Volume 47, number 2

October 1974

TRANSCRIPTION SPECIFICITY OF XENOPUS LAEVIS RNA POLYMERASE A

FEBS LETTERS

Trevor J. C. BEEBEE and Peter H. W. BUTTERWORTH

Department of Biochemistry, University College London, Gower Street, London WCIE 6BT, Great Britain

Received 6 August 1974

1. Introduction

Since the demonstration that type A RNA polymerase from *Xenopus laevis* ovaries selectively transcribes ribosomal cistrons in vitro [1], the probable significance and roles of the major classes of eukaryotic RNA polymerases have received considerable clarification [2,3]. In particular, form AIII enzyme may be equated with form C which occurs both in nuclei and in soluble form in the cytoplasm after cell disruption [2]. This enzyme is probably involved in the transcription of 5 S and tRNA genes in vivo [3]. Furthermore, an RNA polymerase with properties similar to form C has been isolated from Xenopus oocytes by a technique similar to our own [4,5]. It was therefore important to clarify further the properties of the enzyme which selectively transcribes ribosomal genes in vitro, and in particular to determine whether type A or C was responsible for the observed specificity.

2. Materials and methods

RNA polymerases were purified from Xenopus laevis ovaries to the stage of DEAE-cellulose chromatography as described previously [5]. Mainband DNA and DNA enriched in ribosomal cistrons by a single caesium chloride centrifugation ('rDNA') were prepared from Xenopus erythrocytes as outlined elsewhere [1]. DEAE-Sephadex (A-25) chromatography was performed as described in the appropriate figure legend. RNA polymerase activity was assayed as described previously [5].

3. Results and discussion

RNA polymerase activity eluted from DEAE-

cellulose by 0.15 M ammonium sulphate [5] was diluted to 0.05 M ammonium sulphate and adsorbed onto DEAE-Sephadex as described in the legend to fig. 1. RNA polymerases were then eluted by a gradient of 0.05-0.6 M ammonium sulphate. Two discrete

Fig. 1. DEAE-Sephadex chromatography of *Xenopus* RNA polymerases. 1670 units of RNA polymerase (0.15 M ammonium sulphate eluate [5]) were diluted to 0.05 M ammonium sulphate and adsorbed onto a 1.6×10 cm column of DEAE-Sephadex previously equilibrated with 50 mM Tris-HC1 pH 8.0, 25% (v/v) glycerol, 0.1 mM EDTA, 0.1 mM dithiothreitol (TGED) and 50 mM ammonium sulphate. The column was washed with 50 ml of the same buffer and eluted with a linear gradient of 0.05-0.6 M ammonium sulphate/ TGED in a total volume of 50 ml. Flow rate was 36 ml/hr and 2.0 ml fractions were collected; all operations were at 4°C. $100 \ \mu$ l aliquots of each fraction were assayed for RNA polymerase activity [5] with [³ H] UTP at $160 \ \mu$ Ci/ μ mole. (,.....)% Absorbance at 260 nm; (----) Ammonium sulphate concentration; (•----•) RNA polymerase activity.

Fig. 2. Effects of α -amanitin. RNA polymerase activity was assayed as described elesewhere [5], in the presence of the α -amanitin concentrations indicated. 100 μ l aliquots of the peak fractions shown in fig. 1. were used as enzyme sources. (•——•) RNA polymerase peak 'A'; (•—•••) RNA polymerase peak 'C'.

peaks of activity were revealed when the fractions were assayed; the first and smallest eluted at about 0.1 M ammonium sulphate, the second and largest at about 0.35 M ammonium sulphate.

Aliquots from the two peak fractions were tested for sensitivity to the drug α -amanitin as shown in fig. 2. Form A enzyme is known to be totally resistant to α -amanitin, whereas form B is inhibited by very low concentrations ($< 0.1 \ \mu g/ml$) and form C by high concentrations ($> 10 \ \mu g/ml$) of the compound [2,6, 7]. Fig. 2 clearly demonstrates that the small peak of RNA polymerase activity is form A, whereas the large peak has form C characteristics and is fundamentally sensitive to α -amanitin.

Since the enzyme which demonstrated specificity in the transcription of ribosomal genes [1] was clearly a mixture of A and C enzymes, it remained to be resolved as to which was actually synthesising the ribosomal RNA. Measurements of U:G incorporation ratios by forms A and C on both mainband and 'rDNA' templates are documented in table 1. Ribosomal RNA precursors are known to have a high proportion of G+C [8]. Whereas form A enzyme synthesised a G rich product on 'rDNA' form C enzyme did not

Table 1 U:G Incorporation ratios

Transcription complex	Incorporation:		Ratio
	UTP	GTP	UTP:GTP
	pmoles	pmoles	
A enzyme,			
'rDNA'	0.15	0.45	0.33
C enzyme,			
'rDNA'	0	0	_
A enzyme,			
mainband DNA	1.23	0.43	2.80
C enzyme,			
mainband DNA	7.00	2.00	3.50

100 μ l aliquots of RNA polymerases A and C were assayed in the presence of either 0.75 μ g 'rDNA' or 7.5 μ g mainband DNA, and with nucleotides containing either [³H]UTP or [³H]GTP (Both at 700 μ Ci/ μ mole).

transcribe this DNA at all at the enzyme: template ratio employed. Conversely, both enzymes synthesised U rich RNA species on mainband DNA.

Form C RNA polymerase demonstrates different chromatographic properties on the two ion exchange resins DEAE-cellulose and DEAE-Sephadex [2], a feature which has caused confusion in enzyme nomenclature. Form C virtually cochromatographs with form A on DEAE-cellulose [2,7] but elutes at much higher ionic strength from DEAE-Sephadex and can be separated from form A by the use of this ion exchanger [2]. Thus the 'Form A' enzyme previously reported from Xenopus ovaries did contain the A type of enzyme [1,5] but was predominantly form C as revealed in figs. 1 and 2. The latter RNA polymerase is relatively more abundant in Xenopus ovaries than in most other tissues so far examined, a finding confirmed elsewhere [4]. The low ionic strength extraction procedure developed for RNA polymerase purification from Xenopus ovaries [5] clearly solubilised all three major forms of the enzyme.

The data of table 1 suggest that in the mixture of forms A and C, form A was probably responsible for the transcription of the ribosomal cistrons. Form C, like form B [1], did not transcribe these genes. This was not an artefact of the different 'rDNA' and mainband DNA concentrations, since both enzymes are active with low concentrations of mainband DNA [1]. The observation goes some way towards explaining certain specificity characteristics observed earlier: in particular, the relatively low proportion of form A compared with C could explain the high enzyme: 'rDNA' ratio needed for specificity and for the increase in rifamycin AF/0-13 resistance [1]. The inactivity of form C on 'rDNA' at the high enzyme: DNA ratio could also explain the observed variation in U:G incorporation ratios [1].

In conclusion, the data presented above confirmed the suspicion that the 0.15 M ammonium sulphate RNA polymerase fraction was not homogeneous, but contained a mixture of forms A and C. Form A was indicated to be the species involved in the transcription of ribosomal genes.

Acknowledgements

The authors wish to thank Mr David dePomerai and Dr Joan Austoker for their constructive discussions.

References

- Beebee, T. J. C. and Butterworth, P. H. W. (1974) Eur. J. Biochem. 45, 395-406.
- [2] Austoker, J., Beebee, T. J. C., Chesterton, C. J. and Butterworth, P. H. W. (1974) Cell, in Press.
- [3] Weinmann, R. and Roeder, R. G. (1974) Proc. Natl. Acad. Sci. U.S. 71, 1790-1794.
- [4] Wilhelm, J., Dina, D. and Crippa, M. (1974) Biochemistry 13, 1200-1208.
- [5] Beebee, T. J. C. and Butterworth, P. H. W. (1974) Eur. J. Biochem. 44, 115-122.
- [6] Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G. and Rutter, W. J. (1970) Science 170, 447-448.
- [7] Seifart, K. H., Benecke, B. J. and Juhasz, P. P. (1972)
 Arch. Biochem. Biophys. 151, 519-528.
- [8] Roeder, R. G., Reeder, R. H. & Brown, D. D. (1970) Cold Spring Harbor Symp. Quant. Biol. 35, 727-733.