Third homology of general linear groups

B. Mirzaii
Department of Pure Mathematics, Queen's University, Belfast BT7 1NN, Northern Ireland, United Kingdom

Received 17 October 2006
Available online 9 July 2008
Communicated by Michel Van den Bergh

Abstract

The third homology group of $\mathrm{GL}_{n}(R)$ is studied, where R is a 'ring with many units' with center $Z(R)$. The main theorem states that if $K_{1}(Z(R)) \otimes \mathbb{Q} \simeq K_{1}(R) \otimes \mathbb{Q}$ (e.g. R a commutative ring or a central simple algebra), then $H_{3}\left(\mathrm{GL}_{2}(R), \mathbb{Q}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}(R), \mathbb{Q}\right)$ is injective. If R is commutative, \mathbb{Q} can be replaced by a field k such that $1 / 2 \in k$. For an infinite field R (resp. an infinite field R such that $R^{*}=R^{* 2}$), we get the better result that $H_{3}\left(\mathrm{GL}_{2}(R), \mathbb{Z}\left[\frac{1}{2}\right]\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}(R), \mathbb{Z}\left[\frac{1}{2}\right]\right)\left(\right.$ resp. $\left.H_{3}\left(\mathrm{GL}_{2}(R), \mathbb{Z}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}(R), \mathbb{Z}\right)\right)$ is injective. As an application we study the third homology group of $\mathrm{SL}_{2}(R)$ and the indecomposable part of $K_{3}(R)$. © 2008 Elsevier Inc. All rights reserved.

Keywords: K-theory; Homology of groups

1. Introduction

The Hurewicz theorem relates homotopy groups to homology groups, which are much easier to calculate. This in turn provides a homomorphism from the Quillen K_{n}-group of a ring R to the nth integral homology of stable linear group $\mathrm{GL}(R), h_{n}: K_{n}(R) \rightarrow H_{n}(\mathrm{GL}(R), \mathbb{Z})$. One can also define Milnor K-groups, $K_{n}^{M}(R)$, and when R is commutative there is a canonical map $K_{n}^{M}(R) \rightarrow K_{n}(R)$ [8].

One of the approaches to investigate K-groups is by means of the homology stability. Suslin's stability theorem states that for an infinite field F, the natural map

$$
H_{i}\left(\mathrm{GL}_{n}(F), \mathbb{Z}\right) \rightarrow H_{i}(\mathrm{GL}(F), \mathbb{Z})
$$

[^0]is bijective if $n \geqslant i[18]$. Using this result, Suslin constructed a map from $H_{n}\left(\operatorname{GL}_{n}(F), \mathbb{Z}\right)$ to $K_{n}^{M}(F)$ such that the sequence
$$
H_{n}\left(\mathrm{GL}_{n-1}(F), \mathbb{Z}\right) \xrightarrow{H_{n}(\mathrm{inc})} H_{n}\left(\mathrm{GL}_{n}(F), \mathbb{Z}\right) \rightarrow K_{n}^{M}(F) \rightarrow 0
$$
is exact. Combining these two results he constructed a map from $K_{n}(F)$ to $K_{n}^{M}(F)$ such that the composite homomorphism
$$
K_{n}^{M}(F) \rightarrow K_{n}(F) \rightarrow K_{n}^{M}(F)
$$
coincides with the multiplication by $(-1)^{n-1}(n-1)$! $[18$, Section 4].
These results have been generalized by Nesterenko and Suslin [14] to commutative local rings with infinite residue fields, and by Sah [16] and Guin [8] to a wider class of rings which is now called 'rings with many units.'

Except for $n=1,2$, there is no precise information about the kernel of H_{n} (inc). In this direction Suslin posed a problem, which is now referred to as 'a conjecture by Suslin' (see [3, 7.7], [17, 4.13]).

Injectivity Conjecture. For any infinite field F the natural homomorphism

$$
H_{n}\left(\mathrm{GL}_{n-1}(F), \mathbb{Q}\right) \rightarrow H_{n}\left(\mathrm{GL}_{n}(F), \mathbb{Q}\right)
$$

is injective.

This conjecture is easy if $n=1,2$. For $n=3$ the conjecture was proved positively by Sah [17] and Elbaz-Vincent [7]. The case $n=4$ is proved by the author in [13]. The conjecture is proved in full for number fields by Borel and Yang [3].

When $n=3$, in [7], Elbaz-Vincent proves the conjecture for a wider class of commutative rings (called H1-ring in [7]). In fact he proves that for any commutative ring with many units $H_{3}\left(\mathrm{GL}_{2}(R), \mathbb{Q}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}(R), \mathbb{Q}\right)$ is injective. We will generalize this further, to include some class of non-commutative rings.

The above conjecture says that the kernel of $H_{n}(\mathrm{inc})$ is in fact torsion. Our main goal, in this paper, is to study the map H_{3} (inc) in such a way that we lose less information on its kernel. Here is our main result.

Theorem 5.4. Let R be a ring with many units with center $Z(R)$. Let k be a field such that $1 / 2 \in k$.
(i) If $K_{1}(Z(R)) \otimes \mathbb{Q} \simeq K_{1}(R) \otimes \mathbb{Q}$, then $H_{3}\left(\mathrm{GL}_{2}(R), \mathbb{Q}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}(R), \mathbb{Q}\right)$ is injective. If R is commutative, then \mathbb{Q} can be replaced by k.
(ii) If R is an infinite field or a quaternion algebra over an infinite field, then $H_{3}\left(\mathrm{GL}_{2}(R), \mathbb{Z}\left[\frac{1}{2}\right]\right)$ $\rightarrow H_{3}\left(\mathrm{GL}_{3}(R), \mathbb{Z}\left[\frac{1}{2}\right]\right)$ is injective.
(iii) Let R be either \mathbb{R} or an infinite field such that $R^{*}=R^{* 2}$. Then $H_{3}\left(\operatorname{GL}_{2}(R), \mathbb{Z}\right) \rightarrow$ $H_{3}\left(\mathrm{GL}_{3}(R), \mathbb{Z}\right)$ is injective.
(iv) The map $H_{3}\left(\mathrm{GL}_{2}(\mathbb{H}), \mathbb{Z}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}(\mathbb{H}), \mathbb{Z}\right)$ is bijective, where \mathbb{H} is the ring of quaternion.

Examples of non-commutative rings with many units which satisfy the condition $K_{1}(Z(R)) \otimes \mathbb{Q} \simeq K_{1}(R) \otimes \mathbb{Q}$ of (i) in the above theorem are Azumaya algebras over commutative local rings with infinite residue fields.

As an application we generalize and give an easier proof of the main theorem of Sah in [17, Theorem 3.0]. Our proof of the next theorem avoids the case by case analysis done in [17].

Theorem 6.1. Let R be a commutative ring with many units. Let k be a field such that $1 / 2 \in k$.
(i) The map $H_{0}\left(R^{*}, H_{3}\left(\mathrm{SL}_{2}(R), k\right)\right) \rightarrow H_{3}(\mathrm{SL}(R), k)$ is injective.
(ii) For an infinite field $R, H_{0}\left(R^{*}, H_{3}\left(\mathrm{SL}_{2}(R), \mathbb{Z}\left[\frac{1}{2}\right]\right)\right) \rightarrow H_{3}\left(\mathrm{SL}(R), \mathbb{Z}\left[\frac{1}{2}\right]\right)$ is injective.
(iii) If R is either \mathbb{R} or an infinite field such that $R^{*}=R^{* 2}$, then $H_{3}\left(\operatorname{SL}_{2}(R), \mathbb{Z}\right) \rightarrow$ $H_{3}(\mathrm{SL}(R), \mathbb{Z})$ is injective.
(iv) The map $H_{3}\left(\mathrm{SL}_{2}(\mathbb{H}), \mathbb{Z}\right) \rightarrow H_{3}\left(\mathrm{SL}_{3}(\mathbb{H}), \mathbb{Z}\right)$ is bijective.

We use these results to study the third K-group of a field. Let $K_{3}(R)^{\text {ind }}=\operatorname{coker}\left(K_{3}^{M}(R) \rightarrow\right.$ $K_{3}(R)$) be the indecomposable part of $K_{3}(R)$. In this article we prove that if R is an infinite field,

$$
K_{3}(R)^{\text {ind }} \otimes \mathbb{Z}\left[\frac{1}{2}\right] \simeq H_{0}\left(R^{*}, H_{3}\left(\mathrm{SL}_{2}(R), \mathbb{Z}\left[\frac{1}{2}\right]\right)\right)
$$

Furthermore if $R^{*}=R^{* 2}$ or $R=\mathbb{R}$, then

$$
K_{3}(R)^{\mathrm{ind}} \simeq H_{3}\left(\mathrm{SL}_{2}(R), \mathbb{Z}\right)
$$

To prove these claims, our general strategy will be the same as in [17] and [7]. We will introduce some spectral sequences similar to ones in [7], smaller but still big enough to do some computations. The main theorem will come out of the analysis of these spectral sequences.

Here we establish some notations. In this paper, by $H_{i}(G)$ we mean the i th integral homology of the group G. We use the bar resolution to define the homology of a group [4, Chap. I, Section 5]. Define $\mathbf{c}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\sum_{\sigma \in \Sigma_{n}} \operatorname{sign}(\sigma)\left[g_{\sigma(1)}\left|g_{\sigma(2)}\right| \ldots \mid g_{\sigma(n)}\right] \in H_{n}(G)$, where $g_{i} \in G$ pairwise commute and Σ_{n} is the symmetric group of degree n. By GL_{n} we mean the general linear group $\mathrm{GL}_{n}(R)$, where R is a ring with many units. By $Z(R)$ we mean the center of R.

Note that GL_{0} is the trivial group and $\mathrm{GL}_{1}=R^{*}$. By $R^{* m}$ we mean $R^{*} \times \cdots \times R^{*}(m$-times) or, when R is commutative and $m \geqslant 2$, the subgroup $\left\{a^{m} \mid a \in R^{*}\right\}$ of R^{*}, depending on the context. This will not cause any confusion. The i th factor of $R^{* m}=R^{*} \times \cdots \times R^{*}$ (m-times), is denoted by R_{i}^{*}.

2. Rings with many units

The study of rings with many units is originated by W. van der Kallen in [19], ${ }^{1}$ where he shows that K_{2} of such commutative rings behave very much like K_{2} of fields. According to [19], in order to have a nice description of $K_{2}(R)$ in terms of generators and relations or in order

[^1]to have a nice stability property for $K_{2}(R)$, the ring should have 'enough invertible elements,' and 'more invertible elements' the ring has, a better description of $K_{2}(R)$ one gets. In this direction, see Proposition 2.6 for a homological proof of a theorem of Van der Kallen [19], due to Nesterenko and Suslin [14, Corollary 4.3].

In [14], another definition of rings with many units is given, where the authors prove very nice homology stability results for the homology of general linear groups over these rings. They further prove that when the ring is a local ring with infinite residue field, the homology stability bound can be very sharp.

In [8], Guin shows that if a ring satisfies both the definition of Van der Kallen and of Suslin, then most of the main results of Suslin in [18] are still true. Following [19] and [14], we call such rings, rings with many units.

Definition 2.1. We say that R is a ring with many units if it has the following properties:
(H1) Hypothesis 1. For any finite number of surjective linear forms $f_{i}: R^{n} \rightarrow R$, there exist $v \in R^{n}$ such that $f_{i}(v) \in R^{*}$.
(H2) Hypothesis 2 . For any $n \geqslant 1$, there exist n elements of the center of R such that the sum of each nonempty subfamily belongs to R^{*}.

Remark 2.2.

(i) (H1) implies that the stable range of R is one, $\operatorname{sr}(R)=1[8$, Proposition 1.4].
(ii) (H1) implies (H2) if R is commutative [8, Proposition 1.3].
(iii) Property (H1) is considered by Van der Kallen [19, Section 1] and property (H2) is studied by Nesterenko and Suslin [14, §1].

Example 2.3.

(i) Let R satisfy property (H2). Then a semilocal ring R is a ring with many units if and only if $R / \operatorname{Jac}(R)$ is a ring with many units, where $\operatorname{Jac}(R)$ denotes the Jacobson radical of R.
(ii) Product of rings with many units is a ring with many units.
(iii) Let D be a finite-dimensional F-division algebra, F an infinite field. Then $M_{n}(D), n \geqslant 1$, is a ring with many units.
(iv) Let F be an infinite field. Then any finite-dimensional F-algebra is a semilocal ring $[10, \S 20]$. Therefore, it is a ring with many units.
(v) Let R be a commutative semilocal ring with many units. Then any Azumaya R-algebra is a ring with many units (see [10, §20]).

Here we give two known results which are used in the construction of spectral sequences in the coming section. They show the need for properties (H1) and (H2).

Lemma 2.4. Let R satisfy the property (H1). Let $n \geqslant 2$ and assume $T_{i}, 1 \leqslant i \leqslant l$, are finite subsets of R^{n} such that each T_{i} is a basis of a free summand of R^{n} with k elements, where $k \leqslant n-1$. Then there is a vector $v \in R^{n}$, such that $T_{i} \cup\{v\}, 1 \leqslant i \leqslant l$, is a basis of a free summand of R^{n}.

Proof. This is well-known and easy to prove. We leave the proof to the reader.

The next result is due to Suslin.
Proposition 2.5. Let R satisfy the property (H2). Let G_{i} be subgroups of $\mathrm{GL}_{n_{i}}, i=1,2$, and assume that at least one of them contains the subgroup of diagonal matrices. Let M be a submodule of $M_{n_{1}, n_{2}}(R)$ such that $G_{1} M=M=M G_{2}$. Then the inclusion

$$
\left(\begin{array}{cc}
G_{1} & 0 \\
0 & G_{2}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
G_{1} & M \\
0 & G_{2}
\end{array}\right)
$$

induces isomorphism on the homology with coefficients in \mathbb{Z}.
Proof. See [18, Theorem 1.9].
The next proposition is rather well-known. We refer the reader to [8, 3.2] for the definition of the Milnor K-groups $K_{n}^{M}(R)$ of a ring R.

Proposition 2.6. Let R be a commutative ring with many units. Then
(i) $\mathrm{SK}_{1}(R)=0$.
(ii) (Van der Kallen [19])

$$
K_{2}(R) \simeq K_{2}^{M}(R)=R^{*} \otimes_{\mathbb{Z}} R^{*} /\left\langle a \otimes(1-a): a, 1-a \in R^{*}\right\rangle
$$

Proof. (i) By the homology stability theorem [8, Theorem 1]

$$
K_{1}(R)=H_{1}(\mathrm{GL}(R)) \simeq H_{1}\left(\mathrm{GL}_{1}(R)\right) \simeq R^{*}
$$

but we also have $K_{1}(R) \simeq R^{*} \times \mathrm{SK}_{1}(R)$. Thus $\mathrm{SK}_{1}(R)=0$.
(ii) (Nesterenko-Suslin) By easy analysis of the Lyndon-Hochschild-Serre spectral sequence associated to

$$
1 \rightarrow \mathrm{SL} \rightarrow \mathrm{GL} \rightarrow R^{*} \rightarrow 1,
$$

using part (i) and the homology stability theorem, one sees that $K_{2}(R) \simeq H_{2}\left(\mathrm{GL}_{2}\right) / H_{2}\left(\mathrm{GL}_{1}\right)$ (see [14, Lemma 4.2]). By [8, Theorem 2], we have $K_{2}^{M}(R) \simeq H_{2}\left(\mathrm{GL}_{2}\right) / H_{2}\left(\mathrm{GL}_{1}\right)$. Therefore, $K_{2}^{M}(R) \simeq K_{2}(R)$. For the rest, see [8, Proposition 3.2.3].

In this paper we always assume that R is a ring with many units.

3. The spectral sequences

Let $C_{l}\left(R^{n}\right)$ and $D_{l}\left(R^{n}\right)$ be the free abelian groups with a basis consisting of $\left(\left\langle v_{0}\right\rangle, \ldots,\left\langle v_{l}\right\rangle\right)$ and $\left(\left\langle w_{0}\right\rangle, \ldots,\left\langle w_{l}\right\rangle\right)$ respectively, where every $\min \{l+1, n\}$ of $v_{i} \in R^{n}$ and every $\min \{l+1,2\}$ of $w_{i} \in R^{n}$ is a basis of a free direct summand of R^{n}. By $\left\langle v_{i}\right\rangle$ and $\left\langle w_{i}\right\rangle$ we mean the submodules of R^{n} generated by v_{i} and w_{i} respectively. Let $\partial_{0}: C_{0}\left(R^{n}\right) \rightarrow C_{-1}\left(R^{n}\right):=\mathbb{Z}, \sum_{i} n_{i}\left(\left\langle v_{i}\right\rangle\right) \mapsto \sum_{i} n_{i}$ and $\partial_{l}=\sum_{i=0}^{l}(-1)^{i} d_{i}: C_{l}\left(R^{n}\right) \rightarrow C_{l-1}\left(R^{n}\right), l \geqslant 1$, where

$$
d_{i}\left(\left(\left\langle v_{0}\right\rangle, \ldots,\left\langle v_{l}\right\rangle\right)\right)=\left(\left\langle v_{0}\right\rangle, \ldots, \widehat{\left\langle v_{i}\right\rangle}, \ldots,\left\langle v_{l}\right\rangle\right) .
$$

Define the differential $\tilde{\partial}_{l}=\sum_{i=0}^{l}(-1)^{i} \tilde{d}_{i}: D_{l}\left(R^{n}\right) \rightarrow D_{l-1}\left(R^{n}\right)$ similar to ∂_{l}. By Lemma 2.4 it is easy to see that the complexes

$$
\begin{array}{ll}
C_{*}: & 0 \leftarrow C_{-1}\left(R^{n}\right) \leftarrow C_{0}\left(R^{n}\right) \leftarrow \cdots \leftarrow C_{l-1}\left(R^{n}\right) \leftarrow \cdots, \\
D_{*}: & 0 \leftarrow D_{-1}\left(R^{n}\right) \leftarrow D_{0}\left(R^{n}\right) \leftarrow \cdots \leftarrow D_{l-1}\left(R^{n}\right) \leftarrow \cdots
\end{array}
$$

are exact. Consider $C_{i}\left(R^{n}\right)$ and $D_{i}\left(R^{n}\right)$ as a left GL_{n}-module in a natural way and convert this action to the right action by the definition $m \cdot g:=g^{-1} m$.

Take a free left GL_{n}-resolution $P_{*} \rightarrow \mathbb{Z}$ of \mathbb{Z} with trivial GL_{n}-action. From the double complexes $C_{*} \otimes_{\mathrm{GL}_{n}} P_{*}$ and $D_{*} \otimes_{\mathrm{GL}_{n}} P_{*}$, using Proposition 2.5 , we obtain two first quadrant spectral sequences converging to zero with

$$
\begin{aligned}
& E_{p, q}^{1}(n)= \begin{cases}H_{q}\left(R^{* p} \times \mathrm{GL}_{n-p}\right) & \text { if } 0 \leqslant p \leqslant n, \\
H_{q}\left(\mathrm{GL}_{n}, C_{p-1}\left(R^{n}\right)\right) & \text { if } p \geqslant n+1,\end{cases} \\
& \tilde{E}_{p, q}^{1}(n)= \begin{cases}H_{q}\left(R^{* p} \times \mathrm{GL}_{n-p}\right) & \text { if } 0 \leqslant p \leqslant 2, \\
H_{q}\left(\mathrm{GL}_{n}, D_{p-1}\left(R^{n}\right)\right) & \text { if } p \geqslant 3 .\end{cases}
\end{aligned}
$$

For $1 \leqslant p \leqslant n$ and $q \geqslant 0, d_{p, q}^{1}(n)=\sum_{i=1}^{p}(-1)^{i+1} H_{q}\left(\alpha_{i, p}\right)$, where

$$
\begin{aligned}
& \alpha_{i, p}: R^{* p} \times \mathrm{GL}_{n-p} \rightarrow R^{* p-1} \times \mathrm{GL}_{n-p+1}, \\
& \left(a_{1}, \ldots, a_{p}, A\right) \mapsto\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{p},\left(\begin{array}{cc}
a_{i} & 0 \\
0 & A
\end{array}\right)\right) .
\end{aligned}
$$

In particular, for $0 \leqslant p \leqslant n$,

$$
d_{p, 0}^{1}(n)= \begin{cases}\mathrm{id}_{\mathbb{Z}} & \text { if } p \text { is odd } \\ 0 & \text { if } p \text { is even }\end{cases}
$$

So $E_{p, 0}^{2}(n)=0$ for $p \leqslant n-1$. It is also easy to see that $E_{n, 0}^{2}(n)=E_{n+1,0}^{2}(n)=0$. See the proof of [12, Theorem 3.5] for more details.

We will use $\tilde{E}_{p, q}^{i}(n)$ and $E_{p, q}^{i}(n)$ only for $n=3$, so from now on by $\tilde{E}_{p, q}^{i}$ and $E_{p, q}^{i}$ we mean $\tilde{E}_{p, q}^{i}(3)$ and $E_{p, q}^{i}(3)$ respectively. We describe $\tilde{E}_{p, q}^{1}$ for $p=3$, 4. Let

$$
w_{1}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle\right), \quad w_{2}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle\right) \in D_{2}\left(R^{3}\right)
$$

and $u_{1}, \ldots, u_{5}, u_{6, a} \in D_{3}\left(R^{3}\right), a, a-1 \in R^{*}$, where

$$
\begin{array}{llrl}
u_{1} & =\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}+e_{3}\right\rangle\right), & & u_{2}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle\right), \\
u_{3} & =\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{2}+e_{3}\right\rangle\right), & & u_{4}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{3}\right\rangle\right), \\
u_{5} & =\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{3}\right\rangle\right), & & u_{6, a}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right)
\end{array}
$$

(see [8, Lemma 3.3.3]). By the Shapiro lemma

$$
\begin{aligned}
& \tilde{E}_{3, q}^{1}=H_{q}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}\left(w_{1}\right)\right) \oplus H_{q}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}\left(w_{2}\right)\right), \\
& \tilde{E}_{4, q}^{1}=\bigoplus_{j=1}^{5} H_{q}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}\left(u_{j}\right)\right) \oplus\left[\bigoplus_{a, a-1 \in R^{*}} H_{q}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}\left(u_{6, a}\right)\right)\right] .
\end{aligned}
$$

So by Proposition 2.5 we get

$$
\begin{aligned}
\tilde{E}_{3, q}^{1}= & H_{q}\left(R^{* 3}\right) \oplus H_{q}\left(R^{*} I_{2} \times R^{*}\right), \\
\tilde{E}_{4, q}^{1}= & H_{q}\left(R^{*} I_{3}\right) \oplus H_{q}\left(R^{*} I_{2} \times R^{*}\right) \oplus H_{q}\left(R^{*} \times R^{*} I_{2}\right) \oplus H_{q}(T) \\
& \oplus H_{q}\left(R^{*} I_{2} \times R^{*}\right) \oplus\left[\bigoplus_{a, a-1 \in R^{*}} H_{q}\left(R^{*} I_{2} \times R^{*}\right)\right]
\end{aligned}
$$

where $T=\left\{(a, b, a) \in R^{3}: a, b \in R^{*}\right\}$. Note that $\tilde{d}_{p, q}^{1}=d_{p, q}^{1}$ for $p=1,2,\left.\tilde{d}_{3, q}^{1}\right|_{H_{q}\left(R^{* 3}\right)}=d_{3, q}^{1}$ and $\left.\tilde{d}_{3, q}^{1}\right|_{H_{q}\left(R^{*} I_{2} \times R^{*}\right)}=H_{q}(\mathrm{inc})$, where inc : $R^{*} I_{2} \times R^{*} \rightarrow R^{* 3}$.

Lemma 3.1. The group $\tilde{E}_{p, 0}^{2}$ is trivial for $0 \leqslant p \leqslant 5$.
Proof. Triviality of $\tilde{E}_{p, 0}^{2}$ is easy for $0 \leqslant p \leqslant 2$. To prove the triviality of $\tilde{E}_{3,0}^{2}$, note that $\tilde{E}_{2,0}^{1}=\mathbb{Z}$, $\tilde{E}_{3,0}^{1}=\mathbb{Z} \oplus \mathbb{Z}$ and $\tilde{d}_{3,0}^{1}\left(\left(n_{1}, n_{2}\right)\right)=n_{1}+n_{2}$, so if $\left(n_{1}, n_{2}\right) \in \operatorname{ker}\left(\tilde{d}_{3,0}^{1}\right)$, then $n_{2}=-n_{1}$. It is easy to see that this is contained in $\operatorname{im}\left(\tilde{d}_{4,0}^{1}\right)$. We prove the triviality of $\tilde{E}_{5,0}^{2}$. Triviality of $\tilde{E}_{4,0}^{2}$ is similar but much easier. This proof is taken from [7, Section 1.3.3].

Triviality of $\tilde{E}_{5,0}^{2}$. The proof will be in four steps.
Step 1. The sequence $0 \rightarrow C_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z} \rightarrow D_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z} \rightarrow Q_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z} \rightarrow 0$ is exact, where $Q_{*}\left(R^{3}\right):=D_{*}\left(R^{3}\right) / C_{*}\left(R^{3}\right)$.

Step 2. The group $H_{4}\left(Q_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}\right)$ is trivial.
Step 3. The map induced in homology by $C_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z} \rightarrow D_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}$ is zero in degree 4 .
Step 4. The group $\tilde{E}_{5,0}^{2}$ is trivial.
Proof of Step 1. For $i \geqslant-1, D_{i}\left(R^{3}\right) \simeq C_{i}\left(R^{3}\right) \oplus Q_{i}\left(R^{3}\right)$. This decomposition is compatible with the action of GL_{3}, so we get an exact sequence of GL_{3}-modules

$$
0 \rightarrow C_{i}\left(R^{3}\right) \rightarrow D_{i}\left(R^{3}\right) \rightarrow Q_{i}\left(R^{3}\right) \rightarrow 0
$$

which splits as a sequence of GL_{3}-modules. One can easily deduce the desired exact sequence from this. Note that this exact sequence does not split as complexes.

Proof of Step 2. The complex $Q_{*}\left(R^{3}\right)$ induces a spectral sequence

$$
\hat{E}_{p, q}^{1}= \begin{cases}0 & \text { if } 0 \leqslant p \leqslant 2 \\ H_{q}\left(\mathrm{GL}_{3}, Q_{p-1}\left(R^{3}\right)\right) & \text { if } p \geqslant 3\end{cases}
$$

which converges to zero. To prove the claim it is sufficient to prove that $\hat{E}_{5,0}^{2}=0$, and this follows from $\hat{E}_{3,1}^{2}=0$ which we now show. One can see that $\hat{E}_{3,1}^{1}=H_{1}\left(R^{*} I_{2} \times R^{*}\right)$. If $w=$ $\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle\right) \in Q_{3}\left(R^{3}\right)$, then $H_{1}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}(w)\right) \simeq H_{1}\left(R^{*} I_{2} \times R^{*}\right)$ is a summand of $\hat{E}_{4,1}^{1}$ and $\hat{d}_{4,1}^{1}: H_{1}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}(w)\right) \rightarrow \hat{E}_{3,1}^{1}$ is an isomorphism. So $\hat{d}_{4,1}^{1}$ is surjective and therefore $\hat{E}_{3,1}^{2}=0$.

Proof of Step 3. Consider the following commutative diagram

The generators of $C_{4}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}$ are of the form $x_{a, b} \otimes 1$, where $x_{a, b}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+\right.\right.$ $\left.\left.a e_{2}+b e_{3}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}+e_{3}\right\rangle\right), a, a-1, b, b-1, a-b \in R^{*}$ (see [8, Lemma 3.3.3]). Since $C_{3}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}=\mathbb{Z}$, the elements $\left(x_{a, b}-x_{c, d}\right) \otimes 1$ generate $\operatorname{ker}\left(\partial_{4} \otimes 1\right)$. Hence to prove this step it is sufficient to prove that $\left(x_{a, b}-x_{c, d}\right) \otimes 1 \in \operatorname{im}\left(\tilde{\partial}_{5} \otimes 1\right)$.

Set $w_{a}^{\prime}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+a e_{2}+e_{3}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right) \in D_{5}\left(R^{3}\right)$, where $a, a-1 \in$ R^{*}. Let g, g^{\prime}, and $g^{\prime \prime}$ be the matrices

$$
\left(\begin{array}{ccc}
0 & a^{-1} & 0 \\
-1 & 1+a^{-1} & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -a \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a^{-1} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

respectively, then

$$
g\left(\tilde{d}_{1}\left(w_{a}^{\prime}\right)\right)=\tilde{d}_{0}\left(w_{a}^{\prime}\right), \quad g^{\prime}\left(\tilde{d}_{3}\left(w_{a}^{\prime}\right)\right)=\tilde{d}_{2}\left(w_{a}^{\prime}\right), \quad g^{\prime \prime}\left(\tilde{d}_{4}\left(w_{a}^{\prime}\right)\right)=v_{1}^{\prime}
$$

and so $\left(\tilde{\partial}_{5} \otimes 1\right)\left(w_{a}^{\prime} \otimes 1\right)=\left(v_{1}^{\prime}-v_{a}^{\prime}\right) \otimes 1$, where

$$
v_{a}^{\prime}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+a e_{2}+e_{3}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle\right)
$$

Note that the elements of the form $(g w-w) \otimes 1$ are zero in $D_{*} \otimes_{\mathrm{GL}_{3}} \mathbb{Z}$. If

$$
\begin{aligned}
& u_{a}^{\prime}=\left(\left\langle e_{3}\right\rangle,\left\langle e_{1}+a e_{2}+e_{3}\right\rangle,\left\langle e_{1}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right), \\
& u_{a}^{\prime \prime}=\left(\left\langle e_{1}+a e_{2}+e_{3}\right\rangle,\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right),
\end{aligned}
$$

where $a, a-1 \in R^{*}$, then

$$
\begin{aligned}
& g u_{a}^{\prime}=\left(\left\langle e_{3}\right\rangle,\left\langle e_{1}+a e_{2}+e_{3}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right), \\
& g^{\prime} u_{a}^{\prime \prime}=\left(\left\langle e_{3}\right\rangle,\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right) .
\end{aligned}
$$

So if $a, a-1, c, c-1 \in R^{*}$, then

$$
\left(\tilde{\partial}_{5} \otimes 1\right)\left(\left(z_{a}-z_{c}\right) \otimes 1\right)=\left(t_{c}-t_{a}\right) \otimes 1
$$

where

$$
\begin{aligned}
z_{a}=\left(\left\langle e_{3}\right\rangle,\left\langle e_{1}\right.\right. & \left.\left.+a e_{2}+e_{3}\right\rangle,\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right), \\
t_{a} & =\left(\left\langle e_{3}\right\rangle,\left\langle e_{1}+a e_{2}+e_{3}\right\rangle,\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle\right) .
\end{aligned}
$$

If g_{1}, g_{2}, g_{3} and g_{4} are the matrices

$$
\left(\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & 0 & 0 \\
\frac{b-1}{1-a} & \frac{1-b}{1-a} & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & -1 & 1 \\
0 & -1 & 0 \\
\frac{b-a}{1-a} & \frac{a-b}{1-a} & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & \frac{1-b}{b}
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{b}
\end{array}\right),
$$

respectively, then

$$
\begin{array}{ll}
g_{1}\left(\tilde{d}_{0}\left(y_{a, b}\right)\right)=t \frac{1}{1-b}, & g_{2}\left(\tilde{d}_{1}\left(y_{a, b}\right)\right)=t_{\frac{-a}{b-a}}, \\
g_{3}\left(\tilde{d}_{3}\left(y_{a, b}\right)\right)=v_{\frac{a-b}{1-b},}^{\prime}, & g_{4}\left(\tilde{d}_{3}\left(y_{a, b}\right)\right)=v_{a}^{\prime},
\end{array}
$$

where

$$
y_{a, b}=\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+a e_{2}+b e_{3}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}+e_{3}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle\right) .
$$

(Here by $\frac{r}{s} \in R^{*}$ we mean $s^{-1} r$.) By an easy computation

$$
\left(\tilde{\partial}_{5} \otimes 1\right)\left(y_{a, b} \otimes 1\right)=t_{\frac{1}{1-b}} \otimes 1-t_{\frac{-a}{b-a}} \otimes 1+v_{1}^{\prime} \otimes 1-v_{\frac{a-b}{1-b}}^{\prime} \otimes 1+v_{a}^{\prime} \otimes 1-x_{a, b} \otimes 1 .
$$

Now it is easy to see that $\left(x_{a, b}-x_{c, d}\right) \otimes 1 \in\left(\tilde{\partial}_{5} \otimes 1\right)\left(D_{5}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}\right)$. This completes the proof of Step 3.

Proof of Step 4. From the homology long exact sequence of the short exact sequence obtained in the first step, we get the exact sequence

$$
H_{4}\left(C_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}\right) \rightarrow H_{4}\left(D_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}\right) \rightarrow H_{4}\left(Q_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}\right)
$$

By Steps 2 and 3, $H_{4}\left(D_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}\right)=0$, but $\tilde{E}_{5,0}^{2}=H_{4}\left(D_{*}\left(R^{3}\right) \otimes_{\mathrm{GL}_{3}} \mathbb{Z}\right)$. This completes the proof of the triviality of $\tilde{E}_{5,0}^{2}$.

Lemma 3.2. The group $\tilde{E}_{p, 1}^{2}$ is trivial for $0 \leqslant p \leqslant 4$.

Proof. Triviality of $\tilde{E}_{p, 1}^{2}, p=0,1$, is a result of Lemma 3.1 and the fact that the spectral sequence converges to zero (one can also prove this directly). If $\left(a_{0}, b_{0}, c_{0}\right) \in \operatorname{ker}\left(\tilde{d}_{2,1}^{1}\right)$, $a_{0}, b_{0}, c_{0} \in H_{1}\left(R^{*}\right)$, then $a_{0}=b_{0}$. It is easy to see that this element is contained in $\operatorname{im}\left(\tilde{d}_{3,1}^{1}\right)$. Let $x=\left(x_{1}, \ldots, x_{5},\left(x_{6, a}\right)\right) \in \tilde{E}_{4,1}^{1}$, where $x_{2}=\left(a_{2}, a_{2}, b_{2}\right), x_{3}=\left(a_{3}, b_{3}, b_{3}\right), x_{4}=\left(a_{4}, b_{4}, a_{4}\right)$, $x_{5}=\left(a_{5}, a_{5}, b_{5}\right), a_{i}, b_{i} \in H_{1}\left(R^{*}\right)$. By a direct calculation $\tilde{d}_{4,1}(x)=\left(p_{1}, p_{2}\right)$, where

$$
\begin{aligned}
& p_{1}=-\left(a_{2}, a_{2}, b_{2}\right)-\left(a_{3}, b_{3}, b_{3}\right)+\left(b_{4}, a_{4}, a_{4}\right)+\left(a_{5}, a_{5}, b_{5}\right), \\
& p_{2}=\left(a_{2}, a_{2}, b_{2}\right)+\left(b_{3}, b_{3}, a_{3}\right)-\left(a_{4}, a_{4}, b_{4}\right)-\left(a_{5}, a_{5}, b_{5}\right) .
\end{aligned}
$$

If $y=\left(\left(a_{0}, b_{0}, c_{0}\right),\left(d_{0}, d_{0}, e_{0}\right)\right) \in \operatorname{ker}\left(\tilde{d}_{3,1}^{1}\right), a_{0}, b_{0}, c_{0}, d_{0}, e_{0} \in H_{1}\left(R^{*}\right)$, then $b_{0}+d_{0}=$ $a_{0}-b_{0}+c_{0}+e_{0}=0$. Let $x_{2}^{\prime}=\left(-b_{0},-b_{0},-c_{0}\right), x_{3}^{\prime}=\left(-a_{0}+b_{0}, 0,0\right)$ and set $x^{\prime}=\left(0, x_{2}^{\prime}, x_{3}^{\prime}\right.$, $0,0,0) \in \tilde{E}_{4,1}^{1}$, then $y=\tilde{d}_{4,1}\left(x^{\prime}\right)$.

To prove the triviality of $\tilde{E}_{4,1}^{2}$; let $x \in \operatorname{ker}\left(\tilde{d}_{4,1}\right)$ and set

$$
\begin{aligned}
w_{1} & =\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right), \\
w_{2} & =\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{3}\right\rangle,\left\langle e_{1}+b e_{3}\right\rangle\right), \\
w_{3} & =\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}+e_{3}\right\rangle,\left\langle e_{2}+e_{3}\right\rangle\right), \\
w_{4, a} & =\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+a e_{2}\right\rangle\right), \\
w_{5} & =\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{3}\right\rangle,\left\langle e_{1}+e_{2}+e_{3}\right\rangle,\left\langle e_{1}+a e_{2}+b e_{3}\right\rangle\right),
\end{aligned}
$$

where $a, a-1, b, b-1, a-b \in R^{*}, b$ fixed. The groups $T_{i}=H_{1}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}\left(w_{i}\right)\right), i=1,2,3,5$ and $T_{4}=\bigoplus_{a, a-1 \in R^{*}} H_{1}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}\left(w_{4, a}\right)\right)$ are summands of $\tilde{E}_{5,1}^{1}$. Note that $T_{1}=H_{1}\left(R^{*} I_{2} \times R^{*}\right)$, $T_{2}=H_{1}(T), T_{3}=T_{5}=H_{1}\left(R^{*} I_{3}\right)$ and $T_{4}=\bigoplus_{a, a-1 \in R^{*}} H_{1}\left(R^{*} I_{2} \times R^{*}\right)$. The restriction of $\tilde{d}_{5,1}^{1}$ on these summands is as follows,

$$
\begin{aligned}
\tilde{d}_{5,1}^{1} \mid T_{1}\left(\left(c_{1}, c_{1}, d_{1}\right)\right) & =\left(0,\left(c_{1}, c_{1}, d_{1}\right), 0,0,\left(c_{1}, c_{1}, d_{1}\right),-\left(c_{1}, c_{1}, d_{1}\right)\right), \\
\tilde{d}_{5,1}^{1} \mid T_{2}\left(\left(c_{2}, d_{2}, c_{2}\right)\right) & =\left(0,0,\left(d_{2}, c_{2}, c_{2}\right),\left(c_{2}, d_{2}, c_{2}\right), 0,-\left(c_{2}, c_{2}, d_{2}\right)\right), \\
\tilde{d}_{5,1}^{1} \mid T_{3}\left(\left(c_{3}, c_{3}, c_{3}\right)\right) & =\left(\left(c_{3}, c_{3}, c_{3}\right),\left(c_{3}, c_{3}, c_{3}\right),-\left(c_{3}, c_{3}, c_{3}\right), 0,0,0\right), \\
\tilde{d}_{5,1}^{1} \mid T_{4, a}\left(\left(c_{4}, c_{4}, d_{4}\right)\right) & =\left(0,0,0,0,0,\left(c_{4}, c_{4}, d_{4}\right)\right), \\
\left.\tilde{d}_{5,1}^{1}\right|_{5} & =\operatorname{id}_{H_{1}\left(R^{*} I_{3}\right)} .
\end{aligned}
$$

Let $z_{1}=\left(a_{5}, a_{5}, b_{5}\right) \in T_{1}$ and $z_{2}=\left(a_{4}, b_{4}, a_{4}\right) \in T_{2}$. Then $x-\tilde{d}_{5,1}^{1}\left(z_{1}+z_{2}\right)=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right.$, $0,0,\left(x_{6, a}^{\prime}\right)$, so we can assume that $x_{4}=x_{5}=0$. An easy calculation shows that $a_{2}=b_{2}=$ $-a_{3}=-b_{3}$. If $z_{3}=\left(a_{2}, a_{2}, a_{2}\right) \in T_{3}$, then $x-\tilde{d}_{5,1}\left(z_{3}\right)=\left(x_{1}^{\prime}, 0,0,0,0,\left(x_{6, a}^{\prime}\right)\right)$. Again we can assume that $x_{2}=x_{3}=0$. If $z_{4}=\left(x_{6, a}\right) \in T_{4}$, then $x-\tilde{d}_{5,1}^{1}\left(z_{4}\right)=\left(x_{1}^{\prime}, 0,0,0,0,0\right)$. Once more we can assume that $x_{6, a}=0$. These reduce x to an element of the form $\left(x_{1}, 0,0,0,0,0\right)$. If $x_{1} \in T_{5}$, then $\tilde{d}_{5,1}^{1}\left(x_{1}\right)=\left(x_{1}, 0,0,0,0,0\right)$. This completes the triviality of $\tilde{E}_{4,1}^{2}$.

Lemma 3.3. The group $\tilde{E}_{p, 2}^{2}$ is trivial for $0 \leqslant p \leqslant 3$.

Proof. Triviality of $\tilde{E}_{0,2}^{2}$ and $\tilde{E}_{1,2}^{2}$ is a result of Lemmas 3.1 and 3.2 and the fact that the spectral sequence converges to zero. Let

$$
\begin{aligned}
& \tilde{E}_{1,2}^{1}=H_{2}\left(R^{*} \times \mathrm{GL}_{2}\right)=H_{2}\left(R^{*}\right) \oplus H_{2}\left(\mathrm{GL}_{2}\right) \oplus H_{1}\left(R^{*}\right) \otimes H_{1}\left(\mathrm{GL}_{2}\right) \\
& \tilde{E}_{2,2}^{1}=H_{2}\left(R^{* 3}\right)=\bigoplus_{i=1}^{6} T_{i} \\
& \tilde{E}_{3,2}^{1}=H_{2}\left(R^{* 3}\right) \oplus H_{2}\left(R^{*} I_{2} \times R^{*}\right)=\bigoplus_{i=1}^{9} T_{i}
\end{aligned}
$$

where

$$
\begin{array}{ll}
T_{i}=H_{2}\left(R_{i}^{*}\right) \text { for } i=1,2,3, & T_{4}=H_{1}\left(R_{1}^{*}\right) \otimes H_{1}\left(R_{2}^{*}\right), \\
T_{5}=H_{1}\left(R_{1}^{*}\right) \otimes H_{1}\left(R_{3}^{*}\right), & T_{6}=H_{1}\left(R_{2}^{*}\right) \otimes H_{1}\left(R_{3}^{*}\right), \\
T_{7}=H_{2}\left(R^{*} I_{2}\right), & T_{8}=H_{2}\left(I_{2} \times R^{*}\right), \\
T_{9}=H_{1}\left(R^{*} I_{2}\right) \otimes H_{1}\left(I_{2} \times R^{*}\right) . &
\end{array}
$$

If $y=\left(y_{1}, y_{2}, y_{3}, \sum r \otimes s, \sum t \otimes u, \sum v \otimes w\right) \in \tilde{E}_{2,2}^{1}$ and

$$
x=\left(x_{1}, x_{2}, x_{3}, \sum a \otimes b, \sum c \otimes d, \sum e \otimes f, x_{7}, x_{8}, \sum g \otimes h\right) \in \tilde{E}_{3,2}^{1}
$$

$a, b, \ldots, h, r, \ldots, w \in H_{1}\left(R^{*}\right)$, then $\tilde{d}_{2,2}^{1}(y)=\left(h_{1}, h_{2}, h_{3}\right)$, where

$$
h_{1}=-y_{1}+y_{2},
$$

$$
h_{3}=-\sum s \otimes \operatorname{diag}(1, r)-\sum r \otimes \operatorname{diag}(1, s)-\sum t \otimes \operatorname{diag}(1, u)+\sum v \otimes \operatorname{diag}(1, w)
$$

and $\tilde{d}_{3,2}^{1}(x)=\left(z_{i}\right)_{1 \leqslant i \leqslant 6}$, where

$$
\begin{aligned}
& z_{1}=z_{2}=x_{2}+x_{7}, \quad z_{3}=x_{1}+x_{3}-x_{2}+x_{8} \\
& z_{4}=\sum a \otimes b-\sum c \otimes d+\sum e \otimes f \\
& z_{5}=-\sum b \otimes a-\sum a \otimes b+\sum c \otimes d+\sum g \otimes h \\
& z_{6}=-\sum d \otimes c+\sum f \otimes e+\sum e \otimes f+\sum g \otimes h
\end{aligned}
$$

If $y \in \operatorname{ker}\left(\tilde{d}_{2,2}^{1}\right)$, then $y_{1}=y_{2}$ and $h_{3}=0$. By the isomorphism $H_{1}\left(R^{*}\right) \otimes H_{1}\left(\mathrm{GL}_{1}\right) \simeq H_{1}\left(R^{*}\right) \otimes$ $H_{1}\left(\mathrm{GL}_{2}\right)$ and the triviality of h_{3}, we have

$$
-\sum s \otimes r-\sum r \otimes s-\sum t \otimes u+\sum v \otimes w=0
$$

If

$$
z=\left(y_{1}, y_{1}, y_{3}, 0, \sum t \otimes u, \sum r \otimes s+\sum t \otimes u, 0,0,0\right) \in \tilde{E}_{3,2}^{1}
$$

then $y=\tilde{d}_{3,2}^{1}(z)$ and therefore $\tilde{E}_{2,2}^{2}=0$.
Let $\tilde{d}_{3,2}^{1}(x)=0$. Consider the summands $S_{2}=H_{2}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}\left(u_{2}\right)\right)=H_{2}\left(R^{*} I_{2} \times R^{*}\right)$ and $S_{3}=$ $H_{2}\left(\operatorname{Stab}_{\mathrm{GL}_{3}}\left(u_{3}\right)\right)=H_{2}\left(R^{*} \times R^{*} I_{2}\right)$ of $\tilde{E}_{4,2}^{1}$. Then $S_{i} \simeq H_{2}\left(R^{*}\right) \oplus H_{2}\left(R^{*}\right) \oplus H_{1}\left(R^{*}\right) \otimes H_{1}\left(R^{*}\right)$ and by a direct calculation

$$
\begin{aligned}
\tilde{d}_{4,2}^{1} \mid s_{2}\left(\left(y_{1}, y_{2}, s \otimes t\right)\right) & =\left(-y_{1},-y_{1},-y_{2}, 0,-s \otimes t,-s \otimes t, y_{1}, y_{2}, s \otimes t\right), \\
\tilde{d}_{4,2}^{1} \mid S_{3}\left(\left(q_{1}, q_{2}, p \otimes q\right)\right) & =\left(-q_{1},-q_{2},-q_{2},-p \otimes q,-p \otimes q, 0, q_{2}, q_{1},-q \otimes p\right) .
\end{aligned}
$$

Choose $z_{2}^{\prime}=\left(-x_{2},-x_{3},-\sum e \otimes f\right) \in S_{2}$ and $z_{3}^{\prime}=\left(x_{3}+x_{8}, 0,-\sum a \otimes b\right) \in S_{3}$. Then $x=$ $\tilde{d}_{4,2}^{1}\left(z_{2}^{\prime}+z_{3}^{\prime}\right)$ and therefore $\tilde{E}_{3,2}^{2}=0$.

Lemma 3.4. The groups $\tilde{E}_{0,3}^{2}, \tilde{E}_{1,3}^{2}$ and $\tilde{E}_{0,4}^{3}$ are trivial.
Proof. This follows from Lemmas 3.1, 3.2, and 3.3 and the fact that the spectral sequence converges to zero.

Corollary 3.5.

(i) The complex

$$
H_{2}\left(R^{* 3} \times \mathrm{GL}_{0}\right) \xrightarrow{d_{3,2}^{1}} H_{2}\left(R^{* 2} \times \mathrm{GL}_{1}\right) \xrightarrow{d_{2,2}^{1}} H_{2}\left(R^{*} \times \mathrm{GL}_{2}\right) \xrightarrow{d_{1,2}^{1}} H_{2}\left(\mathrm{GL}_{3}\right) \rightarrow 0
$$

is exact, where $d_{3,2}^{1}=H_{2}\left(\alpha_{1,3}\right)-H_{2}\left(\alpha_{2,3}\right)+H_{2}\left(\alpha_{3,3}\right), d_{2,2}^{1}=H_{2}\left(\alpha_{1,2}\right)-H_{2}\left(\alpha_{2,2}\right)$ and $d_{1,2}^{1}=H_{2}$ (inc).
(ii) The complex

$$
H_{3}\left(R^{* 2} \times \mathrm{GL}_{1}\right) \xrightarrow{d_{2,3}^{1}} H_{3}\left(R^{*} \times \mathrm{GL}_{2}\right) \xrightarrow{d_{1,3}^{1}} H_{3}\left(\mathrm{GL}_{3}\right) \rightarrow 0
$$

is exact, where $d_{2,3}^{1}=H_{3}\left(\alpha_{1,2}\right)-H_{3}\left(\alpha_{2,2}\right)$ and $d_{1,3}^{1}=H_{3}(\mathrm{inc})$.
Proof. The case (i) follows from the proof of Lemma 3.3 and (ii) follows from Lemma 3.4.
Lemma 3.6. The groups $E_{0,4}^{3}, E_{5,0}^{3}$ are trivial.
Proof. Using 3.5, one sees that $E_{p, q}^{2}$-terms are of the form

$$
\begin{array}{ccccccc}
E_{0,4}^{2} & * & & & & & \\
0 & 0 & E_{2,3}^{2} & * & * & * & \\
0 & 0 & 0 & * & * & * & \\
0 & 0 & 0 & E_{3,1}^{2} & * & * & * \\
0 & 0 & 0 & 0 & 0 & E_{5,0}^{2} & * .
\end{array}
$$

From this description we get $E_{3,1}^{3} \simeq E_{3,1}^{\infty}=0$. So we obtain the exact sequence

$$
0 \rightarrow E_{5,0}^{3} \rightarrow E_{5,0}^{2} \xrightarrow{d_{5,0}^{2}} E_{3,1}^{2} \rightarrow 0
$$

The map of spectral sequences $E_{p, q} \rightarrow \tilde{E}_{p, q}$ induces the following commutative diagram

Since $E_{p, q}^{1}=\tilde{E}_{p, q}^{1}$ for $p=0,1,2$, the diagram induces the surjective map $E_{2,3}^{2} \rightarrow \tilde{E}_{2,3}^{2}$. Now look at the commutative diagram

From the definitions of the spectral sequences

$$
E_{0,4}^{2}=\tilde{E}_{0,4}^{2}=H_{4}\left(\mathrm{GL}_{3}\right) / \mathrm{im} H_{4}\left(R^{*} \times \mathrm{GL}_{2}\right)
$$

By Lemma 3.4, $\tilde{d}_{2,3}^{2}$ is surjective, so the surjectivity of $d_{2,3}^{2}$ follows from the commutativity of the diagram and the surjectivity of the left-hand column map. Therefore $E_{0,4}^{3}=0$.

Using this it is easy to see that $E_{5,0}^{3} \simeq E_{5,0}^{\infty}$. Since the spectral sequence converges to zero, we have $E_{5,0}^{3}=0$.

Following [20, Section 3] we define
Definition 3.7. Let F be an infinite field. We call

$$
\wp^{n}(F)_{\mathrm{cl}}:=H\left(C_{n+2}\left(F^{n}\right)_{\mathrm{GL}_{n}} \rightarrow C_{n+1}\left(F^{n}\right)_{\mathrm{GL}_{n}} \rightarrow C_{n}\left(F^{n}\right)_{\mathrm{GL}_{n}}\right)
$$

the nth classical Bloch group.
Proposition 3.8. Let F be an infinite field. We have an isomorphism $\wp^{3}(F)_{\mathrm{cl}} \simeq F^{*}$. In particular if F is algebraically closed, then $\wp^{3}(F)_{\mathrm{cl}}$ is divisible.

Proof. In the proof of Lemma 3.6, we obtained the exact sequence

$$
0 \rightarrow E_{5,0}^{3} \rightarrow E_{5,0}^{2} \xrightarrow{d_{5,0}^{2}} E_{3,1}^{2} \rightarrow 0 .
$$

By Lemma 3.6, $E_{5,0}^{3}=0$. By the above definition $E_{5,0}^{2}=\wp^{3}(F)_{\mathrm{cl}}$. It is also easy to see that $E_{3,1}^{2}=H_{1}\left(F^{*}\right)$. This proves the first part of the proposition. The second part follows from the fact that for an algebraically closed field F, F^{*} is divisible.

Remark 3.9. From Proposition 3.8 and the existence of a surjective map $\wp^{3}(F)_{\mathrm{cl}} \rightarrow \wp^{3}(F)$ [20, Proposition 3.11] we deduce that $\wp^{3}(F)$ is divisible. See [20, 2.7] for the definition of $\wp^{3}(F)$. This gives a positive answer to Conjecture 0.2 in [20] for $n=3$.

4. Künneth theorem for $\boldsymbol{H}_{3}\left(F^{*} \times F^{*}\right)$

Let F be an infinite field. The Künneth theorem for $H_{3}\left(\mu_{F} \times \mu_{F}\right)$ provides the following form

$$
0 \rightarrow H_{3}\left(\mu_{F}\right) \oplus H_{3}\left(\mu_{F}\right) \rightarrow H_{3}\left(\mu_{F} \times \mu_{F}\right) \rightarrow \operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mu_{F}, \mu_{F}\right) \rightarrow 0
$$

Clearly $H_{3}\left(\mu_{F}\right) \oplus H_{3}\left(\mu_{F}\right) \rightarrow H_{3}\left(\mu_{F} \times \mu_{F}\right)$ is the map $\alpha:=H_{3}\left(i_{1}\right)+H_{3}\left(i_{2}\right)$, where $i_{l}: \mu_{F} \rightarrow$ $\mu_{F} \times \mu_{F}$ is the usual injection, $l=1$, 2 . Let

$$
\beta: H_{3}\left(p_{1}\right) \oplus H_{3}\left(p_{2}\right): H_{3}\left(\mu_{F} \times \mu_{F}\right) \rightarrow H_{3}\left(\mu_{F}\right) \oplus H_{3}\left(\mu_{F}\right),
$$

where $p_{l}: \mu_{F} \times \mu_{F} \rightarrow \mu_{F}$ is the usual projection, $l=1,2$. Since $\beta \circ \alpha=\mathrm{id}$, the above exact sequence splits canonically. Thus we have the canonical decomposition

$$
H_{3}\left(\mu_{F} \times \mu_{F}\right)=H_{3}\left(\mu_{F}\right) \oplus H_{3}\left(\mu_{F}\right) \oplus \operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mu_{F}, \mu_{F}\right)
$$

We construct a splitting map $\operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mu_{F}, \mu_{F}\right) \rightarrow H_{3}\left(\mu_{F} \times \mu_{F}\right)$. The elements of the group $\operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mu_{F}, \mu_{F}\right)=\operatorname{Tor}_{1}^{\mathbb{Z}}\left(H_{1}\left(\mu_{F}\right), H_{1}\left(\mu_{F}\right)\right)$ are of the form $\langle\xi, n, \xi\rangle=\langle[\xi], n,[\xi]\rangle$, where ξ is an element of order n in F^{*} [11, Chap. V, Section 6]. It is easy to see that $\partial_{2}\left(\sum_{i=1}^{n}\left[\xi \mid \xi^{i}\right]\right)=n[\xi]$ in $\left(B_{1}\right)_{\mu_{F}}$. For the definition of ∂_{2} and B_{*} see [11, Chap. IV, Section 5]. By [11, Chap. V, Proposition 10.6] a map $\phi: \operatorname{Tor}_{1}^{\mathbb{Z}}\left(H_{1}\left(\mu_{F}\right), H_{1}\left(\mu_{F}\right)\right) \rightarrow H_{3}\left(\left(B_{*}\right)_{\mu_{F}} \otimes\left(B_{*}\right)_{\mu_{F}}\right)$ can be defined as

$$
a:=\langle\xi \xi], n,[\xi]\rangle \mapsto[\xi] \otimes \sum_{i=1}^{n}\left[\xi \mid \xi^{i}\right]+\sum_{i=1}^{n}\left[\xi \mid \xi^{i}\right] \otimes[\xi] .
$$

Considering the isomorphism $\left(B_{*}\right)_{\mu_{F}} \otimes\left(B_{*}\right)_{\mu_{F}} \simeq\left(B_{*}\right)_{\mu_{F} \times \mu_{F}}$ we have $\phi(a)=\chi(\xi) \in H_{3}\left(\mu_{F} \times\right.$ μ_{F}), where

$$
\begin{aligned}
\chi(\xi):= & \sum_{i=1}^{n}\left(\left[(\xi, 1)|(1, \xi)|\left(1, \xi^{i}\right)\right]-\left[(1, \xi)|(\xi, 1)|\left(1, \xi^{i}\right)\right]+\left[(1, \xi)\left|\left(1, \xi^{i}\right)\right|(\xi, 1)\right]\right. \\
& \left.+\left[(\xi, 1)\left|\left(\xi^{i}, 1\right)\right|(1, \xi)\right]-\left[(\xi, 1)|(1, \xi)|\left(\xi^{i}, 1\right)\right]+\left[(1, \xi)|(\xi, 1)|\left(\xi^{i}, 1\right)\right]\right) .
\end{aligned}
$$

Consider the following commutative diagram

Since $\operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mu_{F}, \mu_{F}\right) \simeq \operatorname{Tor}_{1}^{\mathbb{Z}}\left(F^{*}, F^{*}\right)$, we see that the second horizontal exact sequence in the above diagram splits canonically. So we proved the following proposition.

Proposition 4.1. Let F be an infinite field. Then we have the canonical decomposition

$$
H_{3}\left(F^{*} \times F^{*}\right)=\bigoplus_{i+j=3} H_{i}\left(F^{*}\right) \otimes H_{j}\left(F^{*}\right) \oplus \operatorname{Tor}_{1}^{\mathbb{Z}}\left(F^{*}, F^{*}\right),
$$

where a splitting map $\operatorname{Tor}_{1}^{\mathbb{Z}}\left(F^{*}, F^{*}\right)=\operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mu_{F}, \mu_{F}\right) \rightarrow H_{3}\left(F^{*} \times F^{*}\right)$ is defined by $\langle[\xi], n$, $[\xi]\rangle \mapsto \chi(\xi)$.

5. The injectivity theorem

Lemma 5.1. Let $K_{1}(Z(R)) \otimes \mathbb{Z}\left[\frac{1}{n}\right] \stackrel{\theta}{\sim} K_{1}(R) \otimes \mathbb{Z}\left[\frac{1}{n}\right]$ be induced by the usual inclusion $Z(R) \rightarrow R$. Then for all $i \geqslant 1$,

$$
H_{i}\left(Z(R)^{*}, \mathbb{Z}\left[\frac{1}{n}\right]\right) \simeq H_{i}\left(K_{1}(R), \mathbb{Z}\left[\frac{1}{n}\right]\right)
$$

Proof. Since the map θ is an isomorphism in the localized category of $\mathbb{Z}\left[\frac{1}{n}\right]$-modules, it induces an isomorphism on the group homology in this category.

Example 5.2.

(i) If R is commutative, then $K_{1}(Z(R))=K_{1}(R)$.
(ii) Let R be a (finite-dimensional) division F-algebra of rank $[R: F]=n^{2}$. Note that $F=Z(R)$. Then $K_{1}(F) \otimes \mathbb{Z}\left[\frac{1}{n}\right] \simeq K_{1}(R) \otimes \mathbb{Z}\left[\frac{1}{n}\right]$. This is also true if R is an Azumaya S-algebra, where S is a commutative local ring [9, Corollary 2.3].

These are the examples one should keep in mind in the rest of this section.
Let A be a commutative ring with trivial GL_{3}-action. Let $P_{*} \rightarrow A$ be a free left $A\left[\mathrm{GL}_{3}\right]-$ resolution of A. Consider the complex

$$
D_{*}^{\prime}: 0 \leftarrow D_{0}^{\prime}\left(R^{3}\right) \leftarrow D_{1}^{\prime}\left(R^{3}\right) \leftarrow \cdots \leftarrow D_{l}^{\prime}\left(R^{3}\right) \leftarrow \cdots,
$$

where $D_{i}^{\prime}\left(R^{3}\right):=D_{i}\left(R^{3}\right) \otimes A$. The double complex $D_{*}^{\prime} \otimes_{\mathrm{GL}}^{3}{ }_{3} P_{*}$ induces a first quadrant spectral sequence $\mathcal{E}_{p, q}^{1} \Rightarrow H_{p+q}\left(\mathrm{GL}_{3}, A\right)$, where $\mathcal{E}_{p, q}^{1}=\tilde{E}_{p+1, q}^{1}(3) \otimes A$ and $\mathfrak{d}_{p, q}^{1}=\tilde{d}_{p+1, q}^{1} \otimes \operatorname{id}_{A}$.

Lemma 5.3. The groups $\mathcal{E}_{3,0}^{2}, \mathcal{E}_{4,0}^{2}, \mathcal{E}_{2,1}^{2}, \mathcal{E}_{3,1}^{2}, \mathcal{E}_{1,2}^{2}$ and $\mathcal{E}_{2,2}^{2}$ are trivial.
Proof. This follows from the above spectral sequence and Lemmas 3.1, 3.2, and 3.3.
Theorem 5.4. Let $Z(R)$ be the center of R. Let k be a field such that $1 / 2 \in k$.
(i) If $K_{1}(Z(R)) \otimes \mathbb{Q} \simeq K_{1}(R) \otimes \mathbb{Q}$, then $H_{3}\left(\mathrm{GL}_{2}, \mathbb{Q}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}, \mathbb{Q}\right)$ is injective. If R is commutative, then \mathbb{Q} can be replaced by k.
(ii) If R is an infinite field or a quaternion algebra over an infinite field, then $H_{3}\left(\mathrm{GL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \rightarrow$ $H_{3}\left(\mathrm{GL}_{3}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$ is injective.
(iii) Let R be either \mathbb{R} or an infinite field such that $R^{*}=R^{* 2}$. Then $H_{3}\left(\mathrm{GL}_{2}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}\right)$ is injective.
(iv) The map $H_{3}\left(\mathrm{GL}_{2}(\mathbb{H})\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}(\mathbb{H})\right)$ is bijective.

Proof. Let $A=\mathbb{Z}, \mathbb{Z}\left[\frac{1}{2}\right], \mathbb{Q}$ or k (depending on parts (i), \ldots, (iv)). By Lemma 5.3, $\mathcal{E}_{0,3}^{2} \simeq \mathcal{E}_{0,3}^{\infty} \simeq$ $H_{3}\left(\mathrm{GL}_{3}, A\right)$, so to prove the theorem it is sufficient to prove that $H_{3}\left(\mathrm{GL}_{2}, A\right)$ is a summand of $\mathcal{E}_{0,3}^{2}$. To prove this it is sufficient to define a map $\varphi: H_{3}\left(R^{*} \times \mathrm{GL}_{2}, A\right) \rightarrow H_{3}\left(\mathrm{GL}_{2}, A\right)$ such that $\left.\varphi\right|_{H_{3}\left(\mathrm{GL}_{2}, A\right)}$ is the identity map and $\mathfrak{d}_{1,3}^{1}\left(H_{3}\left(R^{* 2} \times \mathrm{GL}_{1}, A\right)\right) \subseteq \operatorname{ker}(\varphi)$.

We have the canonical decomposition $H_{3}\left(R^{*} \times \mathrm{GL}_{2}, A\right)=\bigoplus_{i=0}^{4} S_{i}$, where

$$
\begin{aligned}
& S_{i}=H_{i}\left(R^{*}, A\right) \otimes H_{3-i}\left(\mathrm{GL}_{2}, A\right), \quad 0 \leqslant i \leqslant 3 \\
& S_{4}=\operatorname{Tor}_{1}^{A}\left(H_{1}\left(R^{*}, A\right), H_{1}\left(\mathrm{GL}_{2}, A\right)\right)
\end{aligned}
$$

In case of (i) this follows from the Künneth theorem and the fact that $S_{4}=0$. In other cases it follows again from the Künneth theorem and an argument in the line of the previous section. Note that for parts (ii), (iii) and (iv), the splitting map is

$$
S_{4} \simeq \operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mu_{Z(R)}, \mu_{Z(R)}\right) \otimes A \xrightarrow{\phi} H_{3}\left(R^{*} \times R^{*}, A\right) \xrightarrow{q_{*}} H_{3}\left(R^{*} \times \mathrm{GL}_{2}, A\right),
$$

where ϕ can be defined as in the previous section, and

$$
q: R^{*} \times R^{*} \rightarrow R^{*} \times \mathrm{GL}_{2}, \quad(a, b) \mapsto(a, \operatorname{diag}(b, 1))
$$

Define $\left.\varphi\right|_{S_{0}}: S_{0} \rightarrow H_{3}\left(\mathrm{GL}_{2}, A\right)$ the identity map,

$$
\left.\varphi\right|_{S_{2}}: S_{2} \simeq H_{2}\left(R^{*}, A\right) \otimes H_{1}\left(\mathrm{GL}_{1}, A\right) \rightarrow H_{3}\left(R^{*} \times \mathrm{GL}_{1}, A\right) \rightarrow H_{3}\left(\mathrm{GL}_{2}, A\right)
$$

the shuffle product, $\left.\varphi\right|_{S_{3}}: S_{3} \rightarrow H_{3}\left(\mathrm{GL}_{2}, A\right)$ the map induced by $R^{*} \rightarrow \mathrm{GL}_{2}, a \mapsto \operatorname{diag}(a, 1)$, and $\left.\varphi\right|_{S_{4}}: S_{4} \rightarrow H_{3}\left(\mathrm{GL}_{2}, A\right)$ the composition

$$
S_{4} \xrightarrow{\phi} H_{3}\left(R^{*} \times R^{*}, A\right) \xrightarrow{\mathrm{inc}_{*}} H_{3}\left(\mathrm{GL}_{2}, A\right) .
$$

By the homology stability theorem [8, Theorem 1] and a theorem of Dennis [5, Corollary 8] (see also [1, Theorem 1]) we have the decomposition

$$
H_{2}\left(\mathrm{GL}_{2}\right)=H_{2}\left(K_{1}(R)\right) \oplus K_{2}(R)
$$

So using Lemma 5.1 we have $S_{1}=S_{1}^{\prime} \oplus S_{1}^{\prime \prime}$, where

$$
\begin{aligned}
& S_{1}^{\prime}=H_{1}\left(R^{*}, A\right) \otimes H_{2}\left(Z(R)^{*}, A\right) \\
& S_{1}^{\prime \prime}=H_{1}\left(R^{*}, A\right) \otimes K_{2}(R) \otimes A
\end{aligned}
$$

Define $\left.\varphi\right|_{S_{1}^{\prime}}: S_{1}^{\prime} \rightarrow H_{3}\left(\mathrm{GL}_{2}, A\right)$ to be the shuffle product and define the map $\left.\varphi\right|_{S_{1}^{\prime \prime}}: S_{1}^{\prime \prime} \rightarrow$ $H_{3}\left(\mathrm{GL}_{2}, A\right)$ as the composition

$$
\begin{aligned}
& H_{1}\left(Z(R)^{*}, A\right) \otimes K_{2}(R) \otimes A \xrightarrow{f} H_{1}\left(Z(R)^{*}, A\right) \otimes H_{2}\left(\mathrm{GL}_{2}, A\right) \\
& \quad \xrightarrow{g} H_{3}\left(Z(R)^{*} \times \mathrm{GL}_{2}, A\right) \xrightarrow{h} H_{3}\left(\mathrm{GL}_{2}, A\right),
\end{aligned}
$$

where $f=\frac{1}{2} \lambda, \lambda$ being the natural map

$$
\lambda: K_{2}(R) \otimes A=H_{2}(E(R), A) \rightarrow H_{2}(\mathrm{GL}(R), A) \simeq H_{2}\left(\mathrm{GL}_{2}, A\right),
$$

and g is the shuffle product. Here h is induced by the map

$$
Z(R)^{*} \times \mathrm{GL}_{2} \rightarrow \mathrm{GL}_{2}, \quad(a, B) \mapsto a B
$$

By Proposition 4.1 we have $H_{3}\left(R^{* 2} \times \mathrm{GL}_{1}, A\right)=\bigoplus_{i=0}^{8} T_{i}$, where

$$
\begin{aligned}
& T_{0}=H_{3}\left(\mathrm{GL}_{1}, A\right), \\
& T_{1}=\bigoplus_{i=1}^{3} H_{i}\left(R_{1}^{*}, A\right) \otimes H_{3-i}\left(\mathrm{GL}_{1}, A\right), \\
& T_{2}=\bigoplus_{i=1}^{3} H_{i}\left(R_{2}^{*}, A\right) \otimes H_{3-i}\left(\mathrm{GL}_{1}, A\right), \\
& T_{3}=H_{1}\left(R_{1}^{*}, A\right) \otimes H_{1}\left(R_{2}^{*}, A\right) \otimes H_{1}\left(\mathrm{GL}_{1}, A\right), \\
& T_{4}=\operatorname{Tor}_{1}^{A}\left(H_{1}\left(R_{1}^{*}, A\right), H_{1}\left(R_{2}^{*}, A\right)\right), \\
& T_{5}=\operatorname{Tor}_{1}^{A}\left(H_{1}\left(R_{1}^{*}, A\right), H_{1}\left(\mathrm{GL}_{1}, A\right)\right), \\
& T_{6}=\operatorname{Tor}_{1}^{A}\left(H_{1}\left(R_{2}^{*}, A\right), H_{1}\left(\mathrm{GL}_{1}, A\right)\right), \\
& T_{7}=H_{1}\left(R_{1}^{*}, A\right) \otimes H_{2}\left(R_{2}^{*}, A\right), \\
& T_{8}=H_{2}\left(R_{1}^{*}, A\right) \otimes H_{1}\left(R_{2}^{*}, A\right) .
\end{aligned}
$$

Note that here $R_{i}^{*}=R^{*}, i=1,2$, is the i th summand of $R^{* 2}=R^{*} \times R^{*}$. We know that $\mathfrak{d}_{1,3}^{1}=$ $\sigma_{1}-\sigma_{2}$, where $\sigma_{i}=H_{3}\left(\alpha_{i, 2}\right)$. It is not difficult to see that $\mathfrak{d}_{1,3}^{1}\left(T_{0} \oplus T_{1} \oplus T_{2} \oplus T_{7} \oplus T_{8}\right) \subseteq \operatorname{ker}(\varphi)$. Here one should use the isomorphism $H_{1}\left(\mathrm{GL}_{1}, A\right) \simeq H_{1}\left(\mathrm{GL}_{2}, A\right)$. Now $\left(\sigma_{1}-\sigma_{2}\right)\left(T_{4}\right) \subseteq S_{4}$, $\sigma_{1}\left(T_{5}\right) \subseteq S_{0}$ and $\sigma_{2}\left(T_{5}\right) \subseteq S_{4}, \sigma_{1}\left(T_{6}\right) \subseteq S_{4}$ and $\sigma_{2}\left(T_{6}\right) \subseteq S_{0}$. With this description one can see that $\mathfrak{d}_{1,3}^{1}\left(T_{4} \oplus T_{5} \oplus T_{6}\right) \subseteq \operatorname{ker}(\varphi)$. To finish the proof of the claim we have to prove that $\mathfrak{d}_{1,3}^{1}\left(T_{3}\right) \subseteq$ $\operatorname{ker}(\varphi)$. Let $x=a \otimes b \otimes c \in T_{3}$. By Lemma 5.1, we may assume that $a, b, c \in Z(R)^{*}$. Then

$$
\begin{aligned}
\mathfrak{d}_{1,3}^{1}(x) & =-b \otimes \mathbf{c}(\operatorname{diag}(a, 1), \operatorname{diag}(1, c))-a \otimes \mathbf{c}(\operatorname{diag}(b, 1), \operatorname{diag}(1, c)) \in S_{1} \\
& =(-b \otimes \mathbf{c}(a, c)-a \otimes \mathbf{c}(b, c), b \otimes[a, c]+a \otimes[b, c]) \in S_{1}^{\prime} \oplus S_{1}^{\prime \prime}
\end{aligned}
$$

where

$$
\begin{aligned}
{[a, c] } & :=\mathbf{c}\left(\operatorname{diag}\left(a, 1, a^{-1}\right), \operatorname{diag}\left(b, b^{-1}, 1\right)\right) \in H_{2}(E(R), A) \\
& =\mathbf{c}\left(\operatorname{diag}(a, 1), \operatorname{diag}\left(b, b^{-1}\right)\right) \in H_{2}\left(\mathrm{GL}_{2}, A\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\varphi\left(\mathfrak{D}_{1,3}^{1}(x)\right)= & -\mathbf{c}(\operatorname{diag}(b, 1), \operatorname{diag}(1, a), \operatorname{diag}(1, c))-\mathbf{c}(\operatorname{diag}(a, 1), \operatorname{diag}(1, b), \operatorname{diag}(1, c)) \\
& +\frac{1}{2} \mathbf{c}\left(\operatorname{diag}(b, b), \operatorname{diag}(a, 1), \operatorname{diag}\left(c, c^{-1}\right)\right) \\
& +\frac{1}{2} \mathbf{c}\left(\operatorname{diag}(a, a), \operatorname{diag}(b, 1), \operatorname{diag}\left(c, c^{-1}\right)\right) .
\end{aligned}
$$

Set $p:=\operatorname{diag}(p, 1), \bar{q}:=\operatorname{diag}(1, q), p \bar{q} \bar{r}:=\mathbf{c}(\operatorname{diag}(p, 1), \operatorname{diag}(1, q), \operatorname{diag}(1, r))$, etc. Conjugation by $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ induces the equality $p \bar{q} \bar{r}=\bar{p} q r$ and it is easy to see that $p q r=-q p r$ and $\overline{p^{-1}} q r=-\bar{p} q r$. With these notations and the above relations we have

$$
\begin{aligned}
\varphi\left(\mathfrak{d}_{1,3}^{1}(x)\right)= & -b \overline{a c}-a \overline{b c}+\frac{1}{2}\left(b a c+b a \overline{c^{-1}}+\bar{b} a c+\bar{b} a \overline{c^{-1}}\right) \\
& +\frac{1}{2}\left(a b c+a b \overline{c^{-1}}+\bar{a} b c+\bar{a} b \overline{c^{-1}}\right)=0 .
\end{aligned}
$$

This proves that $H_{3}\left(\mathrm{GL}_{2}, A\right)$ is a summand of $\mathcal{E}_{0,3}^{2}$. This proves (i) and (ii).
The proof of (iii) is almost the same as the proof of (i), only we need to modify the definition of the map f. If $R^{*}=R^{* 2}, f$ should be induced by the map

$$
K_{2}(R)=K_{2}^{M}(R) \rightarrow H_{2}\left(\mathrm{GL}_{2}\right), \quad\{a, b\} \mapsto \mathbf{c}\left(\operatorname{diag}(\sqrt{a}, 1), \operatorname{diag}\left(b, b^{-1}\right)\right)
$$

Note that if R is commutative and $R^{*}=R^{* 2}$, then $K_{2}^{M}(R)$ is uniquely 2-divisible [2, Proposition 1.2], so in this case f is well-defined.

Now let $R=\mathbb{R}$. It is well-known that $K_{2}^{M}(\mathbb{R})=\langle\{-1,-1\}\rangle \oplus K_{2}^{M}(\mathbb{R})^{\circ}$, where $\langle\{-1,-1\}\rangle$ is a group of order 2 generated by $\{-1,-1\}$ and $K_{2}^{M}(\mathbb{R})^{\circ}$ is a uniquely divisible group. In fact every element of $K_{2}^{M}(\mathbb{R})$ can be uniquely written as $m\{-1,-1\}+\sum\left\{a_{i}, b_{i}\right\}, a_{i}, b_{i}>0$ and $m=0$ or 1 . Now we define the map $K_{2}^{M}(\mathbb{R}) \rightarrow H_{2}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$ by $\{-1,-1\} \mapsto 0$ and $\{a, b\} \mapsto$ $\mathbf{c}\left(\operatorname{diag}(\sqrt{a}, 1), \operatorname{diag}\left(b, b^{-1}\right)\right)$ for $a, b>0$.

For the proof of (iv) we should mention that $\mathbb{R}^{>0}=K_{1}^{M}(\mathbb{R})^{\circ} \simeq K_{1}(\mathbb{H})$ and $K_{2}^{M}(\mathbb{R})^{\circ} \simeq K_{2}(\mathbb{H})$ [17, p. 188]. Since $K_{2}(\mathbb{H})$ and $H_{2}\left(\mathbb{R}^{>0}\right)$ are uniquely divisible, the proof of injectivity is similar to the above approach. Surjectivity follows from [8, Theorem 2] and the fact that $K_{n}^{M}(\mathbb{H})$ are trivial for $n \geqslant 2$ [16, Remark B.15].

Corollary 5.5. Let $Z(R)$ be the center of R. Let k be a field such that $1 / 2 \in k$.
(i) If $K_{1}(Z(R)) \otimes \mathbb{Q} \simeq K_{1}(R) \otimes \mathbb{Q}$, then we have the exact sequence

$$
0 \rightarrow H_{3}\left(\mathrm{GL}_{2}, \mathbb{Q}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}, \mathbb{Q}\right) \rightarrow K_{3}^{M}(R) \otimes \mathbb{Q} \rightarrow 0
$$

If R is commutative, then \mathbb{Q} can be replaced by k.
(ii) If R is an infinite field or a quaternion algebra with an infinite center, then we have the split exact sequence

$$
0 \rightarrow H_{3}\left(\mathrm{GL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \rightarrow K_{3}^{M}(R) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \rightarrow 0
$$

(iii) Let R be an infinite field such that $R^{*}=R^{* 2}$. Then we have the split exact sequence

$$
0 \rightarrow H_{3}\left(\mathrm{GL}_{2}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}\right) \rightarrow K_{3}^{M}(R) \rightarrow 0
$$

(iv) We have the (non-split) exact sequence

$$
0 \rightarrow H_{3}\left(\mathrm{GL}_{2}(\mathbb{R})\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}(\mathbb{R})\right) \rightarrow K_{3}^{M}(\mathbb{R}) \rightarrow 0
$$

Proof. The exactness in all cases follows from Theorem 5.4 and the following exact sequence [8, Theorem 2]

$$
H_{3}\left(\mathrm{GL}_{2}\right) \rightarrow H_{3}\left(\mathrm{GL}_{3}\right) \rightarrow K_{3}^{M}(R) \rightarrow 0
$$

If R is commutative, we have a natural map $K_{3}^{M}(R) \rightarrow K_{3}(R)$ such that the composition

$$
K_{3}^{M}(R) \rightarrow K_{3}(R) \rightarrow H_{3}\left(\mathrm{GL}_{3}\right) \rightarrow K_{3}^{M}(R)
$$

coincides with the multiplication by 2 [8, Proposition 4.1.1]. Now splitting maps can be constructed easily.

Remark 5.6.

(i) Let $R=M_{m}(D)$, where D is a finite-dimensional division F-algebra. Then $\mathrm{GL}_{n}(R) \simeq$ $\mathrm{GL}_{m n}(D)$. So by the stability theorem and [8, Theorem 2], $K_{i}^{M}(R)=0$ for $m \geqslant 2$ and $i \geqslant 2$.
(ii) It seems that it is not known whether for a finite-dimensional division F-algebra D, $H_{2}\left(\mathrm{GL}_{1}(D), \mathbb{Q}\right) \rightarrow H_{2}\left(\mathrm{GL}_{2}(D), \mathbb{Q}\right)$ is injective. The only case that is known to us is when $D=\mathbb{H}$. This follows from applying the Künneth theorem to $\mathrm{GL}_{n}(\mathbb{H})=\mathrm{SL}_{n}(\mathbb{H}) \times \mathbb{R}^{>0}$ for $n=1,2$ and the isomorphism $K_{2}(\mathbb{H}) \simeq H_{2}\left(\mathrm{SL}_{1}(\mathbb{H})\right)$ from [17, p. 287].

6. Third homology of SL_{2} and the indecomposable K_{3}

In this section we assume that R is a commutative ring with many units, unless it is mentioned otherwise. When a group G acts on a module M, we use the standard definition M_{G}
for $H_{0}(G, M)$. Consider the action of R^{*} on SL_{n} defined by

$$
a \cdot B:=\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) B\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)
$$

where $a \in R^{*}$ and $B \in \mathrm{SL}_{n}$. This induces an action of R^{*} on $H_{i}\left(\mathrm{SL}_{n}\right)$. So by $H_{i}\left(\mathrm{SL}_{n}\right)_{R^{*}}$ we mean $H_{0}\left(R^{*}, H_{i}\left(\mathrm{SL}_{n}\right)\right)$.

Theorem 6.1. Let k be a field such that $1 / 2 \in k$.
(i) $H_{3}\left(\mathrm{SL}_{2}, k\right)_{R^{*}} \rightarrow H_{3}(\mathrm{SL}, k)$ is injective.
(ii) If R is an infinite field, then $H_{3}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)_{R^{*}} \rightarrow H_{3}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$ is injective.
(iii) If R is either \mathbb{R} or an infinite field such that $R^{*}=R^{* 2}$, then $H_{3}\left(\mathrm{SL}_{2}\right) \rightarrow H_{3}(\mathrm{SL})$ is injective.
(iv) The map $H_{3}\left(\mathrm{SL}_{2}(\mathbb{H})\right) \rightarrow H_{3}\left(\mathrm{SL}_{3}(\mathbb{H})\right)$ is bijective.

Proof. Part (iv) follows from Theorem 5.4 and by applying the Künneth theorem to $\mathrm{GL}_{n}(\mathbb{H})=$ $\mathrm{SL}_{n}(\mathbb{H}) \times \mathbb{R}^{>0}, n \geqslant 1$.

Since $H_{3}(\mathrm{SL}) \rightarrow H_{3}(\mathrm{GL})$ is injective, to prove (i), (ii) and (iii), by Theorem 5.4 it is sufficient to prove that $H_{3}\left(\mathrm{SL}_{2}, k\right)_{R^{*}} \rightarrow H_{3}\left(\mathrm{GL}_{2}, k\right), H_{3}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)_{R^{*}} \rightarrow H_{3}\left(\mathrm{GL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$ and $H_{3}\left(\mathrm{SL}_{2}\right) \rightarrow H_{3}\left(\mathrm{GL}_{2}\right)$ are injective.

Set $A:=\mathbb{Z}\left[\frac{1}{2}\right]$ or k. From the map $\gamma: R^{*} \times \mathrm{SL}_{2} \rightarrow \mathrm{GL}_{2},(a, M) \mapsto a M$, we obtain two short exact sequences

$$
\begin{aligned}
& 1 \rightarrow \mu_{2, R} \rightarrow R^{*} \times \mathrm{SL}_{2} \rightarrow \operatorname{im}(\gamma) \rightarrow 1 \\
& 1 \rightarrow \operatorname{im}(\gamma) \rightarrow \mathrm{GL}_{2} \rightarrow R^{*} / R^{* 2} \rightarrow 1
\end{aligned}
$$

Writing the Lyndon-Hochschild-Serre spectral sequence of the above exact sequences and carrying out a simple analysis, one gets

$$
H_{3}(\mathrm{im}(\gamma), A) \simeq H_{3}\left(R^{*} \times \mathrm{SL}_{2}, A\right), \quad H_{3}(\mathrm{im}(\gamma), A)_{R^{*} / R^{* 2}} \simeq H_{3}\left(\mathrm{GL}_{2}, A\right) .
$$

Since the action of $R^{* 2}$ on $H_{3}(\operatorname{im}(\gamma), A)$ is trivial,

$$
H_{3}(\mathrm{im}(\gamma), A)_{R^{*}} \simeq H_{3}\left(\mathrm{GL}_{2}, A\right)
$$

These imply

$$
H_{3}\left(\mathrm{GL}_{2}, A\right) \simeq H_{3}\left(R^{*} \times \mathrm{SL}_{2}, A\right)_{R^{*}}
$$

Now the Künneth theorem implies that $H_{3}\left(\mathrm{SL}_{2}, A\right)_{R^{*}} \rightarrow H_{3}\left(\mathrm{GL}_{2}, A\right)$ is injective. This proves parts (i) and (ii).
(iii) First let $R^{*}=R^{* 2}$. The map γ induces the short exact sequence

$$
1 \rightarrow \mu_{2, R} \rightarrow R^{*} \times \mathrm{SL}_{2} \rightarrow \mathrm{GL}_{2} \rightarrow 1
$$

From the Lyndon-Hochschild-Serre spectral sequence of this exact sequence, one sees that $H_{3}(\mathrm{inc}): H_{3}\left(\mathrm{SL}_{2}\right) \rightarrow H_{3}\left(\mathrm{GL}_{2}\right)$ has a kernel of order dividing 4. To show that this kernel is trivial we look at the spectral sequence induced by $1 \rightarrow \mathrm{SL}_{2} \rightarrow \mathrm{GL}_{2} \rightarrow R^{*} \rightarrow 1$,

$$
E_{p, q}^{\prime 2}=H_{p}\left(R^{*}, H_{q}\left(\mathrm{SL}_{2}\right)\right) \Rightarrow H_{p+q}\left(\mathrm{GL}_{2}\right)
$$

By Proposition 2.6 and the fact that the action of R^{*} on $H_{i}\left(\mathrm{SL}_{2}\right)$ is trivial, we get the following $E^{\prime 2}$-terms:

$*$	$*$			
$H_{3}\left(\mathrm{SL}_{2}\right)$	$*$	$*$		
$K_{2}^{M}(R)$	$R^{*} \otimes K_{2}^{M}(R)$	$E_{2,2}^{\prime 2}$	$*$	
0	0	0	0	0
\mathbb{Z}	$H_{1}\left(R^{*}\right)$	$H_{2}\left(R^{*}\right)$	$H_{3}\left(R^{*}\right)$	$H_{4}\left(R^{*}\right)$.

Here $E_{2,2}^{\prime 2}=H_{2}\left(R^{*}\right) \otimes K_{2}^{M}(R) \oplus \operatorname{Tor}_{1}^{\mathbb{Z}}\left(\mu_{R}, K_{2}^{M}(R)\right)$, which is 2-divisible as $K_{2}^{M}(R)$ is uniquely 2-divisible. Hence

$$
H_{3}\left(\mathrm{SL}_{2}\right) / \operatorname{im}\left(d_{2,2}^{\prime 2}\right) \simeq E_{0,3}^{\prime \infty} \subseteq H_{3}\left(\mathrm{GL}_{2}\right)
$$

which is induced by $\mathrm{SL}_{2} \hookrightarrow \mathrm{GL}_{2}$. Thus, $\operatorname{im}\left(d_{2,2}^{\prime 2}\right) \subseteq \operatorname{ker}\left(H_{3}(\operatorname{inc})\right)$. This means that $\operatorname{im}\left(d_{2,2}^{\prime 2}\right)$ is 2-divisible of order dividing 4. This is possible only if $\operatorname{im}\left(d_{2,2}^{\prime 2}\right)$ is trivial.

Now let $R=\mathbb{R}$. Consider the following exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z} / 4 \mathbb{Z} \rightarrow H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \rightarrow H_{3}\left(\mathrm{PSL}_{2}(\mathbb{R})\right) \rightarrow 0 \\
& 0 \rightarrow H_{3}\left(\mathrm{PSL}_{2}(\mathbb{R})\right) \rightarrow H_{3}\left(\mathrm{PGL}_{2}(\mathbb{R})\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
\end{aligned}
$$

(see [15, App. C, C.10, Theorem C.14]). In the first exact sequence $\mathbb{Z} / 4 \mathbb{Z}$ is mapped onto the subgroup of order 4 generated by $w:=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\right.$ see $[15$, p. 207] $)$. Set $\alpha: H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \rightarrow$ $H_{3}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$. From the diagram

and the above exact sequences, one sees that $\operatorname{ker}(\alpha)$ is of order dividing 4. Here we describe the E_{2}-terms $E_{1,2}^{2}$ and $E_{2,2}^{2}$ of the spectral sequence

$$
E_{p, q}^{2}=H_{p}\left(\mathbb{R}^{*}, H_{q}\left(\mathrm{SL}_{2}(\mathbb{R})\right)\right) \Rightarrow H_{p+q}\left(\mathrm{GL}_{2}(\mathbb{R})\right)
$$

which is associated to $1 \rightarrow \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathrm{GL}_{2}(\mathbb{R}) \xrightarrow{\text { det }} \mathbb{R}^{*} \rightarrow 1$. It is well-known that

$$
H_{2}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \simeq K_{2}^{M}(\mathbb{R})^{\circ} \oplus \mathbb{Z}
$$

where $K_{2}^{M}(\mathbb{R})^{\circ}$ is the uniquely divisible part of $K_{2}^{M}(\mathbb{R})$. The action of \mathbb{R}^{*} on $K_{2}^{M}(\mathbb{R})^{\circ}$ is trivial and its action on \mathbb{Z} is through multiplication by $\operatorname{sign}(r)$, where $r \in \mathbb{R}^{*}$ (see the proof of Proposition 2.15 in [17, p. 288]). Let $\overline{\mathbb{Z}}$ be \mathbb{Z} with this new action of \mathbb{R}^{*}. Thus for $p=1,2$,

$$
E_{p, 2}^{2}=H_{p}\left(\mathbb{R}^{*}\right) \otimes K_{2}^{M}(\mathbb{R})^{\circ} \oplus H_{p}\left(\mathbb{R}^{*}, \overline{\mathbb{Z}}\right)
$$

It is not difficult to see that $H_{1}\left(\mathbb{R}^{*}, \overline{\mathbb{Z}}\right)=0$ and $H_{2}\left(\mathbb{R}^{*}, \overline{\mathbb{Z}}\right)=\mathbb{Z} / 2 \mathbb{Z}$. Now by an easy analysis of the above spectral sequence, one sees that $\operatorname{ker}(\alpha)$ is of order diving 2 . Since $w^{2}=-I_{2} \in \mathrm{GL}_{2}(\mathbb{R})$, $\operatorname{ker}(\alpha)$, if not trivial, must be generated by $x=\left[-I_{2}\left|-I_{2}\right|-I_{2}\right]$. But $\alpha(x)=\left[-I_{2}\left|-I_{2}\right|-I_{2}\right] \in$ $H_{3}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$ is non-trivial. Therefore $\operatorname{ker}(\alpha)=0$. Note that here one has to use the fact that the action of \mathbb{R}^{*} on $H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right.$) is trivial (see [15, App. C.14] and [6, 2.10, p. 230]). Therefore $E_{0,3}^{2}=H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right)$.

Corollary 6.2. Let k be a field such that $1 / 2 \in k$.
(i) We have the split exact sequence

$$
0 \rightarrow H_{3}\left(\mathrm{SL}_{2}, k\right)_{R^{*}} \rightarrow H_{3}(\mathrm{SL}, k) \rightarrow K_{3}^{M}(R) \otimes k \rightarrow 0
$$

(ii) If R is an infinite field, then we have the split exact sequence

$$
0 \rightarrow H_{3}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)_{R^{*}} \rightarrow H_{3}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \rightarrow K_{3}^{M}(R) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \rightarrow 0
$$

(iii) If R is an infinite field such that $R^{*}=R^{* 2}$, then

$$
0 \rightarrow H_{3}\left(\mathrm{SL}_{2}\right) \rightarrow H_{3}(\mathrm{SL}) \rightarrow K_{3}^{M}(R) \rightarrow 0
$$

is split exact.
(iv) We have the split exact sequence

$$
0 \rightarrow H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \rightarrow H_{3}(\mathrm{SL}(\mathbb{R})) \rightarrow K_{3}^{M}(\mathbb{R})^{\circ} \rightarrow 0
$$

where $K_{3}^{M}(\mathbb{R}) \simeq\langle\{-1,-1,-1\}\rangle \oplus K_{3}^{M}(\mathbb{R})^{\circ}$.
Proof. First we prove (iv). The injectivity follows from Theorem 6.1. From the diagram

we obtain a map of spectral sequences

which give us a map of filtration

Since $H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \rightarrow H_{3}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$ is injective, $F_{0}=E_{0,3}^{\infty} \simeq H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right)$. It is easy to see that $E_{p, 1}^{\infty}=E_{p, 1}^{\prime \infty}=0, F_{0}^{\prime}=E_{0,3}^{\prime \infty} \simeq H_{3}(\mathrm{SL}(\mathbb{R}))$ and $E_{3,0}^{\infty} \simeq E_{3,0}^{\prime \infty}$. Since

$$
H_{2}\left(\mathrm{SL}_{2}(\mathbb{R})\right)=\mathbb{Z} \oplus K_{2}^{M}(\mathbb{R})^{\circ} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \oplus K_{2}^{M}(\mathbb{R})^{\circ}=H_{2}(\mathrm{SL}(\mathbb{R}))
$$

is surjective, $E_{2,2}^{\infty} \hookrightarrow E_{2,2}^{\prime \infty}$ with $\operatorname{coker}\left(E_{2,2}^{\infty} \rightarrow E_{2,2}^{\prime \infty}\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$ (see the proof of Theorem 6.1(iii)). By an easy analysis of the above filtration, one gets the exact sequence

$$
0 \rightarrow H_{3}(\operatorname{SL}(\mathbb{R})) / H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \rightarrow H_{3}(\mathrm{GL}(\mathbb{R})) / H_{3}\left(\mathrm{GL}_{2}(\mathbb{R})\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

Therefore $H_{3}(\mathrm{SL}(\mathbb{R})) / H_{3}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \simeq K_{3}^{M}(\mathbb{R})^{\circ}$. A splitting map can be constructed using the composition $K_{3}^{M}(\mathbb{R})^{\circ} \rightarrow H_{3}(\mathrm{GL}(\mathbb{R})) \rightarrow H_{3}(\mathrm{SL}(\mathbb{R}))$.

The proof of (i), (ii) and (iii) are similar. In the proof of (iii) we need the homology stability $H_{2}\left(\mathrm{SL}_{2}\right)=H_{2}(\mathrm{SL})$, and in the proof of (i) and (ii) we need the isomorphism

$$
H_{1}\left(R^{*}, H_{2}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)\right) \simeq H_{1}\left(R^{*}, H_{2}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right)\right)
$$

To prove the latter, consider the exact sequence

$$
1 \rightarrow R^{* 2} \rightarrow R^{*} \rightarrow R^{*} / R^{* 2} \rightarrow 1 .
$$

This induces a map of Lyndon-Hochschild-Serre spectral sequences, with coefficients in $H_{2}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$ and $H_{2}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$ respectively, from which one easily obtains the commutative diagram

The action of $R^{* 2}$ on $H_{2}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$ is trivial, so

$$
\begin{aligned}
H_{1}\left(R^{* 2}, H_{2}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)\right)_{R^{*}} & \simeq\left(H_{1}\left(R^{* 2}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \otimes H_{2}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)\right)_{R^{*}} \\
& \simeq H_{1}\left(R^{* 2}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \otimes H_{2}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)_{R^{*}} \\
& \simeq H_{1}\left(R^{* 2}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \otimes H_{2}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \\
& \simeq H_{1}\left(R^{* 2}, H_{2}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right)\right)
\end{aligned}
$$

Thus the left-hand column map in the above diagram is an isomorphism. This implies the isomorphism of the right-hand column map.

Remark 6.3. Let $R=\mathbb{R}, R=\mathbb{H}$ or R be an infinite field such that $R^{*}=R^{* 2}$. Then $H_{3}\left(\mathrm{SL}_{2}\right) \rightarrow$ $H_{3}\left(\mathrm{SL}_{3}\right)$ is injective. This follows from Theorem 6.1, and the commutativity of the following diagram

This generalizes the main theorem of Sah in [17, Theorem 3.0].
Let $K_{3}^{M}(R) \rightarrow K_{3}(R)$ be the natural map from the Milnor K-group to the Quillen K-group. Define $K_{3}(R)^{\text {ind }}:=\operatorname{coker}\left(K_{3}^{M}(R) \rightarrow K_{3}(R)\right)$. This group is called the indecomposable part of $K_{3}(R)$.

Proposition 6.4. Let k be a field such that $1 / 2 \in k$.
(i) $K_{3}(R)^{\text {ind }} \otimes k \simeq H_{3}\left(\mathrm{SL}_{2}, k\right)_{R^{*}}$.
(ii) If R is an infinite field, then $K_{3}(R)^{\text {ind }} \otimes \mathbb{Z}\left[\frac{1}{2}\right] \simeq H_{3}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)_{R^{*}}$.
(iii) If R is either \mathbb{R}, or an infinite field such that $R^{*}=R^{* 2}$, then $K_{3}(R)^{\text {ind }} \simeq H_{3}\left(\mathrm{SL}_{2}\right)$.

Proof. Let $A=\mathbb{Z}\left[\frac{1}{2}\right], \mathbb{Z}$ or k. By Corollary 6.2, we have the commutative diagram

Here h_{3} is the Hurewicz map $K_{3}(R)=\pi_{3}\left(B \mathrm{SL}^{+}\right) \rightarrow H_{3}(\mathrm{SL})$ and it is surjective with two torsion kernel [17, Proposition 2.5]. In case $R^{*}=R^{* 2}, h_{3}$ is an isomorphism. The snake lemma
implies (i), (ii) and the second part of (iii). If $R=\mathbb{R}$, we look at the following commutative diagram

The claim follows from the snake lemma using the fact that $\operatorname{ker}\left(K_{3}(\mathbb{R}) \xrightarrow{h_{3}} H_{3}(\operatorname{SL}(\mathbb{R}))\right)=\mathbb{Z} / 2 \mathbb{Z}$ [17, 2.17].

Remark 6.5. Theorem 6.4 generalizes Theorem 4.1 in [17], where three torsion is not treated.
We can offer the following non-commutative version of the above results.

Proposition 6.6.

(i) Let R be a quaternion algebra. Then

$$
0 \rightarrow H_{3}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)_{R^{*}} \rightarrow H_{3}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \rightarrow K_{3}^{M}(R) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \rightarrow 0
$$

is exact.
(ii) If R is an Azumaya R-algebra, where R is a commutative local ring with an infinite residue field, then

$$
0 \rightarrow H_{3}\left(\mathrm{SL}_{2}, \mathbb{Q}\right)_{R^{*}} \rightarrow H_{3}(\mathrm{SL}, \mathbb{Q}) \rightarrow K_{3}^{M}(R) \otimes \mathbb{Q} \rightarrow 0
$$

is exact.
Proof. (i) From the commutative diagram

we obtain a map of spectral sequences

$$
\begin{gathered}
E_{p, q}^{2}=H_{p}\left(K_{1}(R), H_{q}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)\right) \Longrightarrow H_{p+q}\left(\mathrm{GL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \\
\downarrow \\
E_{p, q}^{\prime 2}=H_{p}\left(K_{1}(R), H_{q}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right)\right) \Longrightarrow H_{p+q}\left(\mathrm{GL}, \mathbb{Z}\left[\frac{1}{2}\right]\right)
\end{gathered}
$$

Since the map $Z(R)^{*} \times \mathrm{SL}_{2} \rightarrow \mathrm{GL}_{2},(a, B) \mapsto a B$, has two torsion kernel and cokernel (use Example 5.2), $H_{i}\left(\mathrm{SL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)_{R^{*}} \hookrightarrow H_{i}\left(\mathrm{GL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$ (see the proof of Theorem 6.1(i)). By Lemma 5.1, $H_{i}\left(Z(R)^{*}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \hookrightarrow H_{i}\left(\mathrm{GL}_{2}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$, and it is easy to prove the injectivity of $H_{i}\left(\mathrm{SL}, \mathbb{Z}\left[\frac{1}{2}\right]\right) \hookrightarrow H_{i}\left(\mathrm{GL}, \mathbb{Z}\left[\frac{1}{2}\right]\right)$. By an easy analysis of the above spectral sequences, as in the proof of Corollary 6.2 , we get the desired result. The proof of (ii) is similar.

Corollary 6.7. Let D be a finite-dimensional F-division algebra. Let

$$
K_{3}^{M}(F, D):=\operatorname{ker}\left(K_{3}^{M}(F) \rightarrow K_{3}^{M}(D)\right)
$$

Then we have the following exact sequence

$$
0 \rightarrow H_{3}\left(\mathrm{SL}_{2}(F), \mathbb{Q}\right)_{F^{*}} \rightarrow H_{3}\left(\mathrm{SL}_{2}(D), \mathbb{Q}\right)_{D^{*}} \rightarrow K_{3}^{M}(F, D) \otimes \mathbb{Q} \rightarrow 0
$$

Proof. By Corollary 2.3 from [9], $K_{3}(F) \otimes \mathbb{Q} \simeq K_{3}(D) \otimes \mathbb{Q}$. Therefore,

$$
H_{3}(\mathrm{SL}(F), \mathbb{Q}) \simeq H_{3}(\mathrm{SL}(D), \mathbb{Q})
$$

(see [17, Theorem 2.5]). Now the claim follows from Corollary 6.2 and Proposition 6.6.

Acknowledgments

I would like to thank W. van der Kallen for his interest in this work and for his valuable comments. The last draft of this article was written during my stay at mathematics department of Queen's University Belfast which I was supported by EPSRC R1724PMR. I would like to thank them for their support and hospitality.

References

[1] D. Arlettaz, A splitting result for the second homology group of the general linear group, in: Adams Memorial Symposium on Algebraic Topology, 1, in: London Math. Soc. Lecture Note Ser., vol. 175, 1992, pp. 83-88.
[2] H. Bass, J. Tate, The Milnor ring of a global field, in: Algebraic K-Theory, II, in: Lecture Notes in Math., vol. 342, 1973, pp. 349-446.
[3] A. Borel, J. Yang, The rank conjecture for number fields, Math. Res. Lett. 1 (6) (1994) 689-699.
[4] K.S. Brown, Cohomology of Groups, Grad. Texts in Math., vol. 87, Springer-Verlag, New York, 1994.
[5] K. Dennis, In search of new "homology" functors having a close relationship to K-theory, preprint, 1976.
[6] J.L. Dupont, W. Parry, C. Sah, Homology of classical Lie groups made discrete. II. H_{2}, H_{3}, and relations with scissors congruences, J. Algebra 113 (1) (1988) 215-260.
[7] P. Elbaz-Vincent, The indecomposable K_{3} of rings and homology of SL_{2}, J. Pure Appl. Algebra 132 (1) (1998) 27-71.
[8] D. Guin, Homologie du groupe linéaire et K-théorie de Milnor des anneaux, J. Algebra 123 (1) (1989) 27-59.
[9] R. Hazrat, Reduced K-theory for Azumaya algebras, J. Algebra 305 (2006) 687-703.
[10] T.Y. Lam, A First Course in Noncommutative Rings, second ed., Grad. Texts in Math., vol. 131, Springer-Verlag, 2001.
[11] S. Mac Lane, Homology, Springer-Verlag, New York/Berlin/Göttingen/Heidelberg, 1963.
[12] B. Mirzaii, Homology stability for unitary groups II, K-Theory 36 (3-4) (2005) 305-326.
[13] B. Mirzaii, Homology of GL_{n} : Injectivity conjecture for GL4, Math. Ann. 304 (1) (2008) 159-184.
[14] P.Yu. Nesterenko, A.A. Suslin, Homology of the general linear group over a local ring, and Milnor's K-theory, Math. USSR Izv. 34 (1) (1990) 121-145.
[15] W. Parry, C. Sah, Third homology of SL($2, \mathbb{R}$) made discrete, J. Pure Appl. Algebra 30 (2) (1983) 181-209.
[16] C. Sah, Homology of classical Lie groups made discrete. I. Stability theorems and Schur multipliers, Comment. Math. Helv. 61 (2) (1986) 308-347.
[17] C. Sah, Homology of classical Lie groups made discrete. III, J. Pure Appl. Algebra 56 (3) (1989) 269-312.
[18] A.A. Suslin, Homology of GL_{n}, characteristic classes and Milnor K-theory, Proc. Steklov Inst. Math. 3 (1985) 207-225.
[19] W. Van der Kallen, The K_{2} of rings with many units, Ann. Sci. École Norm. Sup. (4) 10 (4) (1977) 473-515.
[20] S. Yagunov, On the homology of GL_{n} and the higher pre-Bloch groups, Canad. J. Math. 52 (6) (2000) 1310-1338.

[^0]: E-mail address: b.mirzaii@qub.ac.uk.

[^1]: ${ }^{1}$ This notion is introduced by W. van der Kallen.

