
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 913 (2016) 815–833

www.elsevier.com/locate/nuclphysb

Descent Equation for superloop and cyclicity of OPE

A.V. Belitsky

Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA

Received 20 May 2016; received in revised form 19 September 2016; accepted 17 October 2016

Available online 24 October 2016

Editor: Stephan Stieberger

Abstract

We study the so-called Descent, or Q̄, Equation for the null polygonal supersymmetric Wilson loop in the 
framework of the pentagon operator product expansion. To properly address this problem, one requires to 
restore the cyclicity of the loop broken by the choice of OPE channels. In the course of the study, we unravel 
a phenomenon of twist enhancement when passing to a cyclically shifted channel. Currently, we focus on 
the consistency of the all-order Descent Equation for the particular case relating the NMHV heptagon to 
MHV hexagon. We find that the equation establishes a relation between contributions of different twists and 
successfully verify it in perturbation theory making use of available bootstrap predictions for elementary 
pentagons.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The superamplitude AN in planar N = 4 superYang–Mills theory is known to be dual to the 
superWilson loop [1–6]

WN = exp

⎛
⎜⎝ig

∮
CN

A

⎞
⎟⎠ , (1)

defined by a superconnection A residing on a piecewise light-like contour CN in chiral super-
space. The WN , being an off-shell correlator, provides a fully nonperturbative description of AN . 
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What makes this correspondence even more powerful is that WN can systematically be analyzed 
in the multi-collinear regimes, i.e., when certain adjacent links become parallel [7–10]. This ex-
pansion receives a rigorous nonperturbative reincarnation within the so-called pentagon operator 
product expansion (OPE) [11]. The power of the latter lies in the fact that all of its ingredients 
can be computed to all orders in ’t Hooft coupling making use of the hidden integrablility of the 
theory [11–22]. In spite of the fact that there is a plethora of data on scattering amplitudes that 
heavily relies on ordinary and dual superconformal symmetries [23–26], the above formalism 
obscures the most basic symmetries such as supersymmetry, cyclicity etc.

The chiral nature of the superWilson loop representation itself, while preserves some tree-
level dual symmetries, masks others and makes them coupling dependent in spite of the fact that 
there are no intrinsic short-distance anomalies associated with them.1 One particular generator 
that received a close attention in this regard was the Poincaré supersymmetry Q̄ [26,27], i.e., the 
chiral conjugate of Q. Its action on the superloop was cast in an all-loop conjecture2 [26] that 
was dubbed the Descent Equation, see Eq. (6) below. Its power was uncovered in the fact that it 
mixes different orders in perturbative series, enabling one to predict higher loop amplitudes from 
the ones an order lower. Of particular importance for this application was the cyclicity of the loop 
that provided contributions adding up together to yield correct final answer. As a consequence, 
the goal of the current study will be twofold. We will unravel how the cyclic permutations are 
implemented in the Descent Equation from the point of view of OPE. And then we will realize 
what the Descent Equation implies for the mixing of different twists in the operator series.

Our subsequent presentation is organized as follows. In the following section, we recap the 
form of the equation for the finite Wilson loop observables which are natural from the point of 
view of the pentagon OPE. Next, we provide a preliminary discussion of the Descent Equation 
by relating one-loop NMHV heptagon to two-loop MHV hexagon at leading twist in flux-tube 
excitations. As we observe there, to properly incorporate cyclic contributions we have, in princi-
ple, to resum the entire OPE series. To guide ourselves in the quest of uncovering cyclicity, we 
use available exact one-loop expressions for the heptagon and conjecture their form in terms of 
the OPE data to all orders in ’t Hooft coupling. To confirm our prediction, we initiate a thorough 
OPE analysis of the NMHV heptagon by going beyond leading twist in Section 3. Then in Sec-
tion 4, we verify, making use of our all-order predictions in ’t Hooft coupling, that our hypothesis 
is indeed correct by going to one loop order higher when all genuine two-particle states start to 
contribute. Finally we conclude.

2. Collinear limit and Descent Equation

A natural observable from the point of view of the OPE is a properly subtracted superWil-
son loop WN . It is related to the ratio function RN = AN/ABDS

N that was devised in Ref. [26]
according to

WN =RNW
U(1)
N . (2)

1 Of course, there are generators that do develop true anomalies due to ultraviolet divergencies, like conformal boost 
etc.

2 To date, the Descent Equation viewed as a Ward identity of the antichiral supersymmetry generator has evaded 
rigorous studies due to lack of a proper regularization scheme that leaves manifest symmetries of the superloop intact. 
The main culprit in these analyses is the correlation functions of field equations of motion with superholonomies and 
strong UV divergencies associated with the light-cone nature of the contour [6].
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Here lnW
U(1)
N is the sum of connected correlators of the Wilson loops in U(1) theory between 

reference squares in a chosen tessellation of the N -gon with the coupling constant g2
U(1) replaced 

by (one quarter of) the exact cusp anomalous dimensions in N = 4 theory, �(g) = 4g2 −8g4ζ2 +
. . . ,

lnW
U(1)
N = 1

4
�(g)X . (3)

The function X depends on 3N −5 conformal cross ratios X = X(u1, . . . , u3N−5). The superloop 
admits a terminating expansion in Grassmann variables χ ,

WN =
N−4∑
n=0

WN,n , (4)

with each term being a degree-4n polynomial in χ . They correspond to NnMHV amplitudes, up 
to an overall factor of the ’t Hooft coupling, namely, WN,n = g2nAN,n.

The action of the Q̄-operator,

Q̄A
α =

N∑
i=1

χA
i

∂

∂Zα
i

, (5)

on the N -point NnMHV observable can be cast in the form

Q̄A
αWN,n = �(g)

4g2

N+1∑
i=1

∫
d2|3ZA

α i

[
WN+1,n+1 −W tree

N+1,1WN,n

]
, (6)

where in the right-hand side one takes a collinear limit of the N + 1 point Nn+1MHV Wilson 
loop. Notice an extra factor of 1/g2 in the above equation that arises due to the aforementioned 
conversion from amplitudes to Wilson loops. The limit is accomplished by means of a proper 
parametrization of the near-collinear expansion of adjacent sites parametrized by supertwistors 
Zi = (Zi, χi) built from momentum twistors Zi [28] and their Grassmann counterparts χi . A par-
ticularly convenient form is gained in the OPE framework by encoding all inequivalent polygons 
with the action of symmetries of intermediate squares, see Appendix A. For the case at hand, the 
supersymmetric collinear limit emerges from the relation

Z(N+1)
1 =Z(N+1)

N+1 − e−τ ′Z(N+1)
N + e−τ ′+2σ ′

(1 + e−τ ′−σ ′+iφ′
)Z(N+1)

2

+ e−2τ ′+σ ′+iφ′Z(N+1)
3 , (7)

and subsequently taking τ ′ → ∞. This implies an expansion at the bottom of the polygon in 
terms of flux-tube excitations of increasing twist. The measure d2|3Z1 [26], however,

d2|3ZA
α 1 =

∮
|ε|=0+

dε′ε′

2πi

∫
de2σ ′

∫
(d3χ1)

A n̄α , (8)

— where we defined ε′ = e−τ ′
and n̄α = εαβγ δZ

β

n−1Z
γ
n Zδ

1, — singles out just one flux-tube 
fermion.
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2.1. Preliminaries on Descent Equation

The right-hand side of the Descent Equation projects out a single fermionic excitation on the 
bottom of the polygon, while the top can absorb any multi-particle states with overall fermionic 
quantum numbers. Let us, however, start our analysis by considering its left-hand side. We will 
focus on the MHV hexagon as a case of study. At leading twist, it receives a contribution from a 
single gauge field created from the vacuum in the operator channel chosen by the parametrization 
of the momentum twistors introduced in the Appendix A,

W6,0 = 1 + (eiφ + e−iφ)e−τW6[1](2) + . . . , (9)

with3 [16]

W6[1](2) =
∫
R

dμg(v) . (10)

Here we used a compound notation for the differential measure of the p-type flux-tube excitation 
along with the propagating phase encoded by its energy Ep and momentum pp,

dμp(v) = dv

2π
μp(v)e−τ [Ep(v)−1]+iσpp(v) (11)

For brevity, we select α = 4 component of the Q̄A
α generator. Its action can be easily evaluated 

on the twist-one hexagon to read

Q̄A
4 e−τW6[1](2) = χA

4 e−τ

∫
R

dμg(v) 1
2

(
Eg(v) + ipg(v)

) + . . . , (12)

where ellipses stand for cyclic contributions accompanied by other Grassmann variables. Ex-
panding the measure, μp = g2μ

(1)
p +g4μ

(2)
p + . . . , the energy and momentum, Ep = 1 +g2E

(1)
p +

. . . and pp = 2u + g2p
(1)
p + . . . in perturbative series, we can shift the integration contour into 

the lower half of the complex rapidity plane, v → v − i
2 and rewrite the result in the form

Q̄A
4 e−τW6[1](2) = χA

4 e−τ

∫
R+i0

dv

2π
e2ivσ

{
g2eσ μ

(1)
F (v) (13)

+ g4
[
eσ

(
μ

(2)
F (v) + (iσp

(1)
F (v) − τE

(1)
F (v))μ

(1)
F (v)

)
−

(
2τ + 2σ − ip(1)

g (v)
)

μ(1)
g (v)

]
+ O(g6)

}
+ . . . ,

at the lowest two orders of perturbation theory. To arrive at this expression we used the following 
results. First, it is immediate to demonstrate that4

Eg(v − i
2 ) = EF(v) − ipf(v − i) , pg(v − i

2 ) = pF(v) − iEf(v − i) , (14)

3 Here and below, we accept a notation that the subscripts in WN [t1,...,t3N−5](h1,...,h3N−5) stand for the number of 
cusps in the superloop N , with twists t1, . . . of excitations propagating on sequential intermediate squares and their 
corresponding total double helicities being h1, . . . .

4 Cf. these to the relations EF(v) − Eh(v − i ) = ipf(v) and pF(v) − ph(v − i ) = iEf(v) found in Ref. [13].
2 2
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Fig. 1. Two OPE channels relevant for the Descent Equation involving heptagon. The two channels are obtained from 
each other by a mirror reflection with respect to the line going through Z1 and connecting to the vertex Z4 ∧ Z5.

by confirming these identities order-by-order in ’t Hooft coupling. For the measures, we have in 
the lowest few orders

(i − v)μ(1)
g (v − i

2 ) = iμ
(1)
F (v) ,

(i − v)μ(2)
g (v − i

2 ) = iμ
(2)
F (v) − i

2E(1)
g (v − i

2 )μ(1)
g (v − i

2 ) + π(1 + 2iv)

v2(v − i)2 sinh(πv)
.

A naked eye inspection of Eq. (13) then immediately suggests that the first line and the first 
term in the second line emerge from a single-fermion exchange, as anticipated from the Descent 
Equation. This can easily be verified by computing the σ ′ integral of the χ3

1 χ4 component (26)
of the heptagon, see Fig. 1, which is extracted by the d2|3Z1 measure. It yields to the lowest two 
orders in g2

∫
dσ ′W(4)

7[1,1](1,1)(σ
′, σ ) = −eσ

∫
dv

2π
e2ivσ

{
g2μ

(1)
F (v) + g4

[
μ

(2)
F (v) + (iσp

(1)
F (v)

− τE
(1)
F (v) + 2ζ2)μ

(1)
F (v)

]
+ O(g6)

}
. (15)

The ζ2 term gets canceled upon multiplication by the cusp anomalous dimension thus providing 
agreement alluded to above. However, the second term in the square brackets of Eq. (13) is much 
more enigmatic. Since we currently lack understanding of the mechanism responsible for its 
emergence from the point of view of the underlying flux-tube dynamics, we will choose a more 
pragmatic route in the next section.

2.2. Hints from one-loop analysis: the conjecture

As a guide on our quest to unravel the aforementioned “problematic” contribution, we will 
start with an exact expression for the one-loop NMHV heptagon to see what we should anticipate 
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as its origin. In fact, the collinear limit of the heptagon (N = 7) was worked out in Ref. [26] for 
the ratio function PN defined as

WN =PNWN,0 , (16)

with WN,0 being the bosonic, i.e., the lowest Grassmann, component of the superloop. PN ad-
mits the same decomposition in the fermionic variables χ as WN in Eq. (4) with PN,0 = 1. From 
the point of view of the OPE, WN and PN coincide at one-particle level, but they start to devi-
ate at two and beyond due to subtraction terms in PN , see, e.g., Eq. (43) below. Its degree 4n

Grassmann component is naturally defined in terms of the ratio

PN,n =AN,n/AN,0 (17)

of the NnMHV superamplitude AN,n to the maximally helicity violating one AN,0.
According to [26], one finds

∫
d2|3ZA

α1P7,1 =Q̄A
α ln

〈6724〉
〈6723〉

∞∫
0

dt I (4)(t |w1,w2,w3,w)

+ Q̄A
α ln

〈6725〉
〈6723〉

∞∫
0

dt I (5)(t |w1,w2,w3,w) , (18)

with the right-hand side being the function of cross ratios introduced in Appendix A. The two 
contributions can clearly be distinguished from one another by identifying them from the χ3

1 χ4

and χ3
1 χ5 Grassmann structures, in the first and second term, respectively. These correspond, 

in the OPE language, to a single fermion emitted at the bottom of the heptagon and all twists 
coupled to the top. However, the two are absorbed in adjacent OPE channels (see Fig. 1). The 
collinear expansion on the top of the heptagon admits a systematic classification within the pen-
tagon framework, namely, we immediately find for the two contributions

e2σ ′
I (4)(e2σ ′ |w1,w2,w3,w) = −e−τP(4)

7 [1,1](1,1)(σ
′, σ, τ ′ = 0, τ )

− e−2τ
(

eiφP(4)
7 [1,2](1,3)

+ e−iφP(4)
7 [1,2](1,−1)

)
× (σ ′, σ, τ ′ = 0, τ ) + O(e−3τ ) , (19)

e2σ ′
I (5)(e2σ ′ |w1,w2,w3,w) = −e−τP(5)

7 [1,1](1,1)(σ
′, σ, τ ′ = 0, τ )

− e−2τ
(

eiφP(5)
7 [1,2](1,3)

+ e−iφP(5)
7 [1,2](1,−1)

)
× (σ ′, σ, τ ′ = 0, τ ) + O(e−3τ ) , (20)

which arise from the following generic form of the Grassmann expansion for P7,1

P7,1 =
∑

j=4,5

χ3
1 χj

∑
n1,n2

∑
h1,h2

e−n′τ ′−nτ ei(h′φ′+hφ)/2P(j)

7[n′,n](h′,h)
(σ ′, σ, τ ′, τ ;g) + . . . . (21)

The ellipses stand for irrelevant Grassmann structures and the nomenclature for the labels is 
the same as for W and was explained in the footnote 3. The remaining dependence of the ratio 
functions P(j)

7[n′,n](h′,h)
on the τ and τ ′ is polynomial in nature and comes from perturbative 

corrections to the eigen-energies of flux-tube excitations. Above, in Eqs. (19) and (20), we set τ ′
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to zero everywhere since these contributions vanish after σ ′ integration owing to the Goldstone 
theorem [30].

The proper reconstruction of the left-hand side of the Descent Equation requires adding up all 
cyclic permutation of Eq. (18) in the right-hand side of Eq. (6). Thus, the cyclic image of χ5 will 
induce a contribution to the χ4 structure after the shift i → i − 1. From the point of view of the 
all-twist function I (5), given by the expression [26],

I (5)(t |w1,w2,w3,w) = − w3

t (w3 + t)

[
− ln(1 + t) ln

1 + t

t

− ln
w3(1 + t)

w3 + t
ln

w2(w3 + t)

t
+ Li2(1 − w2) + Li2(1 − w3)

− Li2

(
1 − w3

1 + t

)
+ Li2

(
1 − w2

1 + t

)]

+ 1

t (w3 + t)

[
ln

w3(w3 + t)

w3 + t
ln

w3 + t

t
+ Li2(1 − w1)

− Li2

(
1 − w1t1

w3 + t

)]
+ w − w3

1 + t

[
ln

w2

1 + t
ln

w1t

w3 + t

+ Li2

(
1 − w2

1 + t

)
+ Li2

(
1 − w1t

w3 + t

)
− ζ2

]
(22)

this is achieved by a cyclic shift of twistors that results in a change of the cross ratios w → w̃

as shown in Eqs. (64) of Appendix A. After this is done, we can safely expand the result in the 
collinear τ → ∞ limit to find its leading twist contribution in the χ4 operator channel. While it 
is easy to find the functional from this Taylor expansion, to cast it back into the form of flux-tube 
integrand is extremely non-trivial.

Though it appears that one needs to restore the exact dependence on the cross ratios before 
moving to a different channel by resumming the entire OPE series, we found that one merely has 
to move beyond leading twist in the adjacent channel to induce a leading contribution after the 
cyclic shift. The result of our analysis is summarized by the following conjecture

∞∫
−∞

dσ ′ e2σ ′
I5(e

2σ ′ |w̃1, w̃2, w̃3, w̃)

= 0 − e−τ

∞∫
−∞

dσ ′
[
i
(
P(5)

7 [1,2](1,3) −P(5)
7 [1,2](1,−1)

)
sinφ

+
(
P(4)

7 [1,2](1,−1) +P(4)
7 [1,2](1,3) −P(5)

7 [1,2](1,3) −P(5)
7 [1,2](1,−1) + eσP(4)

7 [1,1](1,1)

)
cosφ

]
+ O(e−2τ ) , (23)

for the integrand before the σ ′-integration. Here the leading-twist effect in the χ5 channel 
vanishes upon the integration! The subleading terms are expressed by means of twist-two con-
tributions to the ratio functions for the χ4 and χ5 Grassmann components introduced earlier in 
Eq. (21). The helicity-preserving term, proportional to cosφ and thus mimicking the azimuthal 
dependence of the leading twist gluon exchange (9), defines the leading effect in the χ4-channel 
of the Descent Equation after the cyclic shift. This is the effect of twist enhancement we alluded 
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to in the Introduction. This expression can be cast in a very concise form at this order in ’t Hooft 
coupling making use of the analysis that follows, namely,

2

∞∫
−∞

dσ ′(P(4)
7 [1,2](1,−1)

+P(4)
7 [1,2](1,3)

−P(5)
7 [1,2](1,3)

−P(5)
7 [1,2](1,−1)

+ eσP(4)
7 [1,1](1,1)

)

= −g4
∫

R+i0

dv

2π
e2ivσ μ(1)

g (v)
(

2τ + 2σ − ip(1)
g (v)

)
+ O(g6) . (24)

As we can see, the O(g4) contribution is in agreement with the last term in Eq. (13).
At this point, the left-hand side of the above equation appears to be just one of may ways to 

reproduce the flux-tube integrand in the right-hand side and is merely a low-order coincidence. 
A priori, one does not even have a solid argument that such a representation is at all possible, 
except for an analogy with crossing a fermionic excitation from one OPE channel to another: 
a procedure that results in increasing its twist as well [17]. Therefore, to confirm this conjecture 
and put it on a firmer foundation, we would like to push on and set our goal at verifying it at 
higher perturbative orders. Thus, in the rest of the paper we will construct the OPE up to two 
particles on the top of the heptagon both in χ3

1 χ4 and χ3
1 χ5 channels. In this manner, we will 

have exact results for any value of the coupling constant and can confirm the validity of our 
hypothesis for the integrand in the left-hand side of Eq. (24).

3. Fermionic heptagon

As we stated above, we have to uncover the structure of subleading corrections in the OPE 
expansion of fermionic components of the heptagon superloop W7. Thus we turn to a thorough 
analysis of the χ3

1 χ4 and χ3
1 χ5 Grassmann structures with the emphasis on the lowest twist 

contribution at the bottom and up to twist two on the top. The general form of its Grassmann 
expansion is identical to Eq. (21) where we have to replace P →W .

3.1. Twist-one: fermion exchange

To start with, we will recall the leading effect from the twist-one fermion propagating in the 
OPE channels in question [20], i.e., proportional to e−τ ′−τ eiφ′/2+iφ/2. Both the χ3

1 χ4 and χ3
1 χ5

Grassmann structures are cumulatively given by

W(j)

7[1,1](1,1)(σ
′, σ ) =

∫
C

+
�

dμ�(u)x[u]
∫

C
(j)
�

dμ�(v)P�|�(−u|v) . (25)

They are expressed in terms of the helicity non-flip fermionic pentagon transition P�|� [17]
with the measure of the initial-state fermion accompanied by a helicity form factor given by the 
Zhukowski variable x[u] = 1

2 (u + √
u2 − (2g)2). Above, the integration contours are shown in 

Fig. 2. The one for the fermion on the bottom of the heptagon is C+
� = C

+
F + C

−
f with C+

F =
R + i0 and C−

f running a half-circle in the lower semiplane of the complex plane. The top contour 
depends on the supertwistor that the flux-tube excitation is “attached” to. For the χ3

1χ4 channel 

it is the same C(4)
� = C

+
� , while for χ3

1 χ5, it is “flipped” on the Riemann surface with respect to 

the imaginary axis, i.e., C(5) = C
− = C

− + C
+. It can be explained by the fact that the latter 
� � F f
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Fig. 2. The large and small fermion complex planes are glued together along the square root branch cut on the real axis 
[−2g, 2g] (shown by the bold red interval) into a two-sheeted Riemann surface. The integration contours for the fermions 
in the OPE expressions are shown for the χ4 in blue, C+

� = C
+
F +C

−
f , and for χ5 one in green, C−

� = C
−
F +C

+
f , paths. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

channel is a mirror reflection of the original χ3
1 χ4 one, thus in a given tessellation it corresponds 

to a different collinear limit.
In perturbation theory, as explained in Refs. [17,20], only the large fermion contributes to the 

OPE, yielding

W(4,5)
7[1,1](1,1)(σ

′, σ ) =
∫

R+i0

dμF(u)x[u]
∫

R±i0

dμF(v)PF|F(−u|v) . (26)

Its expansion in ’t Hooft coupling can be easily verified to agree with explicit amplitudes by 
using, for instance, the package of Ref. [29]

The Descent Equation involves an integral over the position σ ′. Our analysis reveals that the 
result is given by

�(g)

∫
dσ ′W(4)

7[1,1](1,1)(σ
′, σ ) = −2ig2

∫
R+i0

dμ�(v) , (27)

where the prefactor of the exact cusp anomalous dimension arises from the integral∫
duμ�(u)e−τ ′[E�(u)−1]x[u]δ(p�(u)

)
P�|�(−u|v) = − 2ig2

�(g)
. (28)

Superficially the left-hand side depends on the rapidity v, but in reality it is only a function of 
the ’t Hooft coupling. Notice that the dependence on the cross-ratio τ ′ trivializes in light of the 
fact that the fermion mass is one at any value of the coupling [30],
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p�(u) = 0 , E�(u) = 1 . (29)

Equation (28) can be found by studying the fermion zero momentum limit which corresponds to 
the infinite rapidity on the small fermion Riemann sheet. It can be then checked by an explicit 
perturbative expansion to a very high order in ’t Hooft coupling.

For the χ3
1 χ5 channel, the fermion contour in the final state runs below the real axis. However, 

due to the Fourier exponent it has to be closed in the upper half plane. As a result, moving the 
contour just above the real axis, one picks up a pole at v = 0 on the real axis. The latter term 
induces a divergent contribution when integrated with respect to σ ′. Namely, we find that it is 
coupling independent

res
v=0

PF|F(−u|v)μF(v)e−τ [EF(v)−1]+iσpF(v) = −i , (30)

such that the two contributions differ by a single-fermion exchange in the NMHV hexagon

W(5)
7[1,1](1,1)(σ

′, σ ) =W (4)
7[1,1](1,1)(σ

′, σ ) +W6[1](1)(σ
′) , (31)

with

W6[1](1) = −i

∫
R+i0

dμF(u)x[u] . (32)

It is the last term in the right-hand side of Eq. (31) that diverges when integrated with respect 
to σ ′. This contribution gets subtracted in the Descent Equation (6) by the last term in its right-
hand side.

3.2. Twist-two: fermion–gluon in final state

We now turn to twist-two effects. As exhibited by Eq. (21), at twist-two there is a contribution 
that enters with the helicity prefactor e3iφ/2. It corresponds to a fermion–gluon pair absorbed by 
the top portion of the Wilson loop in a given OPE channel. Its all-order expression in coupling 
constant reads5

W(j)

7[1,2](1,3) = g

∫
C

+
�

dμ�(u1)

∫
C

(j)
�

dμ�(v1)

∫
R

dμg(v2)

× x[u1]P�|g(−u1|v2)P�|�(−u1|v1)√
x+[v2]x−[v2]Pg|�(v2|v1)Pg|�(−v2| − v1)

, (33)

where we used the factorized form of one-to-two particle transition pentagon [21] and fermion–
gluon absorption form factor [20]. The helicity form factor is expressed in terms of the shifted 
Zhukowski variables x±[u] ≡ x[u±] where u± = u ± i

2 . The bottom fermion resides on the large 
sheet, while the one on the top can be split in the above formula into the small (f) and large (F) 
contributions

W(j)

7[1,2](1,3) =W(j)

7 F|fg +W(j)
7 F|Fg . (34)

We start with the j = 4 case first. At lowest two orders in coupling, only the small fermion 
contributes to the Wilson loop and induces a nontrivial effect that reads

5 All pentagon transitions used here and below can be found in Refs. [18,20,21].



A.V. Belitsky / Nuclear Physics B 913 (2016) 815–833 825
W(4)
7 F|fg = g

∫
R+i0

dμF(u1)x[u1]
∫

R+i0

dμgf(v2)

[
x−[v2]
x+[v2]

]1/2

PF|g(−u1|v2)PF|f(−u1|v−
2 ) ,

(35)

where we introduced the small-fermion–gluon measure [20],

μgf(v2) = res
v1=v−

2

g2μf(v1)μg(v2)

x[v1]Pf|g(v1|v2)Pf|g(−v1| − v2)
. (36)

At O(g6) and higher, W7[1,2](1,3) receives an additional term from the large fermion

W(4)
7 F|Fg = g

∫
R+i0

dμF(u1)

∫
R+i0

dμF(v1)

∫
R+i0

dμg(v2)

× x[u1]PF|g(−u1|v2)PF|F(−u1|v1)√
x+[v2]x−[v2]Pg|F(v2|v1)Pg|F(−v2| − v1)

. (37)

Similar analysis can be conducted for j = 5. The differences in the fermion contour result in 
differences of various contributions. The small fermion now reads instead

W(5)
7 F|fg = g

∫
R+i0

dμF(u1)x[u1]
∫
R

d μ̃gf(v2)

[
x+[v2]
x−[v2]

]1/2

PF|g(−u1|v2)PF|f(−u1|v+
2 ) ,

(38)

where compared to the previous equation the composite measure has changed, since the pole 
v2 = v+

1 was picked up in the upper half plane of the lower Riemann sheet,

μ̃gf(v2) = res
v1=v+

2

g2μf(v1)μg(v2)

x[v1]Pf|g(v1|v2)Pf|g(−v1| − v2)
, (39)

as well as the square root prefactor was flipped. As above, at order g6 and beyond, the Wilson 
loop gets a new term from the large fermion. The expression for the latter is given by the same 
Eq. (37) except for the position of the contour in the v1-fermion rapidity complex plane, i.e., one 
has to substitute 

∫
R+i0 dμF(v1) →

∫
R−i0 dμF(v1). The correctness of these expressions can be 

verified by comparing them with the perturbative expansion of Ref. [29]. It would be important to 
extend this analysis to higher orders, especially in a fully analytic manner relying on the methods 
of Ref. [31], using the heptagon bootstrap program [32–35] that generalizes earlier results on the 
hexagon [36,37].

The calculation of the σ ′ integrals of contributions introduced in the previous section follows 
the same route as for the single fermion in Section 3.1, but now we have to evaluate the rapidity 
integral involving two pentagons. For the j = 4 contribution, this can be successfully accom-
plished order-by-order in perturbation theory and then resummed back into an exact function 
of ’t Hooft coupling. For the integral involving the small and large fermions, � = f, F, we find 
identical expressions for the right-hand side∫

du1 μF(u1)e
−τ ′[EF(u1)−1]x[u1]δ

(
pF(u1)

)
PF|�(−u1|v−

2 )PF|g(−u1|v2)

= − 2ig3 1√ + − . (40)

�(g) x [v2]x [v2]
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However, a simple counting of the powers of ’t Hooft coupling for the large fermion demon-
strates that its contribution gets postponed to one order higher than the integrand itself since 
the leading term in its perturbative expansion vanishes after the u1 integration. Thus, the large 
fermion appears accompanied by a gluon starting only from three loops in the Descent Equation.

For j = 5, in complete analogy with the single fermion, the σ ′ integral turns out to be di-
vergent. So it requires a subtraction. To make it as transparent as possible, let us calculate the 
difference between the χ5 and χ4 contributions first. A careful all-loop analysis demonstrates 
that the latter can be rewritten

W(5)
7[1,2](1,3) −W(4)

7[1,2](1,3) = �W7[1,2](1,3) (41)

in terms of the following expression

�W7[1,2](1,3) ≡ 1

g

∫
R+i0

dμF(u1)

∫
R+i0

dμg(v2) x[u1]PF|g(−u1|v2)
√

x−[v2]x+[v2] . (42)

It is important to emphasize that, starting from the three-loop order, the integrand of this 
equation does not develop u1-dependence in addition to the one already present in the factor 
x[u1] μF[u1]PF|g(−u1| . . . ) only when both the small � = f and large � = F fermions are ac-
counted for in the twist-two state |�g〉!

To proceed further, we form the NMHV ratio functions,

P(j)

7[1,2](1,3)(σ
′, σ ) =W(j)

7[1,2](1,3)(σ
′, σ ) −W(j)

7[1,1](1,1)(σ
′, σ )W6[1](2)(σ ) , (43)

with the gluon flux-tube excitation propagating on the bosonic hexagon W6[1](2), see Eq. (10). 
Substituting Eq. (31) into above (41), we find

P(5)
7[1,2](1,3)(σ

′, σ )

=P(4)
7[1,2](1,3)(σ

′, σ ) + [
�W7[1,2](1,3) −W6[1](1)(σ1)W6[1](2)(σ )

]
. (44)

The integral of the regularized expression is finite and can be cast in a concise form,∫
dσ ′[�W7[1,2](1,3)(σ

′, σ ) −W6[1](1)(σ
′)W6[1](2)(σ )

]
= ig2

�(g)

∫
R+i0

dμg(v2)

[
x−[v2] − g2

x+[v2] − i
2

(
Eg(v2) + ipg(v2)

)]
. (45)

This concludes our discussion of integrals involving fermion–gluon pairs in the OPE of the hep-
tagon.

3.3. Twist-two: antifermion–scalar in final state

Finally, we address the W(j)

7[1,2](1,−1). A simple counting of quantum numbers immediately 
suggests that there are two additive contributions, one from the hole–antifermion and another 
one from antigluon–fermion pair,

W(j)

7[1,2](1,−1) =W(j)

7 �|�̄h
+W(j)

7 �|�ḡ . (46)

These admit a representation in terms of the pentagons as follows,
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W(j)

7 �|�̄h
= 2

g3

∫
C�

dμ�(u1)

∫
C

(j)
�

dμ�(v1)

∫
R

dμh(v2)

× x3/2[u1]x[v1]P�|�̄ (−u1|v1)P�|h(−u1|v2)

(v1 − v2 − i
2 )(v1 − v2 + 3i

2 )P�|h(v1|v2)P�|h(−v1| − v2)
, (47)

W(j)
7 �|�ḡ = g

∫
C�

dμ�(u1)

∫
C

(j)
�

dμ�(v1)

∫
R+i0

dμg(v2)

× x[u1]
√

x+[v2]x−[v2]P�|�(−u1|v1)P�|ḡ(−u1|v2)

(v1 − v2 − i
2 )x[v1]P�|ḡ(v1|v2)P�|ḡ(−v1| − v2)

. (48)

Having these generic expressions, we can rewrite them in specific OPE channels accounting 
for the difference in the fermionic contours. For the j = 4 channel, decomposing the fermion 
into the small and large contributions, we obtain

W(4)
7[1,2](1,−1)

=W(4)

7 F|f̄h +W(4)

7 F|F̄h
+W(5)

7 F|Fḡ . (49)

The first term in the right-hand side starts at order g2 and induces the tree-level term in the am-
plitude. The large antifermion–hole sets in an order higher, i.e., O(g4), while W(4)

7[1,2](1,−1)
starts 

receiving contributions from large-fermion–antigluon pair from two loops. They read individu-
ally,

W(4)

7 F|f̄h = g

∫
R+i0

dμF(u1)

∫
R

dμh(v2)μf(v2 − 3i
2 )

× x3/2[u1]PF|f̄(−u1|v2 − 3i
2 )PF|h(−u1|v2)

x[v2 − 3i
2 ]Pf|h(v2 − 3i

2 |v2)Pf|h(−v2 + 3i
2 | − v2)

, (50)

W(4)

7 F|F̄h
= 2

g3

∫
R+i0

dμF(u1)

∫
R+i0

dμF(v1)

∫
R

dμh(v2)

× x3/2[u1]x[v1]PF|F̄(−u1|v1)PF|h(−u1|v2)

(v1 − v2 − i
2 )(v1 − v2 + 3i

2 )PF|h(v1|v2)PF|h(−v1| − v2)
, (51)

W (4)
7 F|Fḡ = g

∫
R+i0

dμF(u1)

∫
R+i0

dμF(v1)

∫
R+i0

dμg(v2)

× x[u1]
√

x+[v2]x−[v2]PF|F(−u1|v1)PF|ḡ(−u1|v2)

(v1 − v2 − i
2 )x[v1]PF|ḡ(v1|v2)PF|ḡ(−v1| − v2)

. (52)

For the χ3
1 χ5 channel, all one has to do is to use the corresponding fermion contour. Then one 

immediately realizes that compared to the previously studied sector, there will be an additional 
contribution from the small-fermion–antigluon in Eq. (48) due to the location of the simple pole 
above the real axis where we close our integration contour. Then we have

W(5)
7[1,2](1,−1) =W(5)

7 F|f̄h +W(5)

7 F|F̄h
+W(5)

7 F|fḡ +W(5)
7 F|Fḡ . (53)
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To the lowest two orders of perturbation theory only small fermions contribute to the right-hand 
side as we now explain. Namely, closing the integration contour in the upper half plane in W�|�̄h

yields the result for the W (5)

7 F|f̄h,

W(5)

7F|f̄h = g

∫
R+i0

dμF(u1)

∫
R

dμh(v2)μf(v
+
2 )

x3/2[u1]PF|f̄(−u1|v+
2 )PF|h(−u1|v2)

x+[v2]Pf|h(v+
2 |v2)Pf|h(−v+

2 | − v2)
. (54)

The large-fermion case is determined by the integrand of Eq. (51) with the v2 integral running 
just below the real axis, R − i0. This contribution vanishes at O(g4). At this order the small 
fermion in the pair with antigluon

W(5)
7 F|fḡ = 1

g

∫
R+i0

dμF(u1)x[u1]
∫
R

dμg(v2)μf(v
+
2 )x+[v2]

√
x+[v2]x−[v2]

× PF|f(−u1|v+
2 )PF|ḡ(−u1|v2)

Pf|ḡ(v+
2 |v2)Pf|ḡ(−v+

2 | − v2)
(55)

starts at one loop, postponing the effect of the large fermion to two loops. The latter is determined 
by the same equation as in (52), where one has to shift the integration contour with respect to v2
in the lower half-plane. Expansion in ’t Hooft coupling allows us to support these predictions at 
lowest two orders by confronting them with explicit amplitudes [29].

To uncover contributions of the above twist-two effects in the Descent Equation, we have to 
finally evaluate the σ ′ integrals. Again we start with the convergent j = 4 operator channel. To 
this end, we need the following set of rapidity integrals involving the antifermion and the hole,∫

du1 μF(u1)e
−τ ′[EF(u1)−1]x[u1]δ

(
pF(u1)

)
PF|�̄ (−u1|v1)PF|h(−u1|v2) = 2g3

�(g)
. (56)

This equation is the same for both the small �̄ = f̄ and large �̄ = F̄ antifermion except that one 
has to set its rapidity to v1 = v2 − 3i

2 in the former case. Last but not least, for the large fermion 
and antigluon we find∫

du1 μF(u1)e
−τ ′[EF(u1)−1]x[u1]δ

(
pF(u1)

)
PF|F(−u1|v1)PF|ḡ(−u1|v2)

= − 2g

�(g)

√
x+[v2]x−[v2] . (57)

Now we move to the j = 5 case. First, for antifermion–hole contribution W (5)

7 �|�̄h
, we find 

that the integral involving the small antifermion is identical to Eq. (56). In fact, these two are 
particular cases of a more general formula for a generic value of v1 in PF|f̄(−u1|v1). Next, for 
the large fermion we can use Eq. (56) in spite of the fact that the integration contour for the 
outgoing fermion lies below the real axis. The reason for this is that while crossing the real axis 
one acquires a pole along the way, this term is not singular for u1 = 0. Finally, we turn to the 
antigluon–fermion final state, W(5)

7 �|�ḡ. In this case, the σ ′ integral is not convergent, so one has 
to form the ratio function and thus subtract a factorized contribution,

P(5)
7[1,2](1,−1)(σ

′, σ ) =W(5)
7[1,2](1,−1)(σ

′, σ ) −W(5)
7[1,1](1,1)(σ

′, σ )W6[1](2)(σ ) . (58)

Substituting (31), we can split the result into two terms,
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W(5)
7 �|�ḡ(σ

′, σ ) −W(5)
7[1,1](1,1)(σ

′, σ )W6[1](2)(σ )

=W(4)
7 �|�ḡ(σ

′, σ ) −W(4)
7[1,1](1,1)

(σ ′, σ )W6[1](2)(σ )

+
[
�W(5)

7 �|�ḡ(σ
′, σ ) −W6[1](1)(σ

′)W6[1](2)(σ )
]

, (59)

with the first two terms in its right-hand side addressed in the previous sections. The integral of 
the square bracket can be expressed in a concise form

∞∫
0

dσ ′
[
�W(5)

7 �|�ḡ(σ
′, σ ) −W6[1](1)(σ

′)W6[1](2)(σ )

]

= ig2

�(g)

∫
dμg(v2)

[
−x−[v2] + g2

x+[v2] − i
2

(
Eg(v2) + ipg(v2)

)]
. (60)

This concludes our OPE analysis.

4. Verifying the conjecture

One can now combine all of the above ingredients together and substitute them into the De-
scent Equation. We will not give the cumulative formula here to save space. It is obvious from the 
representation of these results, that the overall power of the inverse cusp anomalous dimension 
cancels against the one in the right-hand side of Eq. (6). Thus, this proves the all-order form of 
the Descent Equation provided that we can establish the agreement between OPE series on both 
of its sides.

As we discussed earlier, the O(g4) contribution is in agreement with the last term in Eq. (13)
as can now be confirmed making use of the explicit results derived in the previous section. 
However, it is important to realize that staying at this order is not sufficient to unambiguously 
constrain the form of the conjectured expression for the cyclic shift. Namely, there is an empiri-
cally found relation between W(4)

7[1,2](1,−1)
and W(4)

7[1,2](1,3)
components of the superloop,

W(4)
7[1,2](1,−1) =W(4)

7[1,2](1,3) + eσW(4)
7[1,1](1,1) + O(g6) , (61)

which is valid to order g4 only. Thus, without further checks, there are two possible forms for 
the right hand side of Eq. (23): the one that is quoted out there and another one that one obtains 
by eliminating, say, W(4)

7[1,2](1,−1) via Eq. (61) from it. The latter implies that one can replace 

P (4)
7 [1,2](1,−1) +P(4)

7 [1,2](1,3) + eσP(4)
7 [1,1](1,1) → 2P(4)

7 [1,2](1,−1) in Eq. (23). Thus the left-hand side 
of Eq. (23) does not appear to be unique. However, higher order corrections to two-particle con-
tributions eventually lift the degeneracy between the two seemingly equivalent representations 
and allow us to pick just one. In addition, the inconsistency of the relation (61) with the antici-
pated OPE representation for the P (4)

7 [1,2](1,−1) can be observed even without pushing the program 
beyond the lowest two perturbative orders in (54). Namely, the pole at v2 = v+

1 is not at the right 
side of the real axis to be naturally accommodated into OPE. There is an immediate problem 
that one needs to reconcile, namely, how the two results, Eq. (54) and (49) can be compatible. 
The first one has only small fermion contribution while the latter one has both, large and small. It 
turns out that if one ignores the proper choice of the contour and uses C−

� instead of C+
� , then C+

f
is closed in the upper half plane and one picks up a pole at v2 = v+

1 and gets the result given in 
Eq. (54). At the same time, as we already mentioned before, the genuine two-particle twist-two 
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contribution (that sets in at order g4) vanishes, so one is left with small-fermion–hole pair alone 
as found in the relation (61).

Therefore, to put the result (23) on a firmer foundation, we compared the left- and right-hand 
sides of the Descent Equation at O(g6), when all two-particle excitations contribute to the OPE. 
As a result, we confirmed the agreement, i.e., the equality of Eq. (12) to the sum of Eq. (15) and 
(24) multiplied by the factor of the cusp anomalous dimension. This is the main result of this 
paper.

5. Conclusions

In this work, we analyzed the Descent Equation for the null polygonal superWilson loop 
within the framework of the pentagon OPE. We demonstrated that the factor of the cusp anoma-
lous dimensions naturally arises in its right-hand side from the pentagon formalism confirming 
in this manner the all-loop structure of the equation. We have established a phenomenon of twist 
enhancement as one passes to an adjacent channel by cyclicity. Namely, the leading effect comes 
from the subleading-twist contributions of the direct channel. When added up with the twist-
one excitations in the direct channel, it proves the consistency of the OPE expansion with the 
Q̄-equation. It would be interesting to extend this consideration to event higher twists and other 
nonMHV polygons.

It is important to derive our conjecture, and more generally confirm the twist enhancement 
phenomenon, from the physics of flux-tube excitations. Hopefully, there is a map that allows 
one to go between cyclic channels by performing a suitable analytic continuation in the complex 
rapidity plane. There are two, available to date, examples of twist increase in different contexts. 
One arises in the attempt to find a mirror transformation for the flux-tube fermion [17] and 
another one for the octet reggeons starting from flux-tube gluons [38].

Finally, it would be interesting to verify the consistency of various relations arising in the cur-
rent analysis, like Eqs. (40), (56) etc., at strong coupling, see, e.g., Refs. [39,40]. These questions 
will be addressed in a future publication.
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Appendix A. Parametrization of polygons

Making use of the projective invariance of momentum twistors, we will use the following 
rescaled version of the later for the hexagon

Z
(6)
1 =

(
e−τ+2σ ,0, eσ+iφ, e−2τ+σ+iφ

)
,

Z
(6)
2 = (1,0,0,0) ,

Z
(6)
3 = (−1,0,0,1) ,

Z
(6) = (0,1,−1,1) ,
4
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Z
(6)
5 = (0,1,0,0) ,

Z
(6)
6 =

(
0, e−τ , eσ+iφ,0

)
, (62)

and heptagon

Z
(7)
1 =

(
e−τ ′+2σ ′

,0, eσ ′+iφ′
, e−2τ ′+σ ′+iφ′)

,

Z
(7)
2 = (1,0,0,0) ,

Z
(7)
3 = (−1,0,0,1) ,

Z
(7)
4 =

(
−e−τ , e−σ−iφ,−e−σ−iφ, e−σ−iφ(1 + e−2τ ) + e−τ

)
,

Z
(7)
5 =

(
0, e−σ−iφ + e−τ−2σ ,−e−σ−iφ, e−σ−iφ

)
,

Z
(7)
6 = (0,1,0,0) ,

Z
(7)
7 =

(
0, e−τ ′

, eσ ′+iφ′
,0

)
, (63)

respectively, compared to Refs. [16,21]. These are very well suited for the collinear expansion 
within the framework of the Descent Equation, in particular ensuring Eq. (7).

The collinear limit Z1 → Z7 at the bottom of the heptagon leaves just three conformal cross 
ratios analogous to the one of the hexagon and one non-spacetime cross ratio

w1 = (2,3,4,5)(5,6,7,2)

(2,3,5,6)(4,5,7,2)

∣∣∣∣
τ ′→∞

= eiφ

e2σ+iφ + e−τ+σ + e−τ+σ+2iφ + eiφ(1 + e−2τ )
,

w2 = (3,4,5,6)(6,7,2,3)

(3,4,6,7)(2,3,5,6)

∣∣∣∣
τ ′→∞

= e−2τ

1 + e−2τ
,

w3 = (4,5,6,7)(7,2,3,4)

(4,5,7,2)(3,4,6,7)

∣∣∣∣
τ ′→∞

= e2σ

1 + e−2τ
w1 ,

w = (6,7,3,5)(7,2,3,4)

(6,7,3,4)(7,2,3,5)

∣∣∣∣
τ ′→∞

= eσ

(1 + e−2τ )(eσ + e−τ+iφ)
.

We also introduce cyclically shifted cross ratios i → i + 1,

w̃1 = (3,4,5,6)(6,7,2,3)

(3,4,6,7)(5,6,2,3)

∣∣∣∣
τ ′→∞

= w2 ,

w̃2 = (4,5,6,7)(7,2,3,4)

(4,5,7,2)(3,4,6,7)

∣∣∣∣
τ ′→∞

= w3 ,

w̃3 = (5,6,7,2)(2,3,4,5)

(5,6,2,3)(4,5,7,2)

∣∣∣∣
τ ′→∞

= w1 ,

w̃ = (7,2,4,6)(2,3,4,5)

(7,2,4,5)(2,3,4,6)

∣∣∣∣
τ ′→∞

=
(

1 + e−τ+σ+iφ + e−2τ
)

w1 . (64)

The latter will be relevant for establishing the form of the cyclic permutation form of the χ5

contribution to the one-loop heptagon.
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