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Abstract 

The Socio-Political Evaluation of Energy Deployment (SPEED) framework was proposed to improve understanding 
of energy technology deployment.  It was intended to help energy policy-makers develop and implement more 
effective strategies to accelerate the deployment of emerging energy technologies.  The theoretical underpinnings lie 
in the fields of sustainability science, political science, and risk perception.  Part of the objectives of  the SPEED 
framework are to identify the dominant socio-political influences on energy technology decisions and examine how 
policy can facilitate a societal response to climate change by contributing insights to stakeholders.  The focus is at 
the state level because it is at the state level that emergent energy technologies are sited, permitted, and built. The 
purpose of this study was to examine the structure of communication about carbon capture and storage (CCS) 
technology from the perspective of individuals actively involved in decisions that affect deployment and diffusion.  
We use density of function-system networks to examine differences between states and categories stakeholders.  The 
information is used to inform the discussion of the current structure of communication and how it might present 
either barriers or opportunities for CCS innovation.  Five function systems are used, each divided into benefits 
(positive) or risks (negative) associated with CCS:  economic benefit (ECP), economic risk (ECN), environmental 
benefit (ENP), environmental risk (ENN), health and safety benefit (HLP), health and safety risk (HLN), political 
benefit (POP), political risk (PON), technical benefit (TEP), and technical risk (TEN).  An additional category of 
CCS statements that could not be definitively assigned to one of these categories was included as an ‘other’ category 
(OTP and OTN).  Networks were constructed for all stakeholders, each state, and each stakeholder type based on 
ties of shared intensity of communication about the particular frame.  From these networks, density measurements 
were calculated and reported.  In the case studies presented here, technical risk dominates communication about 
CCS at the state level. The economic, technical, and political system functions appear to present the greatest barrier 
due to largely negative communication.  This study focuses on how the development of shared meaning creates ties 
between individuals in a CCS policy network. 
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1. Introduction  

Carbon capture and storage (CCS) is one of many proposed methods for mitigating anthropogenic climate 

change.  The United States is the second largest emitter of greenhouse gas (GHG) emissions in the world, 

representing 20 % of the global total [1].  Touted as an interim measure to reduce GHG emissions, CCS would allow 

the utilization of substantial coal reserves to meet current energy demands in the next decades [2].   

The Socio-political Evaluation of Energy Deployment (SPEED) framework was developed to improve 

understanding of energy technology deployment so that energy policy-makers could develop and implement more 

effective strategies to accelerate the deployment of emerging energy technologies.  The theoretical underpinnings lie 

in the fields of sustainability science, political science, and risk perception.  Part of the objectives of  SPEED are to 

identify the dominant socio-political influences on energy technology decisions at the state level and examine how 

policy can facilitate a societal response to climate change by contributing insights to stakeholders.  Although CCS 

deployment is influenced by policy decisions taken at the national level, most energy policy in the USA relies on 

state-level statutes and regulations.  Thus, despite numerous federally supported research and development projects 

at pilot scales, CCS technology transfer and deployment at a commercial scale depend on support from state-based 

networks.  Further, it is at the state level that emergent energy technologies are sited, permitted, and built [3].   

 

1. Theoretical Framework 

Luhmann’s theory that human society is defined as a function of its communication [4-6] is a major influence 

on the SPEED framework.  Luhmann  [4, 6] views society as an autopoietic system of self-organizing function 

systems that influence each other through resonance.  In fact, they “recognize each other’s existence only through 
reliance on intra- and inter-system communication or resonance” [4, 7], and it is this information sharing to create 

mutually recognized meaning that leads to integrated knowledge [8].  Because meaning is actualized through 

communication, how people communicate about CCS reflects the likelihood of positive movement towards 

successful deployment.  The research method employed in this study involves analysis of semi-structured interviews 

of energy policy stakeholders in four states:  Massachusetts, Minnesota, Montana, and Texas.  The stakeholders 

potentially influence energy technology deployment through three primary mechanisms:  impact on policy decisions 

that provide barriers or incentives to deployment, influencing siting of new facilities, and/or influencing consumer 

demand for the new technology [3].  Understanding stakeholder perceptions of risks and benefits through 

examination of their communication about CCS technology provides insight into how further deployment might 

proceed.  The interviews were analyzed according to six function systems: technical, political, economic, 

environmental, health and safety, and aesthetic.  Each of these frames was further divided into benefits (positive) or 

risks (negative) to society.   

The network perspective lends added dimensionality to the analysis of these structured interviews.  People 

influence each other through exchange of ideas as well as material flow. It is not just the elements of a conversation, 

but how they are put together in terms of position (nodes) and relationships (ties) [9-11].  Network analysis 

elaborates beyond descriptive analysis and characterizes the structure of communication.  This study determines 

relationship through ties based on shared perception as revealed through similar communication. It is not a who-

knows-whom affiliation network, but a relational network that illuminates how network actors, or energy policy 

stakeholders, communicate about CCS.  Often, social research on communities focuses on objects such as 

organization and populations that comprise the communities and neglects the links that tie these communities 

together [12].  Network analysis allows us to focus on both ties and nodal attributes.  The difference between 

conventional and network data is that the former focuses on actors and attributes whereas network data focuses on 

actors and relations [10].   

  This network analysis of structured interviews of key state energy policy stakeholders in four case study 

states builds on descriptive analysis [13].  We use network analysis to look at the relationships of communication 

interaction. This is especially useful to address the question of how relations are developed and revealed through 

different societal functions.  This paper assumes that resonance, in a luhmannian sense, occurs when two policy 

stakeholders talk about CCS in a similar manner, more specifically when they frame their communication in terms 

of one of the pre-defined function systems of the codebook.  This paper attempts to begin to elucidate the 

‘resonance’ that Luhmann [4] described within communication structure.  The measure used to establish a tie or 

linkage between two individuals involves a shared communication score and an intensity of function score.  

Together, these represent resonance as “shared intensity” of communication between two individuals.   
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The purpose of the study is to examine the structure of communication about CCS technology from the 

perspective of actors involved in decisions that affect CCS technology deployment and diffusion.  This analysis, 

taken in the context of state and actor level differences in deployment, informs us as to how communication reflects 

the likelihood of successful deployment.  The information is used to inform the discourse regarding the current 

structure of communication and areas that might present either barriers or opportunities for CCS innovation.   

 

2. Context of Case Studies 

The differences in the states in relation to CCS deployment can be characterized according to their energy 

production situation, state specific climate and energy policies, capabilities in storing CO2, and natural carbon 

resources.  Key points are that Massachusetts and Minnesota are net energy importers while Montana and Texas are 

net energy exporters.  Further, Massachusetts and Minnesota are states which have GHG policies in place, even 

though they are not net production states.  These and other energy related differences are presented in Table 1[14].  

 

Table1  Comparison of state level differences, especially as relates to energy policy enactment. 

Parameter Massachusetts Minnesota Montana Texas 

Population, 2009 (in millions)  6.6 5.3 1.0 24.8 

Person per square mile, 2000  809.8 61.8 6.2 79.6 

Energy consumption per person, 2006 (million 

Btu)  
229.9 353.5 453.2 501.7 

Electricity produced from coal, 2008 

 (MWh)  
10,628,688 31,755,253 18,331,532 147,131,841 

Electricity produced from petroleum, 2008  

(MWh)  
2,107,999 231,617 419,150 1,033,520 

Electricity produced from natural gas, 2008 

(MWh)  
21,514,434 2,865,846 65,659 193,247,078 

Net electricity imported, 1999 (TWh)  12 14 -- -- 

Net electricity exported, 1999 (TWh)  -- -- 14 19 

CO2 stationary source emissions (million metric 

tons per year)  
24.6 65.6 45.5 364.8 

Storage capacity in un-minable coal seams 

(million metric tons)  
0 0 293 

18,538 to 

26,469 

Storage capacity in oil and gas reservoirs (million 

metric tons)  
-- 0 1,262 47,761 

Storage capacity in deep saline formations 

(million metric tons)  
6 to 25 -- 

265,407 to 

988,831 

533,600 to 

2,133,300 

State GHG policies in place  Yes Yes No No 

 

3. Methods 

The data analyzed in this study are derived from open-ended interviews to assess differences in perceptions of 

risks and benefits for deployment and diffusion of emergent energy technology.  Initial policy stakeholder selection 

was of individuals indentified through their participation in energy policy testimony at the state level.  Additional 

stakeholders were identified through snowball sampling during the first round of sampling [15].  The interview 

protocol was designed to allow stakeholders to a) reflect on their institutional and organizational perspective, b) 

consider to what extent their state’s energy policy is motivated by climate change, c) share their general perceptions 
of emergent energy technology, d) reflect on how the technology is promoted or discouraged within their state, e) 

share their opinion of the media coverage of the technology, and f) identify other influential stakeholders within 

their state [13, 16].  The interviews involved questions about both wind and CCS technology, but the data presented 
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in this analysis focuses only on the CCS related responses.  A research team of three coded the interviews using 

QSR International’s NVivoTM
8 qualitative analysis software; a program that facilitates coding large amounts of text 

and fosters inter-coder reliability and reconciliation.  The codebook was constructed a priori [17] examining six 

social subsystem frames and their respective risks and benefits, namely:  political, technical, environmental, 

aesthetic, health, and economic [16].  The unit of analysis is the utterance, defined as individual sentences, where 

each sentence could either be coded or not, and with the possibility that multiple codes could apply to individual 

sentences.  The number of occurrences for each codebook category were extracted from the data set, and presented 

as a percent of all CCS coded utterances for this analysis. 

For the final analysis, five function systems were used, each further subdivided according to benefits (positive) 

or risks (negative) associated with CCS:  economic benefits (ECP), economic risks (ECN), environmental benefits 

(ENP), environmental risks (ENN), health and safety benefits (HLP), health and safety risks (HLN), political 

benefits (POP), political risks (PON), technical benefits (TEP), and technical risks (TEN).  An additional category of 

CCS statements that could not be definitively assigned to one of the categories was included as an ‘other’ category 
(OTP and OTN).  The aesthetic category was not included because no statements pertaining to this subsystem were 

made in relation to CCS.  Networks were constructed for all actors, each state, and each policy stakeholder type.  

From these networks, density measurements were calculated and reported.   

The density of valued networks is the total of all values or ties divided by the number of possible ties.  Key to 

the meaning of the network relationships and thus the density measurement is the way that the ties between 

individuals are established.  For this analysis, the tie between a pair of individuals represents shared intensity of 

communication within that frame.  In order to account for both the ‘shared’ component and the ‘intensity’ 
component of resonance, as well as exclude individuals that did not communicate risk or benefit for a function 

system, the ties were calculated according to the following formula. 

 

Shared Intensity or Resonance =  

( 1 - | proportionA – proportionB | ) (proportionA + proportionB ) ( re-coded matrix)  (1) 

 

Each parenthesis in equation (1) specifies a separate matrix of pair wise comparisons of all network actors.  The first 

matrix is a score of the proportion of shared communication about CCS in a particular context (benefit or risk, 

respectively positive or negative) for a particular subsystem (for instance, as a political benefit unit).  The second 

measure reflects the additive proportion that the two actors added to the robustness of this function system, i.e. how 

much they talked about this particular category.  The third measure is a binary matrix that, when included, 

eliminates those ties that involve an actor that did not communicate about this category at all.  It is constructed as a 

product matrix of the two proportions that is then re-coded into a binary matrix of one’s (they talked about this 

frame) or zero’s (at least one person in the tie did not talk about this frame).  The three matrices are multiplied cell-

wise to obtain a final matrix reflecting resonance.  Density is calculated for the product matrix which illustrates the 

overall resonance of this particular frame in the overall picture of communication.  The possible range of density 

measurements based on this matrix formulation is between a value of zero and two.      

  

4. Results 

Density is generally used to measure integration and network cohesion [18].  It is therefore interesting that the 

density or resonance measures for the entire network (all states or all actors) reflects risk communication about CCS 

for all function systems (see Figures 1 and 2, below), and especially as concerns the technical frame.  For the state 

data networks (Figure 1), all frames are overwhelmingly negative except communication about environmental risks 

and benefits.  For this function system, Massachusetts and Texas remain negative, but Minnesota and Montana are 

more positive than negative.  The implication is that there is more ambiguity in the way environmental issues 

associated with CCS are perceived by energy policy stakeholders.   

Technical risk dominates communication about CCS at the state level.  The function systems form internal 

clusters (similar resonance measures or close rankings for comparisons within states), indicating that there is 

integrity in the importance placed on each function by the stakeholders.   This suggests that technical, political, 

economic and possibly environmental are function systems that add meaning to the structure of CCS 

communication.   
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Figure 1  Density measurements, by state. 

 
Communication in Massachusetts is dominated by technical risk.  This is also true of Minnesota.  In Montana, 

where there is active research about carbon sequestration, the technical frame leans more towards benefits.  This is 

not the case in Texas, despite a strong initiative regarding carbon sequestration coupled to oil recovery [13].  Neither 

Texas nor Massachusetts actors definitively show that they perceive the political function of CCS as a risk or 

benefit. There is no health benefit perceived in any of the networks examined, and neither health nor the ‘other’ 
category is a strong component of communication about CCS technology.   

The results of resonance measurements at the network actor (policy stakeholder) level are more clouded.  

(Stakeholder categories are described fully in Fischlein et al. [16].)  In general, most of the communication within 

function systems is negative.  This is true for the economic and health functions.  Again, the environmental function 

shows greatest variation, this time with academic and non-elected government, and NGO-industry stakeholders 

tending towards a positive reflection where the industry and NGO-environmental stakeholders view this function in 

a negative lens.  The density for the environmental frame for elected government officials is equal.  Additionally, 

there is greater perception of benefit within the technical and political frames at the policy stakeholder level. 

The technical and political function systems remain the most robust at the actor level as was seen at the state 

level.  Additionally, within stakeholder groups, there are distinctive patterns of communication.  The NGO-

environmental stakeholders are the only group that communicates risk for all function systems.  The industry and 

NGO-industry stakeholders show a similar pattern of benefit and risk for all functions except political where the 

NGO-industry lean towards benefit.  This is reasonable, given that much of their activity is involved in political 

outreach regarding energy development.  The academic and non-elected government categories also grouped 

together in their pattern of communication.  These two stakeholder groups are the only ones that view the technical 

function as a benefit.  Elected government officials do not cluster with any other stakeholder group.  They are 

similar to the academic/non-elected government cohort for economic and political functions, but technical risks as 

are the industry related cohort.   
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Figure 2 Density measurements, by policy stakeholder.   

 
 

 As with state level differences, there is little information that can be garnered from the health and safety 

function because there was little communication regarding this function.  

 

5. Policy implications and conclusions 

In this paper we characterize the resonance between societal function systems as a reflection of the structure of 

communication about CCS technology.  Grant et al. found that increased resonance among function systems was a 

good indicator of environmental action[7].  They simulated societal response to environmental stimuli and 

demonstrated that society’s “understanding of the world is filtered through human language, how that understanding 
is reformulated by the terms available within function systems, and how understanding finally is converted into 

environmental action”[7].  Given that resonance among functions enables society to respond to environmental 

stimuli, then the tendency to discuss CCS as a risk (rather than a benefit) may be a barrier to deployment.  As a 

system, society cannot respond directly to environmental cues, but only after those cues have been reinterpreted 

according to codes that make sense within the function systems of society.  And, even then, response requires 

internal resonance across multiple function systems.  Therefore, if concern about GHG is a contributing factor to 

CCS deployment, then an increase in resonance between function systems regarding GHG should lead to an 

increased sensitivity to this environmental stimulus [7].     

The density measurement is used to illustrate integration and network cohesion among network actors [18-19].  

Assuming that the density measure is based on ties which are reflective of resonance, this measure becomes an 

indicator of cohesion between function systems.  Further, network density may give us insights into such 

phenomena as the speed at which information diffuses among the nodes, and the extent to which policy stakeholders 

have high levels of social capital and/or social constraint [10].  The density measurements from this analysis imply 

that the strong relative densities for technical risks present a significant barrier to deployment with the exception of 

Montana, where we can identify greater resonance regarding technical benefit.  This is consistent with other studies 

on CCS deployment that suggest economic and technical system functions should be emphasized in order to make 

progress in commercial deployment[20].  Further, our results suggest that the political function is crucial and largely 
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undeveloped.  In the case studies presented here, the economic, technical, and political system functions present the 

greatest barrier. 

All stakeholders interviewed for this analysis are involved in policy decisions at the state level.  The actor 

analysis provides specific information about how particular sets of stakeholders communicate their perceptions 

about CCS technology.  Compston [21] examines climate policy from a network perspective.  He postulates that 

increased interaction among actors leading to actual resource exchange leads to enhanced action.   It is clear that the 

environmental NGO stakeholders should be a key area of interest if the general structure of energy policy 

communication regarding CCS is to change towards a more positive framework.  The primary areas of concern 

regarding CCS perceptions are in the economic and health and safety risk frames.  The industry might best be served 

to address concerns within its own ranks regarding perceptions of political and technical risk.   

In addition to establishing ties between individuals that can be represented as shared intensity, communication 

also increases the possibility for joint action and enhanced development of knowledge and understanding [22].  This 

study focuses on shared meaning as a means of creating meaningful ties between individuals in a CCS policy 

network.   Social network analysis suggests a flexible framework for applying this method to other energy 

technologies and in other locations.  Social networks evolve over time and what may begin as informal ties that 

facilitate communication may become the means to determine common norms and values.  Social network analysis 

lends perspective to understanding ways in which outcome success is dependent on communication linkages.   
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