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A b s t r a c t - - A  spectral method is proposed for the vorticity-stream function equations of the in- 
compressible fluid flows. It is effective to overcome the lack of vorticity boundary condition. This 
method decouples the vorticity and stream function. At each time step, first, the vorticity is ex- 
plicitly solved and the stream function is evaluated by a Poisson-like equation; then the vorticity is 
determined by a Poisson-like equation again. The numerical experiments show that this method is 

of efficiency and high accuracy. © 1998 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

For the incompressible fluid flows, there are many numerical studies in the literature based on 

the vorticity-stream function formulation (see [1,2]). One of the main difficulties for solving such 

a problem is due to the lack of vorticity boundary condition. The vorticity and stream function 

are coupled together through the boundary conditions and the nonlinear term. Physically, the 

vorticity on the boundary is unknown and the boundary conditions for the stream function are 

given. Many efforts have been devoted in developing discrete approximations to the vorticity 
on the boundary. A usual method is to approximate the vorticity by a finite difference using 

the boundary conditions of the stream function. Dennis et al. [3-5] first presented some special 

integral conditions for the vorticity. Numerical results show that  the methods with such integral 

boundary conditions are more efficient and stable for solving the incompressible flow problems. 

However, the structure of the discrete system is much more complicated. The biharmonic for- 

mulation of the stream function may be taken as another alternative to overcome the difficulty 
of the boundary condition for vorticity. But it is very difficult to solve the biharmonic equation, 

and there is scarcely any standard fast algorithm. 

In this paper, a spectral method is developed for remedying the lack of vorticity boundary 
condition. To decouple the vorticity from the stream function at each time step, first, the 

vorticity transport  equation is explicitly discretized, and a tau method is adopted to solve the 
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system. An important feature for this tau method is that the expansion coefficients of the vorticity 
are decoupled and only part of them appears in the discrete vorticity transport equation. The 
remaining coefficients and the stream function will be determined by the Poisson equation with the 
boundary conditions of the stream function. However, at this step it is not necessary to evaluate 
the remaining coefficients of the vorticity. Second, this Poisson equation for the stream function 
is solved by Galerkin method where the equations related to the remaining unknown coefficients 
of the vorticity are replaced by the Neumann boundary condition of the stream function. Finally, 
we solve the Poisson-like equation of the vorticity with the boundary conditions determined by 
the stream function. The advantages of this method are simple, robust, and efficient. It can be 
implemented easily and is of high accuracy. Numerical experiments show these features. 

2. D E S C R I P T I O N  O F  T H E  M E T H O D  

The vorticity-stream function formulation of the viscous incompressible flow is as follows: 

a¢ 
a-7 + ( u .  v ) ¢  - . v 2 ¢  = f ,  

V2¢ = - ( ,  

¢1o. = a, 

~-~-~n a ~ = b, 

z , t  e f~ x (0,T), 

z , t  e f~ x (0,T), 
(2.1) 

where ¢ and ~ are the dimensionless stream function and vorticity, respectively, u = (u, v) = 
(Oy¢,-0x¢) is the velocity, and v is the kinetic viscosity. The initial velocity field u0 = (u0, v0) 
provides the initial condition for the vorticity 

~o = -Ouuo + O~vo. 

In this formulation ( and ¢ are coupled through the nonlinear term and the boundary con- 
ditions. In the temporal discretization, the nonlinear term can be explicitly treated. Then the 
discrete system is coupled only by the boundary conditions. 

Let X and Y denote the finite dimensional spaces of polynomials. The dimension of X depends 
upon the dimension of Y and ~n[a~. Let (., .) be the L 2 scalar product, and Hl(f~) and H~(f~) 
denote the usual Sobolev spaces. 

The spectral method for solving (2.1) is as follows. 

(1) The initial values are computed by 

. 0 =  (u0, v0) e x :, 

(u °, ¢) = (u0, ~), 
u°lon = u01o., 

v ¢  e X n H0~(f~), 

(o E X, 

(¢0, ¢) = (¢0, ~), 

¢ % .  = ¢olo~. 

v ¢  e X n g0~(f~), 

(2) For the vorticity transport equation, an explicit temporal discretization is employed with 
the step size T. The tau method is used in the spatial discretization to find (* E X such 
that 

~- = ( f n + v v 2 ( n - u n . V ( n , ¢ ) ,  V C e Y .  
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The expansion coefficients of (* are partly defined by the above equation. The remaining 
coefficients will be determined by the coupled boundary condition. But in practical com- 
putation, it is not necessary to evaluate them. Assume that {Pk}M=0 are the orthogonal 
bases for X. Then the expansion of ~* is 

M 

¢*= E a~Pk. 
k=O 

Denote by m the number of the discrete Neumann conditions of the stream function. We 
cp, ~ M - m  The expansion coefficients a* set Y := ~ klk=0 • k, k = 0 , . . . ,  M - m, are obtained by the 

tau method, while the expansion coefficients a~, k = M - m + 1 , . . . ,  M, are unknown. 
They will be determined by the boundary condition -~n loft- 

(3) For the Poisson equation of the stream function, the Dirichlet problem is considered. Its 
weak form is to find ¢ E Hl(fl),  

(V~b,V¢) = (~,¢), V¢ • H01(~), 

~1o~ = a. 

The Galerkin solution ~b • X satisfies 

( r e  n+l, V¢) = (~*, ¢), V¢ • X A g01(fl), 

¢"+11o~ = a. 

The equations associated with the undetermined coefficients of (* are replaced by the 
boundary condition ~ low. Then the stream function ¢n+1 is uniquely determined. 

We can choose the suitable basis functions for X N H~(~). For example, take Pk as a 

Legendre polynomial in the one-dimensional case. Then 
Pk - P0, k even, 

Ck= Pk P1, kodd,  

is a basis function for X n H0 l(fl). In the two-dimensional case, the basis function is 
introduced by tensor product. By the orthogonal property of the Legendre polynomials, 
we obtain a total of m equations related with a~, k = M - m + 1 , . . . ,  M. These equations 
are replaced by the discrete Neumann conditions of the stream function. 

(4) Solve the Poisson-like equation of the vorticity. The vorticity on the boundary is obtained 
by the stream function ¢~+1: 

) ~ v 2 ¢  "+~, ¢ = i f "  - u " .  v C ,  ¢) ,  v ¢ • x n Ho 1 (f/), 

¢"+1[o ~ = - v 2 ¢ " + 1 [ o  n 
(5) Update the velocity. We have 

U n + l  = 0yl~ n + l ,  

v~+l = - 0 ~ ¢  ~+1 

This method is simple and can be implemented easily. The standard fast algorithms can be 
used to solve these two Poisson-like equations. The above approximation to the vorticity on 
the boundary is more reasonable and natural and is expected to be more accurate since the 
approximate solution ¢'~ exactly satisfies the two physical boundary conditions. This is one of 
the reasons the method achieves the high accuracy. 

The above method is different from the influence matrix method for the spectral solution of 
the vorticity-stream function equations. In the influence matrix method, the vorticity and stream 
function are decomposed into three components. Each of them is the solution of a second-order 
equation supplemented by the Dirichlet boundary conditions. The linear combination of the 
solutions to the second-order equations satisfies the Neumann boundary condition of the stream 
function and gives the vorticity boundary condition. Both spectral methods have the spectral 
convergence. 
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3. N U M E R I C A L  RESULTS 

In this section, two numerical experiments are implemented with the method described in the 
above section. One is the Plane Poiseuille flow and the other is an artificial problem with the 
exact solution. In the plane channel flow, the height (y-direction) between the walls is 2. The 
boundary conditions are periodic in the x-direction and nonperiodic in the y-direction. For the 
artificial problem, we take all the functions be 2~-periodic for the variable x. The schemes are 
constructed by using the Fourier spectral method in the periodic direction and the Chebyshev 
spectral method in the nonperiodic direction. So the standard F F T  can be applied in both 
directions. 

Let Nz and N~ be positive integers. PN~ is the space of all the trigonometric polynomials 
of degree < Nx, and PN~ the space of all the algebraic polynomials of degree < Ny. Since the 
problems are periodic in the x-direction, the boundary conditions for the stream function in the 
y-direction are 

Let 

¢(x,  - 1 ,  t) = al ,  

o ~  (z, - 1, t) -~y = bl, 

¢(x,  1, t) = as, 

0 ¢  (x, 1, t) = b2. 

X = PN~ × PN~, Y =- PN~ × PNt,-2. 

The Chebyshev polynomials are mutually orthogonal on ( -1 ,  1) with respect to the weight func- 
tion w = (1 - y2)-1/2. The associated inner product with the weight function w is introduced as 
in [6]. 

3.1. P lane  Poiseui l le  F low 

The velocities of the equilibrium state are 

~(x,  y) = 1 - y~, ~(x,  y) = 0. 

The corresponding vorticity and stream function are 

1 3 ~ =  2y, ~ = y -  ~ y  

Small perturbations are added to this state, i.e., 

y , t )  = + 

v ( x , y , t )  = 9 + ~Real ( 9 ( y ) e ~ ( a ~ t )  } , 

where Real{z} represents the real part  of z and fi(y), 9(y), and w are the solutions of the Orr- 
Sommerfeld eigenvalue problem (see [6, (6.4)]). When Re -- 7500 (u -- 1/Re) and a = 1, the 
eigenvalue of the only growing mode is w = wr + iwi = 0.24989154 + i x 0.00223497. When 
a = - 1 ,  the eigenvalue of the conjugate growing mode is w = - w r  + iwi. The initial values are 

u(x ,  y, 0) = 0y¢ = fi + e Real {fi(y)e 'x } = 1 - y2 + e(itr cosx - it, sinx),  

v(x ,  y,  O) = - O x ¢  = ~ Real {9(y)e ix } = e(0r cos x - ~ sin x). 

Here we take e = 0.0001. 
The boundary conditions of the stream function are as follows: 

2 
¢(x,-4-1, t) = ± ~ ,  

0¢ (x, +l , t )  = 0, 
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and the initial value of the vorticity is 

(:(x, v,  o) = -o~,~, (x ,  v, o) + ox , , (x ,  v, o).  

The per turba t ion  kinetic energy is 

I l l / 2 =  
E(t) = ~ J - 1  JO [(u - ~)2 + v2] dxdy = E(O)e 2~t. 

The calculations are carried out with Nx = 8, Nu = 32, ~- = 10 -3,  and T = 50. In Figure 1, 

ln(E(t) /E(O)) is given. The  exact straight line 2wit and the numerical results of our method 
are shown in Figure 1. The numerical results are much bet ter  than  the results obtained by the 
component-consistent  pressure correction (CCPC) projection method on a 129 x 128 grid in [7]. 
This shows tha t  our method has high accuracy. 
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Figure 1. ln(E(t)/E(O)) of plane Poiseuille flow. 

3 . 2 .  A P r o b l e m  H a v i n g  E x a c t  S o l u t i o n s  

To show the accuracy of the method described in Section 2, we choose f ,  a, and b suitably 
such tha t  (2.1) admits  the following solution: 

12c bt C ( x , y , 0  = ace b, (y2 _ 1) (y2 - 8) s in2x - 1 -~e  (y2 _ 1) ,  

( 1) 
¢ ( x , y , 0  = ce b' (v :  - 1) (y~ - 5) s i n 2 x  + 1 - ~  " 

The relative errors e(~(t)) and e(¢( t))  are defined by 

I1¢ - ¢"llL2(n) 
e ( ¢ ( 0 )  := I]¢llL2(n) ' 

I1¢ - ¢"llL2(n) 
e ( ¢ ( 0 )  := II¢ll/~(n) 

We take b = c = 0.1, Nx = N~ = 8, and T = 0.005. In Tables 1 and 2, the numerical results 
are reported for our method.  Obviously, it is very accurate. These display the advantages of our 

methods. 
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Table 1. v = 1/5000. 

t = 0 . 5  

t = l . O  

t = l . 5  

t = 2 . 0  

t = 2 . 5  

e(~(t)) e(¢(t)) 

0.173509E-3 0.128661E-4 

0.294191E-3 0.249387E-4 

0.376736E-3 0.363026E-4 

0.432002E-3 0.470319E-4 

0.477841E-3 0.575869E-4 

Table 2. v = 1/10000. 

e(~(t)) e(¢(t)) 

0.184288E-3 0.127560E-4 

0.334653E-3 0.247946E-4 

0.457028E-3 0.361716E-4 

0.560271E-3 0.471344E-4 

0.848337E-3 0.681665E-4 

t=0 .5  

t = l . O  

t =  l.5 

t = 2 . 0  

t=2 .5  

4. T H E  C O N C L U S I O N  

We proposed a new spectral method to overcome the lack of the boundary condition of the 
vorticity. The method only solves two Poisson-like equations. It can be easily implemented and 
has high accuracy. At each time level, the approximate solution of the stream function satisfies 
the boundary conditions ¢1o~ and g-~n 1Oa exactly. It avoids the errors of the approximation of 
the stream function on the boundary. 

T h o u g h  we only use the  f irst-order t e m p o r a l  d iscre t iza t ion in this  paper ,  classical R u n g e - K u t t a  

me thods  can be used to improve  the  accuracy  of the  t ime  integrat ion.  In addi t ion,  high order 

mult i level  schemes can be cons t ruc ted  in a similar  way. 

T h e  numer ica l  results  show t h a t  the  m e t h o d  is very  efficient and accurate .  
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