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1. Introduction

Since the demonstration that type A RNA poly-
merase from Xenopus laevis ovaries selectively
transcribes ribosomal cistrons in vitro {1], the probable
significance and roles of the major classes of eukaryotic
RNA polymerases have received considerable clarifica-
tion [2,3]. In particular, form Alll enzyme may be
equated with form C which occurs both in nuclei and
in soluble form in the cytoplasm after cell disruption
[2]. This enzyme is probably involved in the transcrip-
tion of 5 S and tRNA genes in vivo [3]. Furthermore,
an RNA polymerase with properties similar to form C
has been isolated from Xenopus oocytes by a technique
similar to our own [4,5]. It was therefore important
to clarify further the properties of the enzyme which
selectively transcribes ribosomal genes in vitro, and in
particular to determine whether type A or C was
responsible for the observed specificity.

2. Materials and methods

RNA polymerases were purified from Xenopus
laevis ovaries to the stage of DEAE-cellulose chromato-
graphy as described previously {5]. Mainband DNA and
DNA enriched in ribosomal cistrons by a single caesium
chloride centrifugation (‘tDNA’) were prepared from
Xenopus erythrocytes as outlined elsewhere [1].
DEAE-Sephadex (A-25) chromatography was perform-
ed as described in the appropriate figure legend. RNA
polymerase activity was assayed as described
previously [5].

3. Results and discussion
RNA polymerase activity eluted from DEAE-
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cellulose by 0.15 M ammonium sulphate [5] was
diluted to 0.05 M ammonium sulphate and adsorbed
onto DEAE-Sephadex as described in the legend to

fig. 1. RNA polymerases were then eluted by a gradient
of 0.05—0.6 M ammonium sulphate. Two discrete
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Fig. 1. DEAE-Sephadex chromatography of Xenopus RNA
polymerases. 1670 units of RNA polymerase (0.15 M
ammonium sulphate eluate [5]) were diluted to 0.05 M
ammonium sulphate and adsorbed onto a 1.6 X 10 cm column
of DEAE-Sephadex previously equilibrated with 50 mM
Tris—HC1 pH 8.0, 25% (v/v) glycerol, 0.1 mM EDTA, 0.1 mM
dithiothreitol (TGED) and 50 mM ammonium sulphate. The
column was washed with 50 ml of the same buffer and eluted
with a linear gradient of 0.05—0.6 M ammonium sulphate/
TGED in a total volume of 50 ml. Flow rate was 36 ml/hr and
2.0 mt fractions were collected; all operations were at 4°C.
100 pl aliquots of each fraction were assayed for RNA poly-
merase activity [5] with [*H]UTP at 160 uCi/umole.
Goennn ) % Absorbance at 260 nm; (———-) Ammonium
sulphate concentration; (¢——=) RNA polymerase activity.
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Fig. 2. Effects of a-amanitin. RNA polymerase activity was
assayed as described elesewhere [5], in the presence of the o-
amanitin concentrations indicated..100 ul aliquots of the peak
fractions shown in fig., 1. were used as enzyme sources.

(o #) RNA polymerase peak ‘A’; (0—+—0) RNA poly-
merase peak ‘C’.

peaks of activity were revealed when the fractions were
assayed; the first and smallest eluted at about 0.1 M
ammonium sulphate, the second and largest at about
0.35 M ammonium sulphate.

Aliquots from the two peak fractions were tested
for sensitivity to the drug a-amanitin as shown in fig.
2. Form A enzyme is known to be totally resistant to
a-amanitin, whereas form B is inhibited by very low
concentrations (< 0.1 pg/ml) and form C by high
concentrations (> 10 ug/ml) of the compound [2.6,
7]. Fig. 2 clearly demonstrates that the small peak of
RNA polymerase activity is form A, whereas the large
peak has form C characteristics and is fundamentally
sensitive to a-amanitin.

Since the enzyme which demonstrated specificity
in the transcription of ribosomal genes [1] was clearly
a mixture of A and C enzymes, it remained to be
resolved as to which was actually synthesising the
ribosomal RNA. Measurements of U:G incorporation
ratios by forms A and C on both mainband and ‘rDNA’
templates are documented in table 1. Ribosomal RNA
precursors are known to have a high proportion of
G+C [8] . Whereas form A enzyme synthesised a G
rich product on ‘tDNA’ form C enzyme did not
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Table 1
U:G Incorporation ratios

Transcription Incorporation: Ratio

complex UTP GTP UTP:GTP
pmoles pmoles

A enzyme,

‘tDNA’ 0.15 0.45 0.33

C enzyme,

‘tDNA’ 0 0 _

A enzyme,

mainband DNA 1.23 0.43 2.80

C enzyme,

mainband DNA 7.00 2.00 3.50

100 ul aliquots of RNA polymerases A and C were assayed in
the presence of either 0.75 ug ‘tDNA’ or 7.5 ug mainband
DNA, and with nucleotides containing either [*H]UTP or
[*HIGTP (Both at 700 uCi/umole).

transcribe this DNA at all at the enzyme: template
ratio employed. Conversely, both enzymes synthesised
U rich RNA species on mainband DNA.

Form C RNA polymerase demonstrates different
chromatographic properties on the two ion exchange
resins DEAE-cellulose and DEAE-Sephadex [2], a
feature which has caused confusion in enzyme
nomenclature. Form C virtually cochromatographs
with form A on DEAE-cellulose [2,7] but elutes at
much higher ionic strength from DEAE-Sephadex and
can be separated from form A by the use of this ion
exchanger [2] . Thus the ‘Form A’ enzyme previously
reported from Xenopus ovaries did contain the A type
of enzyme [1,5] but was predominantly form C as
revealed in figs. 1 and 2. The latter RNA polymerase
is relatively more abundant in Xenopus ovaries than in
most other tissues so far examined, a finding confirm-
ed elsewhere [4]. The low ionic strength extraction
procedure developed for RNA polymerase purification
from Xenopus ovaries [5] clearly solubilised all three
major forms of the enzyme.

The data of table 1 suggest that in the mixture of
forms A and C, form A was probably responsible for
the transcription of the ribosomal cistrons. Form C,
like form B [1], did not transcribe these genes. This
was not an artefact of the different ‘rDNA’ and main-
band DNA concentrations, since both enzymes are
active with low concentrations of mainband DNA [1].
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certain specificity characteristics observed earlier: in
particular, the relatively low proportion of form A
compared with C could explain the high enzyme:
‘tDNA’ ratio needed for specificity and for the increase
in rifamycin AF/0-13 resistance [1] . The inactivity of
form C on ‘TDNA’ at the high enzyme: DNA ratio
couid also explain the observed variation in U:G
incorporation ratios [1].

In r\r\nrlne:nn the data pre ted above

j324 esen 1ted COll

confirmed
the suspicion that the 0.15 M ammonium sulphate
RNA polymerase fraction was not homogeneous, but
contained a mixture of forms A and C. Form A was
indicated to be the species involved in the transcription
of ribosomal genes.
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