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Abstract

This paper studies the practical stability of the solutions of nonlinear impulsive functional differential
equations. The obtained results are based on the method of vector Lyapunov functions and on differential
inequalities for piecewise continuous functions. Examples are given to illustrate our results.
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1. Introduction

Impulsive differential equations arise naturally from a wide variety of applications such as air-
craft control, inspection process in operations research, drug administration, and threshold theory
in biology. There has been a significant development in the theory of impulsive differential equa-
tions in the past 10 years (see monographs [3,4,13,20]). Now there also exists a well-developed
qualitative theory of functional differential equations [2,9–12]. However, not so much has been
developed in the direction of impulsive functional differential equations. In the few publications
dedicated to this subject, earlier works were done by Anokhin [1] and Gopalsamy and Zhang [8].
Recently, some qualitative properties (oscillation, asymptotic behavior and stability) are investi-
gated by several authors (see [5–7,18,21,23,24]).

The efficient applications of impulsive functional differential equations to mathematical sim-
ulation requires the finding of criteria for stability of their solutions.
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In the study of Lyapunov stability, an interesting set of problems deal with bringing sets close
to a certain state, rather than the state x = 0. The desired state of a system may be mathemati-
cally unstable and yet the system may oscillate sufficiently near this state that its performance is
acceptable. Many problems fall into this category including the travel of a space vehicle between
two points, an aircraft or a missile which may oscillate around a mathematically unstable course
yet its performance may be acceptable, the problem in a chemical process of keeping the temper-
ature within certain bounds, etc. Such considerations led to the notion of practical stability which
is neither weaker nor stronger than Lyapunov stability. The main results in this prospect are due
to Martynyuk [14,16,17].

It is well known that employing several Lyapunov functions in the investigation of the quali-
tative behavior of the solutions of differential equations is more useful than employing a single
one, since each function can satisfy less rigid requirements. Hence, the corresponding theory,
known as the method of vector Lyapunov functions, offers a very flexible mechanism [15].

In this paper, we use piecewise continuous vector Lyapunov functions to study practical stabil-
ity of the solutions of nonlinear impulsive functional differential equations. The main results are
obtained by means of the comparison principle coupled with the Razumikhin technique [14,19].
Examples are given to illustrate our results.

2. Statement of the problem. Preliminary notes and definitions

Let Rn be the n-dimensional Euclidean space with norm |x| = (
∑n

i=1 x2
i )1/2, Ω be a bounded

domain in Rn containing the origin and R+ = [0,∞).
Let t0 ∈ R, τ > 0.
Consider the system of impulsive functional differential equations{

ẋ(t) = f (t, x(t), xt ), t > t0, t �= tk,

�x(tk) = x(tk + 0) − x(tk) = Ik(x(tk)), tk > t0, k = 1,2, . . . ,
(1)

where f : (t0,∞) × Ω × D → Rn; D = {φ : [−τ,0] → Ω, φ(t) is continuous everywhere ex-
cept at finite number of points t̃ at which φ(t̃ − 0) and φ(t̃ + 0) exist and φ(t̃ − 0) = φ(t̃)};
Ik :Ω → Ω , k = 1,2, . . . ; t0 < t1 < t2 < · · · ; limk→∞ tk = ∞ and for t > t0, xt ∈ D is defined
by xt = x(t + s), −τ � s � 0.

Let ϕ0 ∈ D. Denote by x(t; t0, ϕ0) the solution of system (1) satisfying the initial conditions:{
x(t; t0, ϕ0) = ϕ0(t − t0), t0 − τ � t � t0,

x(t0 + 0; t0, ϕ0) = ϕ0(0).
(2)

The solution x(t) = x(t; t0, ϕ0) of the initial value problem (1), (2) is characterized by the fol-
lowing:

(a) For t0 − τ � t � t0 the solution x(t) satisfied the initial conditions (2).
(b) For t0 < t � t1, x(t) coincides with the solution of the problem

ẋ(t) = f
(
t, x(t), xt

)
, t > t0,

xt0 = ϕ0(s), −τ � s � 0.

At the moment t = t1 the mapping point (t, x(t; t0, ϕ0)) of the extended phase space
jumps momentarily from the position (t1, x(t1; t0, ϕ0)) to the position (t1, x(t1; t0, ϕ0) +
I1(x(t1; t0, ϕ0))).
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(c) For t1 < t � t2 the solution x(t) coincides with the solution of{
ẏ(t) = f (t, y(t), yt ), t > t1,

yt1 = ϕ1, ϕ1 ∈ D,

where

ϕ1(t − t1) =
⎧⎨
⎩

ϕ0(t − t1), t ∈ [t0 − τ, t0] ∩ [t1 − τ, t1],
x(t; t0, ϕ0), t ∈ (t0, t1) ∩ [t1 − τ, t1],
x(t; t0, ϕ0) + I1(t; t0, ϕ0), t = t1.

At the moment t = t2 the mapping point (t, x(t)) jumps momentarily, etc.

The solution x(t; t0, ϕ0) of problem (1), (2) is a piecewise continuous function for t > t0 with
points of discontinuity of the first kind t = tk, k = 1,2, . . . , at which it is continuous from the
left.

Introduce the following notations:

I = [t0 − τ,∞); I0 = [t0,∞);
Gk = {

(t, x) ∈ I0 × Ω: tk−1 < t < tk
}
, k = 1,2, . . . ;

G =
∞⋃

k=1

Gk; ‖φ‖ = sup
s∈[−τ,0]

∣∣φ(s)
∣∣ is the norm of the function φ ∈ D.

Together with system (1) we shall consider the system{
u̇ = g(t, u), t > t0, t �= tk,

�u(tk) = Bk(u(tk)), tk > t0, k = 1,2, . . . ,
(3)

where g : (t0,∞) × Rm+ → Rm+ , Bk :Rm+ → Rm+ , k = 1,2, . . . .
Denote by u+(t; t0, u0) the maximal solution of system (3) satisfying the initial condition

u+(t0 + 0; t0, u0) = u0 ∈ Rm+ .

Definition 1. System (1) is said to be:

(PS1) practically stable with respect to (λ,A) if given (λ,A) with 0 < λ < A, we have ‖ϕ0‖ < λ

implies |x(t; t0, ϕ0)| < A, t � t0 for some t0 ∈ R;
(PS2) uniformly practically stable with respect to (λ,A) if (PS1) holds for every t0 ∈ R;
(PS3) practically asymptotically stable with respect to (λ,A) if (PS1) holds and

limt→∞ |x(t; t0, ϕ0)| = 0.

Other practical stability notions can be defined based on this definition. See [14] for details.
Introduce in Rm a partial ordering defined in the following natural way: For u,v ∈ Rm we

will write u � v (u > v) if and only if uj � vj (uj > vj ) for any j = 1,2, . . . ,m.

Definition 2. The function ψ :Rm+ → Rm+ is said to be monotone nondecreasing in Rm+ if ψ(u) >

ψ(v) for u > v and ψ(u) � ψ(v) for u � v (u, v ∈ Rm+).

Definition 3. The function g : (t0,∞) × Rm+ → Rm+ is said to be quasi monotone nondecreas-
ing in (t0,∞) × Rm+ if for each pair of points (t, u) and (t, v) from (t0,∞) × Rm+ and for
j ∈ {1,2, . . . ,m} the inequality gj (t, u) � gj (t, v) holds whenever uj = vj and uj � vj for
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j = 1,2, . . . ,m, i �= j , i.e., for any fixed t ∈ (t0,∞) and any j ∈ {1,2, . . . ,m} the function
gj (t, u) is nondecreasing with respect to (u1, u2, . . . , uj−1, uj+1, . . . , um).

Let J ⊂ R be an interval. Define the following classes of functions:

PC
[
J,Rn

] = {
σ :J → Rn: σ(t) is continuous everywhere except some points tk

at which σ(tk − 0) and σ(tk + 0) exist and σ(tk − 0) = σ(tk),

k = 1,2, . . .
};

PC1[J,Rn
] = {

σ ∈ PC
[
J,Rn

]
: σ(t) is continuously differentiable everywhere except

some points tk at which σ̇ (tk − 0) and σ̇ (tk + 0) exist and

σ̇ (tk − 0) = σ̇ (tk), k = 1,2, . . .
};

K = {
a ∈ C[R+,R+]: a(u) is strictly increasing and such that a(0) = 0

};
CK = {

a ∈ C
[[t0,∞) × R+,R+

]
: a(t, u) ∈ K for each t ∈ [t0,∞)

};
S(α) = {

x ∈ Rn: |x| < α
}
.

In the further considerations we shall use the class V0 of piecewise continuous auxiliary func-
tions V : [t0,∞) × Ω → Rm+ which are analogues of Lyapunov’s functions [22].

V0 =
{
V : I0 × Ω → Rm+ : V ∈ C

[
G,Rm+

]
, V (t,0) = 0 for t ∈ [t0,∞),

V is locally Lipschitzian in x ∈ Ω on each of the sets Gk,

V (tk − 0, x) = V (tk, x) and V (tk + 0, x) = lim
t→tk
t>tk

V (t, x) exists
}
.

We also introduce the following class of functions:

Ω1 = {
x ∈ PC[I0,Ω]: V

(
s, x(s)

)
� V

(
t, x(t)

)
, t − τ � s � t, t ∈ I0, V ∈ V0

}
.

Let V ∈ V0. For x ∈ PC[I0,Ω] and t ∈ I0, t �= tk , k = 1,2, . . . , we define the function

D−V
(
t, x(t)

) = lim inf
h→0− h−1[V (

t + h,x(t) + hf
(
t, x(t), xt

)) − V
(
t, x(t)

)]
.

Introduce the following conditions:

(H1) f ∈ C[(t0,∞) × Ω × D,Rn].
(H2) The function f is Lipschitz continuous with respect to its second and third arguments in

(t0,∞) × Ω × D uniformly on t ∈ (t0,∞).
(H3) f (t,0,0) = 0, for t ∈ (t0,∞).
(H4) Ik ∈ C[Ω,Ω], k = 1,2, . . . .
(H5) Ik(0) = 0, k = 1,2, . . . .
(H6) The functions (I + Ik) :Ω → Ω , k = 1,2, . . . , where I is the identity in Ω .
(H7) t0 < t1 < t2 < · · · .
(H8) limk→∞ tk = ∞.

In the proof of the main results we shall use the following lemma:
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Lemma 1. [5,7] Let the following conditions hold:

1. Conditions (H1), (H2), (H4), (H6)–(H8) are met.
2. The function g is quasimonotone nondecreasing, continuous in the sets (tk, tk+1] × Rm+ , k ∈

N ∪ {0} and for each k ∈ N ∪ {0} and v ∈ Rm+ there exists the finite limit

lim
(t,u)→(t,v)

t>tk

g(t, u).

3. The functions ψk :Rm+ → Rm+ , ψk(u) = u + Bk(u), k = 1,2, . . . , are monotone nondecreas-
ing in Rm+ .

4. The maximal solution u+(t; t0, u0) of system (3) is defined in the interval I0.
5. The solution x = x(t; t0, ϕ0) of problem (1), (2) is such that x ∈ PC[I,Ω] ∩ PC1[I0,Ω].
6. The function V ∈ V0 is such that

V
(
t0, ϕ0(t0)

)
� u0

and the inequalities

D−V
(
t, x(t)

)
� g

(
t, V

(
t, x(t)

))
, t �= tk, k = 1,2, . . . ,

V
(
tk + 0, x(tk) + Ik

(
x(tk)

))
� ψk

(
V

(
tk, x(tk)

))
, k = 1,2, . . . ,

are valid for t ∈ I0 and x ∈ Ω1.
Then

V
(
t, x(t; t0, ϕ0)

)
� u+(t; t0, u0) for t ∈ I0.

3. Main results

Theorem 1. Assume that:

1. The conditions of Lemma 1 are satisfied.
2. 0 < λ < A is given and S(A) ⊂ Ω .
3. g(t,0) = 0 for t ∈ I0.
4. Bk(0) = 0, k = 1,2, . . . .
5. There exist functions a, b ∈ K such that

a
(|x|) � L0(t, x) � b

(|x|) (t, x) ∈ I0 × S(A),

where L0(t, x) = ∑m
i=1 Vi(t, x).

6. b(λ) < a(A).

Then, the practical stability properties of system (3) with respect to (b(λ), a(A)), imply the cor-
responding practical stability properties of system (1) with respect to (λ,A).

Proof. 1. We shall first prove practical stability of (1). Suppose that (3) is practically stable with
respect to (b(λ), a(A)). Then we have

m∑
ui0 < b(λ) implies

m∑
ui(t; t0, u0) < a(A), t � t0, (4)
i=1 i=1
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for some given t0 ∈ R, where u0 = (u01, . . . , u0m)T and u(t; t0, u0) is any solution of (3) defined
in the interval I0.

Setting u0 = V (t0, ϕ0(0)), we get by Lemma 1,

V
(
t, x(t; t0, ϕ0)

)
� u+(

t; t0,V
(
t0, ϕ0(0)

))
for t ∈ I0. (5)

Let

‖ϕ0‖ < λ. (6)

Then, because of condition 5 of Theorem 1 and (6), it follows

L0
(
t0, ϕ0(0)

)
� b

(∣∣ϕ0(0)
∣∣) � b

(‖ϕ0‖
)
� b(λ)

which due to (4) implies

m∑
i=1

u+
i

(
t; t0,V

(
t0, ϕ0(0)

))
< a(A), t � t0. (7)

Consequently, from condition 5 of Theorem 1, (5) and (7) we obtain

a
(∣∣x(t; t0, ϕ0)

∣∣) � L0
(
t, x(t; t0, ϕ0)

)
�

m∑
i=1

u+
i

(
t; t0,V

(
t0, ϕ0(0)

))
< a(A), t � t0.

Hence |x(t; t0, ϕ0)| < A, t � t0 for the given t0 ∈ R which proves the practical stability of (1).
2. Suppose that (3) is uniformly practically stable with respect (b(λ), a(A)). Therefore, we

have that
m∑

i=1

ui0 < b(λ) implies
m∑

i=1

ui(t; t0, u0) < a(A), t � t0, (8)

for every t0 ∈ R.
We claim that ‖ϕ0‖ < λ implies |x(t; t0, ϕ0)| < A, t � t0 for every t0 ∈ R. If the claim is not

true, there exists t0 ∈ R, a corresponding solution x(t; t0, ϕ0) of (1) with ‖ϕ0‖ < λ, and t∗ > t0
such that,∣∣x(t∗; t0, ϕ0)

∣∣ � A,
∣∣x(t; t0, ϕ0)

∣∣ < A, t0 � t < tk, (9)

where t∗ ∈ (tk, tk+1] for some k.
Then, due to (H6) and condition 6 of Lemma 1, we can find t0 ∈ (tk, t

∗) such that∣∣x(
t0; t0, ϕ0

)∣∣ � A and x
(
t0; t0, ϕ0

) ∈ Ω. (10)

Hence, setting u0 = V (t0, ϕ0(t
0 − tk)), since all the conditions of Lemma 1 are satisfied, we

get

V
(
t, x(t; t0, ϕ0)

)
� u+(

t; t0,V
(
t0, ϕ0

(
t0 − tk

)))
for t0 � t � t0. (11)

From (10), condition 5 of Theorem 1, (11) and (8), it follows that

a(A) � a
(∣∣x(

t0; t0, ϕ0
)∣∣) � L0

(
t0, x(t; t0, ϕ0)

)
�

m∑
u+

i

(
t0; t0,V

(
t0, ϕ0

(
t0 − tk

)))
< a(A).
i=1
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The contradiction obtained proves that (1) is uniformly practically stable. The proof is com-
plete. �

Note that in Theorem 1, we have used the function L0(t, x) = ∑m
i=1 Vi(t, x) as a measure

and consequently, we need to modify the definition of practical stability of (3) as follows: For
example, (3) is practically stable with respect to (b(λ), a(A)) if (4) is satisfied for some given
t0 ∈ R. We could use other convenient measures such as

L0(t, x) = max
1�i�m

Vi(t, x),

L0(t, x) =
m∑

i=1

diVi(t, x),

where d ∈ Rm+ , or

L0(t, x) = Q
(
V (t, x)

)
,

where Q :Rm+ → R+ and Q(u) is nondecreasing in u, and appropriate modifications of practical
stability definitions are employed for system (3).

The following example will demonstrate Theorem 1.

Example 1. Consider the system⎧⎨
⎩

ẋ(t) = n(t)y(t) + m(t)x(t)[x2(t − h) + y2(t − h)], t �= tk, t > 0,

ẏ(t) = −n(t)x(t) + m(t)y(t)[x2(t − h) + y2(t − h)], t �= tk, t > 0,

�x(tk) = ckx(tk), �y(tk) = dky(tk), k = 1,2, . . . ,

(12)

where x, y ∈ R, h > 0, the functions n(t) and m(t) are continuous in (0,∞), −1 � ck < 0,
−1 � dk < 0, 0 < t1 < t2 < · · · , limk→∞ tk = ∞.

Let{
x(s) = ϕ1(s), s ∈ [−h,0],
y(s) = ϕ2(s), s ∈ [−h,0],

where the functions ϕ1 and ϕ2 are continuous in [−h,0].
Choose

V (t, x, y) = x2 + y2 = r2(s).

Then

Ω1 = {
col

(
x(t), y(t)

) ∈ PC
[
R+,R2]: r2(s) � r2(t), t − h � s � t, t � 0

}
(13)

and for t > 0, t �= tk , (x, y) ∈ Ω1 we have

D−V
(
t, x(t), y(t)

) = 2m(t)x2(t)r2(t − h) + 2m(t)y2(t)r2(t − h)

� 2m(t)V 2(t, x(t), y(t)
)
.

Also

V
(
tk + 0, x(tk) + ckx(tk), y(tk) + dky(tk)

)
= (1 + ck)

2x2(tk) + (1 + dk)
2y2(tk) � V

(
tk, x(tk), y(tk)

)
.
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Consider the comparison system⎧⎨
⎩

u̇(t) = 2m(t)u2(t), t �= tk, t > 0,

u(0) = u0,

u(tk + 0) = u(tk), k = 1,2, . . . ,

(14)

where u ∈ R+ and u0 = ϕ2
1(0) + ϕ2

2(0) = r2(0).
The general solution of system (14) is given by

u(t) =
[
u−1

0 − 2

t∫
0

m(t) dt

]−1

. (15)

It is clear that the trivial solution of (14) is stable if m(t) � 0, t � 0. If m(t) > 0, t � 0, then
the trivial solution of (14) is stable when the integral

t∫
0

m(t) dt (16)

is bounded and unstable when (16) is unbounded.
Let A = 2λ. We can take a(u) = b(u) = u2. Suppose that

∫ t

0 m(t) dt = β > 0. It therefore
follows from (15) that system (14) is practically stable if β � 3

8λ2 .

Hence we get, by Theorem 1 that system (12) is practically stable if β � 3
8λ2 .

In Example 1, we have used the single Lyapunov function V (t, x). In this case the function
L0(t, x) = V (t, x).

To demonstrate the advantage of employing several Lyapunov functions, let us consider the
following example.

Example 2. Consider the system⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = e−t x(t − h) + y(t − h) sin t − (x3 + xy2) sin2 t, t �= tk,

ẏ(t) = x(t − h) sin t + e−t y(t − h) − (x2y + y3) sin2 t, t �= tk,

�x(t) = akx(t) + bky(t), t = tk, k = 1,2, . . . ,

�y(t) = bkx(t) + aky(t), t = tk, k = 1,2, . . . ,

(17)

where t > 0, h > 0,

ak = 1

2

(√
1 + ck + √

1 + dk − 2
)
, bk = 1

2

(√
1 + ck − √

1 + dk

)
,

− 1 < ck � 0, −1 < dk � 0, k = 1,2, . . . ,

0 < t1 < t2 < · · · and lim
k→∞ tk = ∞.

Suppose that we choose a single Lyapunov function V (t, x, y) = x2 + y2. Then the
set Ω1 is given by (13). Hence, using the inequality 2|ab| � a2 + b2 and observing that
(x2 + y2)2 sin2 t � 0, we get

D−V
(
t, x(t), y(t)

) = 2x(t)ẋ(t) + 2y(t)ẏ(t) � 4
[∣∣e−t

∣∣ + |sin t |]V (
t, x(t), y(t)

)
,

for t � 0, t �= tk and (x, y) ∈ Ω1.
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Also

V
(
tk + 0, x(tk) + akx(tk) + bky(tk), y(tk) + bkx(tk) + aky(tk)

)
= [

(1 + ak)x(tk) + bky(tk)
]2 + [

(1 + ak)y(tk) + bkx(tk)
]2

� V
(
tk, x(tk), y(tk)

) + 2|ck − dk|V
(
tk, x(tk), y(tk)

)
, k = 1,2, . . . .

It is clear that{
u̇(t) = 4[|e−t | + |sin t |]u(t), t �= tk, t > 0,

�u(tk) = 2|ck − dk|u(tk), k = 1,2, . . . ,

where u ∈ R+, is not practically stable and consequently, we cannot deduce any information
about the practical stability of system (17) from Theorem 1, even though system (17) is practi-
cally stable.

Now, let us take the function V = (V1,V2), where the functions V1 and V2 are defined by
V1(t, x, y) = 1

2 (x + y)2, V2(t, x, y) = 1
2 (x − y)2 so that L0(t, x, y) = x2 + y2. This means that

we can take a(u) = b(u) = u2. Then

Ω1 = {
(x, y) ∈ PC

[
R+,R2+

]
: V

(
s, x(s), y(s)

)
� V

(
t, x(t), y(t)

)
, t − h � s � t, t � 0

}
.

Moreover, for t � 0 and (x, y) ∈ Ω1 the following vectorial inequalities:

D−V
(
t, x(t), y(t)

)
� g

(
t, V

(
t, x(t), y(t)

))
, t �= tk, k = 1,2, . . . ,

V
(
tk + 0, x(tk) + �x(tk), y(tk) + �y(tk)

)
� ψk

(
V

(
tk, x(tk), y(tk)

))
, k = 1,2, . . . ,

are satisfied with g = (g1, g2), where

g1(t, u1, u2) = 2
(
e−t + sin t

)
u1,

g2(t, u1, u2) = 2
(
e−t − sin t

)
u2

and ψk(u) = u + Cku, k = 1,2, . . . , where Ck = (
ck 0
0 dk

)
.

It is obvious that the functions g and ψk satisfy conditions 2 and 3 of Lemma 1 and the
comparison system⎧⎨

⎩
u̇1(t) = 2(e−t + sin t)u1(t), t �= tk,

u̇2(t) = 2(e−t − sin t)u2(t), t �= tk,

�u1(tk) = cku1(tk), �u2(tk) = dku2(tk), k = 1,2, . . . ,

is practically stable for any 0 < λ < A, which satisfy, for example, exp(e−t1 + 2) < (A
λ
)2. Hence

Theorem 1 implies that system (17) is also practically stable.

We have assumed in Theorem 1 stronger requirements on L0 only to unify all the practical
results in one theorem. This puts burden on the comparison system (3). However, to obtain only
nonuniform practical stability criteria, we could weaken certain assumptions of Theorem 1 as in
the next result.

Theorem 2. Assume that the conditions of Theorem 1 hold with the following changes in condi-
tions 5 and 6:

5∗. There exist functions a ∈ K and b ∈ CK, such that

a
(|x|) � L0(t, x) � b

(
t, |x|) (t, x) ∈ I0 × Ω.

6∗. b(t0, λ) < a(A) for some t0 ∈ R.
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Then, the uniform or nouniform practical stability properties of system (3) with respect to
(b(t0, λ), a(A)), imply the corresponding nouniform practical stability properties of system (1)

with respect to (λ,A).

We shall next consider a result which gives practical asymptotic stability of (1). We will use
two Lyapunov like functions.

Theorem 3. Assume that:

1. 0 < λ < A is given and S(A) ⊂ Ω .
2. The functions V,W ∈ V0 and a, c ∈ K , b ∈ CK are such that

a
(|x|) � L0(t, x) � b

(
t, |x|) (t, x) ∈ I0 × S(A), (18)

c
(|x|)e � W(t, x) (t, x) ∈ I0 × S(A), (19)

where e ∈ Rm+ , e = (1,1, . . . ,1).
3. The inequalities

D−V
(
t, x(t)

)
� −d

(
L1

(
t, x(t)

))
e, t �= tk, k = 1,2, . . . , (20)

where L1(t, x) = ∑m
i=1 Wi(t, x),

V
(
tk + 0, x(tk) + Ik

(
x(tk)

))
� V

(
tk, x(tk)

)
, k = 1,2, . . . , (21)

W
(
tk + 0, x(tk) + Ik

(
x(tk)

))
� W

(
tk, x(tk)

)
, k = 1,2, . . . , (22)

are valid for d ∈ K , t ∈ I0 and x ∈ Ω1.
4. The function D−W(t, x(t)) is bounded in G.
5. b(t0, λ) < a(A) for some t0 ∈ R.

Then, system (1) is practically asymptotically stable with respect to (λ,A).

Proof. By Theorem 1 with g(t, u) ≡ −d(u)e and ψk(u) ≡ u, t ∈ I0, k = 1,2, . . . , it fol-
lows because of conditions for the function W ∈ V0 that system (1) is practically stable.
Hence, it is enough to prove that every solution x(t) = x(t; t0, ϕ0) with ‖ϕ0‖ < λ satisfies
limt→∞ |x(t; t0, ϕ0)| = 0.

Suppose that this is not true. Then there exist ϕ0 ∈ D: ‖ϕ0‖ < λ, β > 0, r > 0, and a sequence
{ξk}∞k=1 ∈ I0 such that for k = 1,2, . . . , the following inequalities are valid:

ξk − ξk−1 � β,
∣∣x(ξk; t0, ϕ0)

∣∣ � r. (23)

From the last inequality and (19) we get

W
(
ξk, x(ξk; t0, ϕ0)

)
� c(r)e, k = 1,2, . . . . (24)

From condition 4 of Theorem 3 it follows that there exists a constant M ∈ R+ such that

sup
{
D−W

(
t, x(t)

)
: t ∈ G

}
� Me. (25)

By (22), (24) and (25) we obtain
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W
(
t, x(t; t0, ϕ0)

)
� W

(
ξk, x(ξk; t0, ϕ0)

) +
t∫

ξk

D−W
(
s, x(s; t0, ϕ0)

)
ds

= W
(
ξk, x(ξk; t0, ϕ0)

) −
ξk∫

t

D−W
(
s, x(s; t0, ϕ0)

)
ds

� c(r)e − Me(ξk − t) � c(r)e − Meε >
c(r)e

2

for t ∈ [ξk − ε, ξk], where 0 < ε < min{β,
c(r)
2M

}.
From the estimate obtained, making use of (20) and (21), we conclude that for ξR ∈ {ξk}∞k=1,

we have

0 � V
(
ξR, x(ξR; t0, ϕ0)

)

� V
(
t0, ϕ0(0)

) +
ξR∫

t0

D−V
(
s, x(s; t0, ϕ0)

)
ds

� V
(
t0, ϕ0(0)

) +
R∑

k=1

ξk∫
ξk−ε

D−V
(
s, x(s; t0, ϕ0)

)
ds

� V
(
t0, ϕ0(0)

) −
R∑

k=1

ξk∫
ξk−ε

d
(
L1

(
s, x(s; t0, ϕ0)

))
ds

� V
(
t0, ϕ0(0)

) − Rd

(
mc(r)

2

)
εe

which contradicts (18) for large R.
Thus limt→∞ |x(t; t0, ϕ0)| = 0. The proof is therefore complete. �

Corollary 1. In Theorem 3, the following choices of W(t, x) are admissible to yield the same
conclusion:

(i) W(t, x) = |x|e provided that f is bounded on (t0,∞) × S(A) × D;
(ii) W(t, x) = V (t, x).

Example 3. Consider⎧⎨
⎩

ẋ(t) = [sin(ln(t + 1)) + cos(ln(t + 1)) − 2]x(t − h), t �= tk, t > 0,

x(s) = ϕ(s), s ∈ [−h,0],
�x(tk) = βkx(tk), k = 1,2, . . . ,

(26)

where x ∈ R; h > 0; −1 � βk < 0; the function ϕ(t) is continuous in [−h,0]; 0 < t1 < t2 < · · · ,
limk→∞ tk = ∞.

Let

V (x) = |x|2.
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Then

Ω1 = {
x(t) ∈ PC[R+,R]: |x|2(s) � |x|2(t), t − h � s � t, t � 0

}
.

For t > 0 and x ∈ Ω1 we have

D−V
(
x(t)

)
� λ′(t)V

(
x(t)

) = −W
(
t, x(t)

)
, t �= tk,

V
(
x(tk) + βkx(tk)

)
� (1 + βk)

2V
(
x(tk)

)
, k = 1,2, . . . ,

W
(
tk + 0, x(tk) + βkx(tk)

)
� (1 + βk)

2W
(
tk, x(tk)

)
, k = 1,2, . . . ,

where λ(t) = exp[−2(t + 1)(2 − sin ln(t + 1))].
Hence all conditions of Theorem 3 are satisfied and therefore (26) is practically asymptotically

stable.
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