handed uR and dR quarks are arranged in doublet of the 
SU(2)2 while the νR and eR as singlets of the SU(2)2. The assign-
ment of T (2)

3 and Y X/2 for the right-handed fermions are

f uR dR νR eR

T (2)
3 + 1

2 − 1
2 0 0

Y X
2 + 1

6 + 1
6 0 −1

The first step of symmetry breaking at TeV scale can occur via 
a Higgs doublet � ∼ (1, 2, 1/2) under SU(2)1 × SU(2)2 × U (1)X :

� =
(

φ+
φ0

)
, 〈�〉 = 1√

2

(
0
u

)
.

The gauge field B ′
μ of the U (1)X and the W ′ 3

μ of the SU(2)2 are 
rotated by angle φ into the Bμ of the U (1)Y and the Z ′ boson:(

B ′
μ

W ′ 3
μ

)
=

(
cosφ − sin φ

sinφ cosφ

) (
Bμ

Z ′
μ

)
,

while the second step is the usual breaking of the EW symme-
try by another Higgs doublet with a VEV v . In order to obtain 
the coupling of the Bμ the same as the SM hypercharge g1Y /2 =
(e/ cos θw)Y /2 in the first step of symmetry breaking, we require

g X cosφ = g1, g′
2 sinφ = g1,

tanφ = g X

g′
2
,

Y X

2
+ T (2)

3 = Y

2
. (13)

The W ′ and Z ′ bosons obtain masses as

M2
W ′ = e2 v2

4 cos2 θw sin2 φ
(x + 1),

M2
Z ′ = e2 v2

4 cos2 θw sin2 φ cos2 φ
(x + cos4 φ), (14)

where x ≡ u2/v2 is very large. Therefore, in leading order MW ′ ≈
M Z ′ if cosφ ≈ 1. This is exactly the limit that we want to pursue, 
and we shall show that the couplings of the W ′ and Z ′ to fermions 
will approach the values that we used in the analysis.

Note that x ∼ (2 TeV/0.1 TeV)2 = 102–103. The size of sin φ

cannot be much smaller than 0.3 given g′
2 � 1. In the limit of x

being large, the left-handed and right-handed couplings of the W ′
boson to SM fermions become [22]

gW ′ f f ′
L

gW ′ f f ′
R

−→ 1

x
, with gW ′ f f ′

R = g′
2√
2

, (15)

which is exactly the same as the W ′ interaction in Eq. (1) with 
g′

2 = gR . Similarly, in the limit of large x and small sin φ, the 
left-handed and right-handed couplings of the Z ′ boson to SM 
fermions become [22]

g f ,l −→ g′
2

cosφ
(T (1)

3 − Q ) sin2 φ

g f =,r −→ g′
2

cosφ
(−Q sin2 φ)

g f =q,r −→ g′
2 (T (2)

3 − Q sin2 φ)

cosφ
Note that the leptonic couplings g f =,l/r are suppressed by sin2 φ

and also because its T (2)
3 = 0. The left-handed couplings gq,l of 

quarks are also suppressed by sin2 φ. Therefore, only the right-
handed couplings of quarks are left unsuppressed, which is close 
to what we used in the analysis of Z ′ with g′

2 = gR in previous 
sections. Therefore, in the limit of large x we have more or less 
achieved the leptophobic scenario with W ′ and Z ′ bosons having 
a similar mass at 2 TeV and couplings to right-handed quarks only.

6. Discussion

We have considered a phenomenological SU(2)R model that 
contains extra W ′ and Z ′ bosons, which mix with the SM W
and Z bosons, respectively. Thus, it can induce the decays of 
W ′ → W Z and Z ′ → W +W − to explain the ATLAS anomaly in 
the diboson channels, while we interpreted the excess in Z Z as a 
fluctuation or a substantial overlap with W W and W Z . It is very 
difficult for a spin-1 boson to decay significantly into Z Z .

We have applied the constraints of the total width of the W ′
and Z ′ bosons, dijet cross sections, W Z and W W cross sections, 
and W H and Z H cross sections for the W ′ and Z ′ bosons, re-
spectively, as well as qualitatively the EW precision constraints 
on the parameter space of gR and the mixing angles φw and φz . 
We have found a sweet spot that satisfies all the constraints, and 
there exists a viable region that can explain the excess in the W Z
and W +W − channels, respectively. The size of the mixing angle is 
φw , φz ≈ 3 × 10−3–10−2 and the size of the coupling gR ≈ 0.2–0.5.

We offer comments on our findings and other possibilities as 
follows.

1. The production of W Z and W W via W ′ and Z ′ bosons re-
ceives a large enhancement due to the longitudinal polariza-
tion of the W and Z boson (εμ

L (W /Z) ∼ pμ/MW /Z ). If each 
boson-jet system (which contains 2 closely separated jets) is 
boosted back to the rest frame of the W /Z boson and the an-
gle made by the jet is measured, one may be able to tell the 
polarization of the W /Z boson.

2. Another important channel to check is the semileptonic decays 
of the W and Z bosons, i.e., one boson decays leptonically 
while the other hadronically. Though the event rates will be 
lowered, the W or Z peak can be easier distinguished.

3. As we have mentioned that it is very difficult to have a spin-1 
boson to decay into Z Z at tree level. There are only two effec-
tive operators describing such vertex [11], one of which may 
be induced by anomaly associated with the extra U (1) while 
the other must be CP violating. The logical choice is spin-0 
or spin-2. However, the production of spin-0 boson, just like 
the SM Higgs boson, has to go through gg fusion or W W
fusion. The production cross sections are too small or the to-
tal decay width of the boson is too broad. The spin-2 boson, 
e.g, the graviton Kaluza–Klein state of the Randall–Sundrum 
model, can decay into W W and Z Z , but in the ATLAS report 
[1] it was shown that the production rate of the spin-2 gravi-
ton is somewhat too small to explain the anomaly.

4. Another possibility is an extended Higgs sector. It is well-
known that in models with extra Higgs doublets the charged 
Higgs cannot couple to W Z at tree-level. It has to go beyond 
the doublet to e.g. triplet models. One viable triplet model is 
the Georgi–Machacek model [24] that contains neutral, singly-
charged, and doubly-charged Higgs bosons [25]. The excess 
in W W channel did not distinguish between W +W − and 
W ±W ± . In particular, the doubly and singly charged H++

5
and H+

5 can be copiously produced via vector–boson fusion 
for Higgs-boson mass at 2 TeV, but the width of the bosons 
are too broad to be consistent [26].
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5. Another alternative is the strong dynamics [15], e.g., techni-
color models. For example, a neutral ρ0

T C of 2 TeV can decay 
into W +W − while a charged ρ±

T C of 2 TeV can decay into 
W ± Z .
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