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Abstract

The third homology group of GLn(R) is studied, where R is a ‘ring with many units’ with center Z(R).
The main theorem states that if K1(Z(R))⊗Q � K1(R)⊗Q (e.g. R a commutative ring or a central simple
algebra), then H3(GL2(R),Q) → H3(GL3(R),Q) is injective. If R is commutative, Q can be replaced by
a field k such that 1/2 ∈ k. For an infinite field R (resp. an infinite field R such that R∗ = R∗2), we get the
better result that H3(GL2(R),Z[ 1

2 ]) → H3(GL3(R),Z[ 1
2 ]) (resp. H3(GL2(R),Z) → H3(GL3(R),Z)) is

injective. As an application we study the third homology group of SL2(R) and the indecomposable part of
K3(R).
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The Hurewicz theorem relates homotopy groups to homology groups, which are much easier
to calculate. This in turn provides a homomorphism from the Quillen Kn-group of a ring R to
the nth integral homology of stable linear group GL(R), hn : Kn(R) → Hn(GL(R),Z). One can
also define Milnor K-groups, KM

n (R), and when R is commutative there is a canonical map
KM

n (R) → Kn(R) [8].
One of the approaches to investigate K-groups is by means of the homology stability. Suslin’s

stability theorem states that for an infinite field F , the natural map

Hi

(
GLn(F ),Z

) → Hi

(
GL(F ),Z

)
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is bijective if n � i [18]. Using this result, Suslin constructed a map from Hn(GLn(F ),Z) to
KM

n (F ) such that the sequence

Hn

(
GLn−1(F ),Z

) Hn(inc)−−−−→ Hn

(
GLn(F ),Z

) → KM
n (F ) → 0

is exact. Combining these two results he constructed a map from Kn(F) to KM
n (F ) such that the

composite homomorphism

KM
n (F ) → Kn(F) → KM

n (F )

coincides with the multiplication by (−1)n−1(n − 1)! [18, Section 4].
These results have been generalized by Nesterenko and Suslin [14] to commutative local rings

with infinite residue fields, and by Sah [16] and Guin [8] to a wider class of rings which is now
called ‘rings with many units.’

Except for n = 1,2, there is no precise information about the kernel of Hn(inc). In this direc-
tion Suslin posed a problem, which is now referred to as ‘a conjecture by Suslin’ (see [3, 7.7],
[17, 4.13]).

Injectivity Conjecture. For any infinite field F the natural homomorphism

Hn

(
GLn−1(F ),Q

) → Hn

(
GLn(F ),Q

)
is injective.

This conjecture is easy if n = 1,2. For n = 3 the conjecture was proved positively by Sah [17]
and Elbaz-Vincent [7]. The case n = 4 is proved by the author in [13]. The conjecture is proved
in full for number fields by Borel and Yang [3].

When n = 3, in [7], Elbaz-Vincent proves the conjecture for a wider class of commutative
rings (called H1-ring in [7]). In fact he proves that for any commutative ring with many units
H3(GL2(R),Q) → H3(GL3(R),Q) is injective. We will generalize this further, to include some
class of non-commutative rings.

The above conjecture says that the kernel of Hn(inc) is in fact torsion. Our main goal, in this
paper, is to study the map H3(inc) in such a way that we lose less information on its kernel. Here
is our main result.

Theorem 5.4. Let R be a ring with many units with center Z(R). Let k be a field such that
1/2 ∈ k.

(i) If K1(Z(R)) ⊗ Q � K1(R) ⊗ Q, then H3(GL2(R),Q) → H3(GL3(R),Q) is injective. If R

is commutative, then Q can be replaced by k.
(ii) If R is an infinite field or a quaternion algebra over an infinite field, then H3(GL2(R),Z[ 1

2 ])
→ H3(GL3(R),Z[ 1

2 ]) is injective.
(iii) Let R be either R or an infinite field such that R∗ = R∗2. Then H3(GL2(R),Z) →

H3(GL3(R),Z) is injective.
(iv) The map H3(GL2(H),Z) → H3(GL3(H),Z) is bijective, where H is the ring of quaternion.
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Examples of non-commutative rings with many units which satisfy the condition
K1(Z(R)) ⊗ Q � K1(R) ⊗ Q of (i) in the above theorem are Azumaya algebras over com-
mutative local rings with infinite residue fields.

As an application we generalize and give an easier proof of the main theorem of Sah in [17,
Theorem 3.0]. Our proof of the next theorem avoids the case by case analysis done in [17].

Theorem 6.1. Let R be a commutative ring with many units. Let k be a field such that 1/2 ∈ k.

(i) The map H0(R
∗,H3(SL2(R), k)) → H3(SL(R), k) is injective.

(ii) For an infinite field R, H0(R
∗,H3(SL2(R),Z[ 1

2 ])) → H3(SL(R),Z[ 1
2 ]) is injective.

(iii) If R is either R or an infinite field such that R∗ = R∗2, then H3(SL2(R),Z) →
H3(SL(R),Z) is injective.

(iv) The map H3(SL2(H),Z) → H3(SL3(H),Z) is bijective.

We use these results to study the third K-group of a field. Let K3(R)ind = coker(KM
3 (R) →

K3(R)) be the indecomposable part of K3(R). In this article we prove that if R is an infinite
field,

K3(R)ind ⊗ Z

[
1

2

]
� H0

(
R∗,H3

(
SL2(R),Z

[
1

2

]))
.

Furthermore if R∗ = R∗2 or R = R, then

K3(R)ind � H3
(
SL2(R),Z

)
.

To prove these claims, our general strategy will be the same as in [17] and [7]. We will
introduce some spectral sequences similar to ones in [7], smaller but still big enough to do some
computations. The main theorem will come out of the analysis of these spectral sequences.

Here we establish some notations. In this paper, by Hi(G) we mean the ith integral homol-
ogy of the group G. We use the bar resolution to define the homology of a group [4, Chap. I,
Section 5]. Define c(g1, g2, . . . , gn) = ∑

σ∈Σn
sign(σ )[gσ(1)|gσ(2)| . . . |gσ(n)] ∈ Hn(G), where

gi ∈ G pairwise commute and Σn is the symmetric group of degree n. By GLn we mean the
general linear group GLn(R), where R is a ring with many units. By Z(R) we mean the center
of R.

Note that GL0 is the trivial group and GL1 = R∗. By R∗m we mean R∗ × · · · × R∗ (m-times)
or, when R is commutative and m � 2, the subgroup {am | a ∈ R∗} of R∗, depending on the
context. This will not cause any confusion. The ith factor of R∗m = R∗ × · · · × R∗ (m-times), is
denoted by R∗

i .

2. Rings with many units

The study of rings with many units is originated by W. van der Kallen in [19],1 where he
shows that K2 of such commutative rings behave very much like K2 of fields. According to [19],
in order to have a nice description of K2(R) in terms of generators and relations or in order

1 This notion is introduced by W. van der Kallen.
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to have a nice stability property for K2(R), the ring should have ‘enough invertible elements,’
and ‘more invertible elements’ the ring has, a better description of K2(R) one gets. In this di-
rection, see Proposition 2.6 for a homological proof of a theorem of Van der Kallen [19], due to
Nesterenko and Suslin [14, Corollary 4.3].

In [14], another definition of rings with many units is given, where the authors prove very
nice homology stability results for the homology of general linear groups over these rings. They
further prove that when the ring is a local ring with infinite residue field, the homology stability
bound can be very sharp.

In [8], Guin shows that if a ring satisfies both the definition of Van der Kallen and of Suslin,
then most of the main results of Suslin in [18] are still true. Following [19] and [14], we call such
rings, rings with many units.

Definition 2.1. We say that R is a ring with many units if it has the following properties:

(H1) Hypothesis 1. For any finite number of surjective linear forms fi : Rn → R, there exist
v ∈ Rn such that fi(v) ∈ R∗.

(H2) Hypothesis 2. For any n � 1, there exist n elements of the center of R such that the sum of
each nonempty subfamily belongs to R∗.

Remark 2.2.

(i) (H1) implies that the stable range of R is one, sr(R) = 1 [8, Proposition 1.4].
(ii) (H1) implies (H2) if R is commutative [8, Proposition 1.3].

(iii) Property (H1) is considered by Van der Kallen [19, Section 1] and property (H2) is studied
by Nesterenko and Suslin [14, §1].

Example 2.3.

(i) Let R satisfy property (H2). Then a semilocal ring R is a ring with many units if and only
if R/ Jac(R) is a ring with many units, where Jac(R) denotes the Jacobson radical of R.

(ii) Product of rings with many units is a ring with many units.
(iii) Let D be a finite-dimensional F -division algebra, F an infinite field. Then Mn(D), n � 1,

is a ring with many units.
(iv) Let F be an infinite field. Then any finite-dimensional F -algebra is a semilocal ring

[10, §20]. Therefore, it is a ring with many units.
(v) Let R be a commutative semilocal ring with many units. Then any Azumaya R-algebra is a

ring with many units (see [10, §20]).

Here we give two known results which are used in the construction of spectral sequences in
the coming section. They show the need for properties (H1) and (H2).

Lemma 2.4. Let R satisfy the property (H1). Let n � 2 and assume Ti , 1 � i � l, are finite subsets
of Rn such that each Ti is a basis of a free summand of Rn with k elements, where k � n − 1.
Then there is a vector v ∈ Rn, such that Ti ∪ {v}, 1 � i � l, is a basis of a free summand of Rn.

Proof. This is well-known and easy to prove. We leave the proof to the reader. �
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The next result is due to Suslin.

Proposition 2.5. Let R satisfy the property (H2). Let Gi be subgroups of GLni
, i = 1,2, and as-

sume that at least one of them contains the subgroup of diagonal matrices. Let M be a submodule
of Mn1,n2(R) such that G1M = M = MG2. Then the inclusion

(
G1 0
0 G2

)
→

(
G1 M

0 G2

)

induces isomorphism on the homology with coefficients in Z.

Proof. See [18, Theorem 1.9]. �
The next proposition is rather well-known. We refer the reader to [8, 3.2] for the definition of

the Milnor K-groups KM
n (R) of a ring R.

Proposition 2.6. Let R be a commutative ring with many units. Then

(i) SK1(R) = 0.
(ii) (Van der Kallen [19])

K2(R) � KM
2 (R) = R∗ ⊗Z R∗/

〈
a ⊗ (1 − a): a,1 − a ∈ R∗〉.

Proof. (i) By the homology stability theorem [8, Theorem 1]

K1(R) = H1
(
GL(R)

) � H1
(
GL1(R)

) � R∗,

but we also have K1(R) � R∗ × SK1(R). Thus SK1(R) = 0.
(ii) (Nesterenko–Suslin) By easy analysis of the Lyndon–Hochschild–Serre spectral sequence

associated to

1 → SL → GL → R∗ → 1,

using part (i) and the homology stability theorem, one sees that K2(R) � H2(GL2)/H2(GL1)

(see [14, Lemma 4.2]). By [8, Theorem 2], we have KM
2 (R) � H2(GL2)/H2(GL1). Therefore,

KM
2 (R) � K2(R). For the rest, see [8, Proposition 3.2.3]. �
In this paper we always assume that R is a ring with many units.

3. The spectral sequences

Let Cl(R
n) and Dl(R

n) be the free abelian groups with a basis consisting of (〈v0〉, . . . , 〈vl〉)
and (〈w0〉, . . . , 〈wl〉) respectively, where every min{l+1, n} of vi ∈ Rn and every min{l+1,2} of
wi ∈ Rn is a basis of a free direct summand of Rn. By 〈vi〉 and 〈wi〉 we mean the submodules of
Rn generated by vi and wi respectively. Let ∂0 : C0(R

n) → C−1(R
n) := Z,

∑
i ni(〈vi〉) 
→ ∑

i ni

and ∂l = ∑l
i=0(−1)idi : Cl(R

n) → Cl−1(R
n), l � 1, where

di

((〈v0〉, . . . , 〈vl〉
)) = (〈v0〉, . . . , 〈̂vi〉, . . . , 〈vl〉

)
.
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Define the differential ∂̃l = ∑l
i=0(−1)i d̃i : Dl(R

n) → Dl−1(R
n) similar to ∂l . By Lemma 2.4 it

is easy to see that the complexes

C∗: 0 ← C−1
(
Rn

) ← C0
(
Rn

) ← ·· · ← Cl−1
(
Rn

) ← ·· · ,
D∗: 0 ← D−1

(
Rn

) ← D0
(
Rn

) ← ·· · ← Dl−1
(
Rn

) ← ·· ·

are exact. Consider Ci(R
n) and Di(R

n) as a left GLn-module in a natural way and convert this
action to the right action by the definition m.g := g−1m.

Take a free left GLn-resolution P∗ → Z of Z with trivial GLn-action. From the double com-
plexes C∗ ⊗GLn P∗ and D∗ ⊗GLn P∗, using Proposition 2.5, we obtain two first quadrant spectral
sequences converging to zero with

E1
p,q(n) =

{
Hq(R∗p × GLn−p) if 0 � p � n,

Hq(GLn,Cp−1(R
n)) if p � n + 1,

Ẽ1
p,q(n) =

{
Hq(R∗p × GLn−p) if 0 � p � 2,

Hq(GLn,Dp−1(R
n)) if p � 3.

For 1 � p � n and q � 0, d1
p,q(n) = ∑p

i=1(−1)i+1Hq(αi,p), where

αi,p : R∗p × GLn−p → R∗p−1 × GLn−p+1,

(a1, . . . , ap,A) 
→
(

a1, . . . , âi , . . . , ap,

(
ai 0
0 A

))
.

In particular, for 0 � p � n,

d1
p,0(n) =

{
idZ if p is odd,

0 if p is even.

So E2
p,0(n) = 0 for p � n − 1. It is also easy to see that E2

n,0(n) = E2
n+1,0(n) = 0. See the proof

of [12, Theorem 3.5] for more details.
We will use Ẽi

p,q(n) and Ei
p,q(n) only for n = 3, so from now on by Ẽi

p,q and Ei
p,q we mean

Ẽi
p,q(3) and Ei

p,q(3) respectively. We describe Ẽ1
p,q for p = 3,4. Let

w1 = (〈e1〉, 〈e2〉, 〈e3〉
)
, w2 = (〈e1〉, 〈e2〉, 〈e1 + e2〉

) ∈ D2
(
R3)

and u1, . . . , u5, u6,a ∈ D3(R
3), a, a − 1 ∈ R∗, where

u1 = (〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e2 + e3〉
)
, u2 = (〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e2〉

)
,

u3 = (〈e1〉, 〈e2〉, 〈e3〉, 〈e2 + e3〉
)
, u4 = (〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e3〉

)
,

u5 = (〈e1〉, 〈e2〉, 〈e1 + e2〉, 〈e3〉
)
, u6,a = (〈e1〉, 〈e2〉, 〈e1 + e2〉, 〈e1 + ae2〉

)
(see [8, Lemma 3.3.3]). By the Shapiro lemma
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Ẽ1
3,q = Hq

(
StabGL3(w1)

) ⊕ Hq

(
StabGL3(w2)

)
,

Ẽ1
4,q =

5⊕
j=1

Hq

(
StabGL3(uj )

) ⊕
[ ⊕

a,a−1∈R∗
Hq

(
StabGL3(u6,a)

)]
.

So by Proposition 2.5 we get

Ẽ1
3,q = Hq

(
R∗3) ⊕ Hq

(
R∗I2 × R∗),

Ẽ1
4,q = Hq

(
R∗I3

) ⊕ Hq

(
R∗I2 × R∗) ⊕ Hq

(
R∗ × R∗I2

) ⊕ Hq(T )

⊕ Hq

(
R∗I2 × R∗) ⊕

[ ⊕
a,a−1∈R∗

Hq

(
R∗I2 × R∗)],

where T = {(a, b, a) ∈ R3: a, b ∈ R∗}. Note that d̃1
p,q = d1

p,q for p = 1,2, d̃1
3,q |Hq(R∗3) = d1

3,q

and d̃1
3,q |Hq(R∗I2×R∗) = Hq(inc), where inc : R∗I2 × R∗ → R∗3.

Lemma 3.1. The group Ẽ2
p,0 is trivial for 0 � p � 5.

Proof. Triviality of Ẽ2
p,0 is easy for 0 � p � 2. To prove the triviality of Ẽ2

3,0, note that Ẽ1
2,0 = Z,

Ẽ1
3,0 = Z⊕Z and d̃1

3,0((n1, n2)) = n1 +n2, so if (n1, n2) ∈ ker(d̃1
3,0), then n2 = −n1. It is easy to

see that this is contained in im(d̃1
4,0). We prove the triviality of Ẽ2

5,0. Triviality of Ẽ2
4,0 is similar

but much easier. This proof is taken from [7, Section 1.3.3].

Triviality of Ẽ2
5,0. The proof will be in four steps.

Step 1. The sequence 0 → C∗(R3)⊗GL3 Z → D∗(R3)⊗GL3 Z → Q∗(R3)⊗GL3 Z → 0 is exact,
where Q∗(R3) := D∗(R3)/C∗(R3).

Step 2. The group H4(Q∗(R3) ⊗GL3 Z) is trivial.

Step 3. The map induced in homology by C∗(R3)⊗GL3 Z → D∗(R3)⊗GL3 Z is zero in degree 4.

Step 4. The group Ẽ2
5,0 is trivial.

Proof of Step 1. For i � −1, Di(R
3) � Ci(R

3) ⊕ Qi(R
3). This decomposition is compatible

with the action of GL3, so we get an exact sequence of GL3-modules

0 → Ci

(
R3) → Di

(
R3) → Qi

(
R3) → 0

which splits as a sequence of GL3-modules. One can easily deduce the desired exact sequence
from this. Note that this exact sequence does not split as complexes.

Proof of Step 2. The complex Q∗(R3) induces a spectral sequence
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Ê1
p,q =

{
0 if 0 � p � 2,

Hq(GL3,Qp−1(R
3)) if p � 3,

which converges to zero. To prove the claim it is sufficient to prove that Ê2
5,0 = 0, and this

follows from Ê2
3,1 = 0 which we now show. One can see that Ê1

3,1 = H1(R
∗I2 × R∗). If w =

(〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e2〉) ∈ Q3(R
3), then H1(StabGL3(w)) � H1(R

∗I2 × R∗) is a summand of
Ê1

4,1 and d̂1
4,1 : H1(StabGL3(w)) → Ê1

3,1 is an isomorphism. So d̂1
4,1 is surjective and therefore

Ê2
3,1 = 0.

Proof of Step 3. Consider the following commutative diagram

C5(R
3) ⊗GL3 Z C4(R

3) ⊗GL3 Z C3(R
3) ⊗GL3 Z

D5(R
3) ⊗GL3 Z D4(R

3) ⊗GL3 Z D3(R
3) ⊗GL3 Z.

The generators of C4(R
3) ⊗GL3 Z are of the form xa,b ⊗ 1, where xa,b = (〈e1〉, 〈e2〉, 〈e1 +

ae2 + be3〉, 〈e3〉, 〈e1 + e2 + e3〉), a, a − 1, b, b − 1, a − b ∈ R∗ (see [8, Lemma 3.3.3]). Since
C3(R

3) ⊗GL3 Z = Z, the elements (xa,b − xc,d) ⊗ 1 generate ker(∂4 ⊗ 1). Hence to prove this
step it is sufficient to prove that (xa,b − xc,d) ⊗ 1 ∈ im(∂̃5 ⊗ 1).

Set w′
a = (〈e1〉, 〈e2〉, 〈e1 + ae2 + e3〉, 〈e3〉, 〈e1 + e2〉, 〈e1 + ae2〉) ∈ D5(R

3), where a, a − 1 ∈
R∗. Let g, g′, and g′′ be the matrices

⎛
⎝ 0 a−1 0

−1 1 + a−1 0
0 0 1

⎞
⎠ ,

⎛
⎝ 1 0 −1

0 1 −a

0 0 1

⎞
⎠ ,

⎛
⎝ 1 0 0

0 a−1 0
0 0 1

⎞
⎠ ,

respectively, then

g
(
d̃1

(
w′

a

)) = d̃0
(
w′

a

)
, g′(d̃3

(
w′

a

)) = d̃2
(
w′

a

)
, g′′(d̃4

(
w′

a

)) = v′
1

and so (∂̃5 ⊗ 1)(w′
a ⊗ 1) = (v′

1 − v′
a) ⊗ 1, where

v′
a = (〈e1〉, 〈e2〉, 〈e1 + ae2 + e3〉, 〈e3〉, 〈e1 + e2〉

)
.

Note that the elements of the form (gw − w) ⊗ 1 are zero in D∗ ⊗GL3 Z. If

u′
a = (〈e3〉, 〈e1 + ae2 + e3〉, 〈e1〉, 〈e1 + e2〉, 〈e1 + ae2〉

)
,

u′′
a = (〈e1 + ae2 + e3〉, 〈e1〉, 〈e2〉, 〈e1 + e2〉, 〈e1 + ae2〉

)
,

where a, a − 1 ∈ R∗, then

gu′
a = (〈e3〉, 〈e1 + ae2 + e3〉, 〈e2〉, 〈e1 + e2〉, 〈e1 + ae2〉

)
,

g′u′′
a = (〈e3〉, 〈e1〉, 〈e2〉, 〈e1 + e2〉, 〈e1 + ae2〉

)
.
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So if a, a − 1, c, c − 1 ∈ R∗, then

(∂̃5 ⊗ 1)
(
(za − zc) ⊗ 1

) = (tc − ta) ⊗ 1,

where

za = (〈e3〉, 〈e1 + ae2 + e3〉, 〈e1〉, 〈e2〉, 〈e1 + e2〉, 〈e1 + ae2〉
)
,

ta = (〈e3〉, 〈e1 + ae2 + e3〉, 〈e1〉, 〈e2〉, 〈e1 + e2〉
)
.

If g1, g2, g3 and g4 are the matrices

⎛
⎝ −1 0 1

−1 0 0
b−1
1−a

1−b
1−a

0

⎞
⎠ ,

⎛
⎝ 0 −1 1

0 −1 0
b−a
1−a

a−b
1−a

0

⎞
⎠ ,

⎛
⎝ 1 0 −1

0 1 −1
0 0 1−b

b

⎞
⎠ ,

⎛
⎝ 1 0 0

0 1 0
0 0 1

b

⎞
⎠ ,

respectively, then

g1
(
d̃0(ya,b)

) = t 1
1−b

, g2
(
d̃1(ya,b)

) = t −a
b−a

,

g3
(
d̃3(ya,b)

) = v′
a−b
1−b

, g4
(
d̃3(ya,b)

) = v′
a,

where

ya,b = (〈e1〉, 〈e2〉, 〈e1 + ae2 + be3〉, 〈e3〉, 〈e1 + e2 + e3〉, 〈e1 + e2〉
)
.

(Here by r
s

∈ R∗ we mean s−1r .) By an easy computation

(∂̃5 ⊗ 1)(ya,b ⊗ 1) = t 1
1−b

⊗ 1 − t −a
b−a

⊗ 1 + v′
1 ⊗ 1 − v′

a−b
1−b

⊗ 1 + v′
a ⊗ 1 − xa,b ⊗ 1.

Now it is easy to see that (xa,b −xc,d)⊗ 1 ∈ (∂̃5 ⊗ 1)(D5(R
3)⊗GL3 Z). This completes the proof

of Step 3.

Proof of Step 4. From the homology long exact sequence of the short exact sequence obtained
in the first step, we get the exact sequence

H4
(
C∗

(
R3) ⊗GL3 Z

) → H4
(
D∗

(
R3) ⊗GL3 Z

) → H4
(
Q∗

(
R3) ⊗GL3 Z

)
.

By Steps 2 and 3, H4(D∗(R3)⊗GL3 Z) = 0, but Ẽ2
5,0 = H4(D∗(R3)⊗GL3 Z). This completes the

proof of the triviality of Ẽ2
5,0. �

Lemma 3.2. The group Ẽ2 is trivial for 0 � p � 4.
p,1
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Proof. Triviality of Ẽ2
p,1, p = 0,1, is a result of Lemma 3.1 and the fact that the spec-

tral sequence converges to zero (one can also prove this directly). If (a0, b0, c0) ∈ ker(d̃1
2,1),

a0, b0, c0 ∈ H1(R
∗), then a0 = b0. It is easy to see that this element is contained in im(d̃1

3,1).

Let x = (x1, . . . , x5, (x6,a)) ∈ Ẽ1
4,1, where x2 = (a2, a2, b2), x3 = (a3, b3, b3), x4 = (a4, b4, a4),

x5 = (a5, a5, b5), ai, bi ∈ H1(R
∗). By a direct calculation d̃4,1(x) = (p1,p2), where

p1 = −(a2, a2, b2) − (a3, b3, b3) + (b4, a4, a4) + (a5, a5, b5),

p2 = (a2, a2, b2) + (b3, b3, a3) − (a4, a4, b4) − (a5, a5, b5).

If y = ((a0, b0, c0), (d0, d0, e0)) ∈ ker(d̃1
3,1), a0, b0, c0, d0, e0 ∈ H1(R

∗), then b0 + d0 =
a0 − b0 + c0 + e0 = 0. Let x′

2 = (−b0,−b0,−c0), x′
3 = (−a0 + b0,0,0) and set x′ = (0, x′

2, x
′
3,

0,0,0) ∈ Ẽ1
4,1, then y = d̃4,1(x

′).
To prove the triviality of Ẽ2

4,1; let x ∈ ker(d̃4,1) and set

w1 = (〈e1〉, 〈e2〉, 〈e1 + e2〉, 〈e3〉, 〈e1 + ae2〉
)
,

w2 = (〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e3〉, 〈e1 + be3〉
)
,

w3 = (〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e2 + e3〉, 〈e2 + e3〉
)
,

w4,a = (〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e2〉, 〈e1 + ae2〉
)
,

w5 = (〈e1〉, 〈e2〉, 〈e3〉, 〈e1 + e2 + e3〉, 〈e1 + ae2 + be3〉
)
,

where a, a − 1, b, b − 1, a − b ∈ R∗, b fixed. The groups Ti = H1(StabGL3(wi)), i = 1,2,3,5
and T4 = ⊕

a,a−1∈R∗ H1(StabGL3(w4,a)) are summands of Ẽ1
5,1. Note that T1 = H1(R

∗I2 ×R∗),
T2 = H1(T ), T3 = T5 = H1(R

∗I3) and T4 = ⊕
a,a−1∈R∗ H1(R

∗I2 × R∗). The restriction of d̃1
5,1

on these summands is as follows,

d̃1
5,1|T1

(
(c1, c1, d1)

) = (
0, (c1, c1, d1),0,0, (c1, c1, d1),−(c1, c1, d1)

)
,

d̃1
5,1|T2

(
(c2, d2, c2)

) = (
0,0, (d2, c2, c2), (c2, d2, c2),0,−(c2, c2, d2)

)
,

d̃1
5,1|T3

(
(c3, c3, c3)

) = (
(c3, c3, c3), (c3, c3, c3),−(c3, c3, c3),0,0,0

)
,

d̃1
5,1|T4,a

(
(c4, c4, d4)

) = (
0,0,0,0,0, (c4, c4, d4)

)
,

d̃1
5,1|T5 = idH1(R

∗I3) .

Let z1 = (a5, a5, b5) ∈ T1 and z2 = (a4, b4, a4) ∈ T2. Then x − d̃1
5,1(z1 + z2) = (x′

1, x
′
2, x

′
3,

0,0, (x′
6,a)), so we can assume that x4 = x5 = 0. An easy calculation shows that a2 = b2 =

−a3 = −b3. If z3 = (a2, a2, a2) ∈ T3, then x − d̃5,1(z3) = (x′
1,0,0,0,0, (x′

6,a)). Again we can

assume that x2 = x3 = 0. If z4 = (x6,a) ∈ T4, then x− d̃1
5,1(z4) = (x′

1,0,0,0,0,0). Once more we
can assume that x6,a = 0. These reduce x to an element of the form (x1,0,0,0,0,0). If x1 ∈ T5,
then d̃1

5,1(x1) = (x1,0,0,0,0,0). This completes the triviality of Ẽ2
4,1. �

Lemma 3.3. The group Ẽ2 is trivial for 0 � p � 3.
p,2
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Proof. Triviality of Ẽ2
0,2 and Ẽ2

1,2 is a result of Lemmas 3.1 and 3.2 and the fact that the spectral
sequence converges to zero. Let

Ẽ1
1,2 = H2

(
R∗ × GL2

) = H2
(
R∗) ⊕ H2(GL2) ⊕ H1

(
R∗) ⊗ H1(GL2),

Ẽ1
2,2 = H2

(
R∗3) =

6⊕
i=1

Ti,

Ẽ1
3,2 = H2

(
R∗3) ⊕ H2

(
R∗I2 × R∗) =

9⊕
i=1

Ti,

where

Ti = H2
(
R∗

i

)
for i = 1,2,3, T4 = H1

(
R∗

1

) ⊗ H1
(
R∗

2

)
,

T5 = H1
(
R∗

1

) ⊗ H1
(
R∗

3

)
, T6 = H1

(
R∗

2

) ⊗ H1
(
R∗

3

)
,

T7 = H2
(
R∗I2

)
, T8 = H2

(
I2 × R∗),

T9 = H1
(
R∗I2

) ⊗ H1
(
I2 × R∗).

If y = (y1, y2, y3,
∑

r ⊗ s,
∑

t ⊗ u,
∑

v ⊗ w) ∈ Ẽ1
2,2 and

x =
(
x1, x2, x3,

∑
a ⊗ b,

∑
c ⊗ d,

∑
e ⊗ f,x7, x8,

∑
g ⊗ h

)
∈ Ẽ1

3,2,

a, b, . . . , h, r, . . . ,w ∈ H1(R
∗), then d̃1

2,2(y) = (h1, h2, h3), where

h1 = −y1 + y2,

h3 = −
∑

s ⊗ diag(1, r) −
∑

r ⊗ diag(1, s) −
∑

t ⊗ diag(1, u) +
∑

v ⊗ diag(1,w)

and d̃1
3,2(x) = (zi)1�i�6, where

z1 = z2 = x2 + x7, z3 = x1 + x3 − x2 + x8,

z4 =
∑

a ⊗ b −
∑

c ⊗ d +
∑

e ⊗ f,

z5 = −
∑

b ⊗ a −
∑

a ⊗ b +
∑

c ⊗ d +
∑

g ⊗ h,

z6 = −
∑

d ⊗ c +
∑

f ⊗ e +
∑

e ⊗ f +
∑

g ⊗ h.

If y ∈ ker(d̃1
2,2), then y1 = y2 and h3 = 0. By the isomorphism H1(R

∗) ⊗ H1(GL1) � H1(R
∗) ⊗

H1(GL2) and the triviality of h3, we have

−
∑

s ⊗ r −
∑

r ⊗ s −
∑

t ⊗ u +
∑

v ⊗ w = 0.

If

z =
(

y1, y1, y3,0,
∑

t ⊗ u,
∑

r ⊗ s +
∑

t ⊗ u,0,0,0

)
∈ Ẽ1

3,2,
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then y = d̃1
3,2(z) and therefore Ẽ2

2,2 = 0.

Let d̃1
3,2(x) = 0. Consider the summands S2 = H2(StabGL3(u2)) = H2(R

∗I2 × R∗) and S3 =
H2(StabGL3(u3)) = H2(R

∗ × R∗I2) of Ẽ1
4,2. Then Si � H2(R

∗) ⊕ H2(R
∗) ⊕ H1(R

∗) ⊗ H1(R
∗)

and by a direct calculation

d̃1
4,2|S2

(
(y1, y2, s ⊗ t)

) = (−y1,−y1,−y2,0,−s ⊗ t,−s ⊗ t, y1, y2, s ⊗ t),

d̃1
4,2|S3

(
(q1, q2,p ⊗ q)

) = (−q1,−q2,−q2,−p ⊗ q,−p ⊗ q,0, q2, q1,−q ⊗ p).

Choose z′
2 = (−x2,−x3,−∑

e ⊗ f ) ∈ S2 and z′
3 = (x3 + x8,0,−∑

a ⊗ b) ∈ S3. Then x =
d̃1

4,2(z
′
2 + z′

3) and therefore Ẽ2
3,2 = 0. �

Lemma 3.4. The groups Ẽ2
0,3, Ẽ2

1,3 and Ẽ3
0,4 are trivial.

Proof. This follows from Lemmas 3.1, 3.2, and 3.3 and the fact that the spectral sequence con-
verges to zero. �
Corollary 3.5.

(i) The complex

H2
(
R∗3 × GL0

) d1
3,2−−→ H2

(
R∗2 × GL1

) d1
2,2−−→ H2

(
R∗ × GL2

) d1
1,2−−→ H2(GL3) → 0

is exact, where d1
3,2 = H2(α1,3) − H2(α2,3) + H2(α3,3), d1

2,2 = H2(α1,2) − H2(α2,2) and

d1
1,2 = H2(inc).

(ii) The complex

H3
(
R∗2 × GL1

) d1
2,3−−→ H3

(
R∗ × GL2

) d1
1,3−−→ H3(GL3) → 0

is exact, where d1
2,3 = H3(α1,2) − H3(α2,2) and d1

1,3 = H3(inc).

Proof. The case (i) follows from the proof of Lemma 3.3 and (ii) follows from Lemma 3.4. �
Lemma 3.6. The groups E3

0,4, E3
5,0 are trivial.

Proof. Using 3.5, one sees that E2
p,q -terms are of the form

E2
0,4 ∗
0 0 E2

2,3 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 E2

3,1 ∗ ∗ ∗
0 0 0 0 0 E2

5,0 ∗.

From this description we get E3 � E∞ = 0. So we obtain the exact sequence
3,1 3,1
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0 → E3
5,0 → E2

5,0

d2
5,0−−→ E2

3,1 → 0.

The map of spectral sequences Ep,q → Ẽp,q induces the following commutative diagram

E1
3,3

d1
3,3

E1
2,3

d1
2,3

E1
1,3

Ẽ1
3,3

d̃1
3,3

Ẽ1
2,3

d̃1
2,3

Ẽ1
1,3.

Since E1
p,q = Ẽ1

p,q for p = 0,1,2, the diagram induces the surjective map E2
2,3 � Ẽ2

2,3. Now
look at the commutative diagram

E2
2,3

d2
2,3

E2
0,4

Ẽ2
2,3

d̃2
2,3

Ẽ2
0,4.

From the definitions of the spectral sequences

E2
0,4 = Ẽ2

0,4 = H4(GL3)/ imH4
(
R∗ × GL2

)
.

By Lemma 3.4, d̃2
2,3 is surjective, so the surjectivity of d2

2,3 follows from the commutativity of

the diagram and the surjectivity of the left-hand column map. Therefore E3
0,4 = 0.

Using this it is easy to see that E3
5,0 � E∞

5,0. Since the spectral sequence converges to zero, we

have E3
5,0 = 0. �

Following [20, Section 3] we define

Definition 3.7. Let F be an infinite field. We call

℘n(F )cl := H
(
Cn+2

(
Fn

)
GLn

→ Cn+1
(
Fn

)
GLn

→ Cn

(
Fn

)
GLn

)
the nth classical Bloch group.

Proposition 3.8. Let F be an infinite field. We have an isomorphism ℘3(F )cl � F ∗. In particular
if F is algebraically closed, then ℘3(F )cl is divisible.

Proof. In the proof of Lemma 3.6, we obtained the exact sequence

0 → E3 → E2 d2
5,0−−→ E2 → 0.
5,0 5,0 3,1
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By Lemma 3.6, E3
5,0 = 0. By the above definition E2

5,0 = ℘3(F )cl. It is also easy to see that

E2
3,1 = H1(F

∗). This proves the first part of the proposition. The second part follows from the
fact that for an algebraically closed field F , F ∗ is divisible. �
Remark 3.9. From Proposition 3.8 and the existence of a surjective map ℘3(F )cl → ℘3(F ) [20,
Proposition 3.11] we deduce that ℘3(F ) is divisible. See [20, 2.7] for the definition of ℘3(F ).
This gives a positive answer to Conjecture 0.2 in [20] for n = 3.

4. Künneth theorem for H3(F
∗ × F ∗)

Let F be an infinite field. The Künneth theorem for H3(μF × μF ) provides the following
form

0 → H3(μF ) ⊕ H3(μF ) → H3(μF × μF ) → TorZ1 (μF ,μF ) → 0.

Clearly H3(μF ) ⊕ H3(μF ) → H3(μF × μF ) is the map α := H3(i1) + H3(i2), where il : μF →
μF × μF is the usual injection, l = 1,2. Let

β : H3(p1) ⊕ H3(p2) : H3(μF × μF ) → H3(μF ) ⊕ H3(μF ),

where pl : μF × μF → μF is the usual projection, l = 1,2. Since β ◦ α = id, the above exact
sequence splits canonically. Thus we have the canonical decomposition

H3(μF × μF ) = H3(μF ) ⊕ H3(μF ) ⊕ TorZ1 (μF ,μF ).

We construct a splitting map TorZ1 (μF ,μF ) → H3(μF × μF ). The elements of the group
TorZ1 (μF ,μF ) = TorZ1 (H1(μF ),H1(μF )) are of the form 〈ξ, n, ξ 〉 = 〈[ξ ], n, [ξ ]〉, where ξ is an
element of order n in F ∗ [11, Chap. V, Section 6]. It is easy to see that ∂2(

∑n
i=1[ξ |ξ i]) = n[ξ ]

in (B1)μF
. For the definition of ∂2 and B∗ see [11, Chap. IV, Section 5]. By [11, Chap. V, Propo-

sition 10.6] a map φ : TorZ1 (H1(μF ),H1(μF )) → H3((B∗)μF
⊗ (B∗)μF

) can be defined as

a := 〈[ξ ], n, [ξ ]〉 
→ [ξ ] ⊗
n∑

i=1

[
ξ |ξ i

] +
n∑

i=1

[
ξ |ξ i

] ⊗ [ξ ].

Considering the isomorphism (B∗)μF
⊗ (B∗)μF

� (B∗)μF ×μF
we have φ(a) = χ(ξ) ∈ H3(μF ×

μF ), where

χ(ξ) :=
n∑

i=1

([
(ξ,1)

∣∣(1, ξ)
∣∣(1, ξ i

)] − [
(1, ξ)

∣∣(ξ,1)
∣∣(1, ξ i

)] + [
(1, ξ)

∣∣(1, ξ i
)∣∣(ξ,1)

]
+ [

(ξ,1)
∣∣(ξ i,1

)∣∣(1, ξ)
] − [

(ξ,1)
∣∣(1, ξ)

∣∣(ξ i,1
)] + [

(1, ξ)
∣∣(ξ,1)

∣∣(ξ i,1
)])

.
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Consider the following commutative diagram

0 H3(μF ) ⊕ H3(μF ) H3(μF × μF ) TorZ1 (μF ,μF ) 0

0
⊕

i+j=3 Hi(F
∗) ⊗ Hj(F

∗) H3(F
∗ × F ∗) TorZ1 (F ∗,F ∗) 0.

Since TorZ1 (μF ,μF ) � TorZ1 (F ∗,F ∗), we see that the second horizontal exact sequence in the
above diagram splits canonically. So we proved the following proposition.

Proposition 4.1. Let F be an infinite field. Then we have the canonical decomposition

H3
(
F ∗ × F ∗) =

⊕
i+j=3

Hi

(
F ∗) ⊗ Hj

(
F ∗) ⊕ TorZ1

(
F ∗,F ∗),

where a splitting map TorZ1 (F ∗,F ∗) = TorZ1 (μF ,μF ) → H3(F
∗ × F ∗) is defined by 〈[ξ ], n,

[ξ ]〉 
→ χ(ξ).

5. The injectivity theorem

Lemma 5.1. Let K1(Z(R)) ⊗ Z[ 1
n
] θ� K1(R) ⊗ Z[ 1

n
] be induced by the usual inclusion

Z(R) → R. Then for all i � 1,

Hi

(
Z(R)∗,Z

[
1

n

])
� Hi

(
K1(R),Z

[
1

n

])
.

Proof. Since the map θ is an isomorphism in the localized category of Z[ 1
n
]-modules, it induces

an isomorphism on the group homology in this category. �
Example 5.2.

(i) If R is commutative, then K1(Z(R)) = K1(R).
(ii) Let R be a (finite-dimensional) division F -algebra of rank [R : F ] = n2. Note that

F = Z(R). Then K1(F ) ⊗ Z[ 1
n
] � K1(R) ⊗ Z[ 1

n
]. This is also true if R is an Azumaya

S-algebra, where S is a commutative local ring [9, Corollary 2.3].

These are the examples one should keep in mind in the rest of this section.

Let A be a commutative ring with trivial GL3-action. Let P∗ → A be a free left A[GL3]-
resolution of A. Consider the complex

D′∗ : 0 ← D′
0

(
R3) ← D′

1

(
R3) ← ·· · ← D′

l

(
R3) ← ·· · ,

where D′
i (R

3) := Di(R
3)⊗A. The double complex D′∗ ⊗GL3 P∗ induces a first quadrant spectral

sequence E1 ⇒ Hp+q(GL3,A), where E1 = Ẽ1 (3) ⊗ A and d1 = d̃1 ⊗ idA.
p,q p,q p+1,q p,q p+1,q
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Lemma 5.3. The groups E2
3,0, E2

4,0, E2
2,1, E2

3,1, E2
1,2 and E2

2,2 are trivial.

Proof. This follows from the above spectral sequence and Lemmas 3.1, 3.2, and 3.3. �
Theorem 5.4. Let Z(R) be the center of R. Let k be a field such that 1/2 ∈ k.

(i) If K1(Z(R))⊗ Q � K1(R)⊗ Q, then H3(GL2,Q) → H3(GL3,Q) is injective. If R is com-
mutative, then Q can be replaced by k.

(ii) If R is an infinite field or a quaternion algebra over an infinite field, then H3(GL2,Z[ 1
2 ]) →

H3(GL3,Z[ 1
2 ]) is injective.

(iii) Let R be either R or an infinite field such that R∗ = R∗2. Then H3(GL2) → H3(GL3) is
injective.

(iv) The map H3(GL2(H)) → H3(GL3(H)) is bijective.

Proof. Let A = Z, Z[ 1
2 ], Q or k (depending on parts (i), . . . , (iv)). By Lemma 5.3, E2

0,3 � E∞
0,3 �

H3(GL3,A), so to prove the theorem it is sufficient to prove that H3(GL2,A) is a summand
of E2

0,3. To prove this it is sufficient to define a map ϕ : H3(R
∗ × GL2,A) → H3(GL2,A) such

that ϕ|H3(GL2,A) is the identity map and d1
1,3(H3(R

∗2 × GL1,A)) ⊆ ker(ϕ).

We have the canonical decomposition H3(R
∗ × GL2,A) = ⊕4

i=0 Si , where

Si = Hi

(
R∗,A

) ⊗ H3−i (GL2,A), 0 � i � 3,

S4 = TorA1
(
H1

(
R∗,A

)
,H1(GL2,A)

)
.

In case of (i) this follows from the Künneth theorem and the fact that S4 = 0. In other cases it
follows again from the Künneth theorem and an argument in the line of the previous section.
Note that for parts (ii), (iii) and (iv), the splitting map is

S4 � TorZ1 (μZ(R),μZ(R)) ⊗ A
φ−→ H3

(
R∗ × R∗,A

) q∗−→ H3
(
R∗ × GL2,A

)
,

where φ can be defined as in the previous section, and

q : R∗ × R∗ → R∗ × GL2, (a, b) 
→ (
a,diag(b,1)

)
.

Define ϕ|S0 : S0 → H3(GL2,A) the identity map,

ϕ|S2 : S2 � H2
(
R∗,A

) ⊗ H1(GL1,A) → H3
(
R∗ × GL1,A

) → H3(GL2,A)

the shuffle product, ϕ|S3 : S3 → H3(GL2,A) the map induced by R∗ → GL2, a 
→ diag(a,1),
and ϕ|S4 : S4 → H3(GL2,A) the composition

S4
φ−→ H3

(
R∗ × R∗,A

) inc∗−−→ H3(GL2,A).

By the homology stability theorem [8, Theorem 1] and a theorem of Dennis [5, Corollary 8] (see
also [1, Theorem 1]) we have the decomposition

H2(GL2) = H2
(
K1(R)

) ⊕ K2(R).
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So using Lemma 5.1 we have S1 = S′
1 ⊕ S′′

1 , where

S′
1 = H1

(
R∗,A

) ⊗ H2
(
Z(R)∗,A

)
,

S′′
1 = H1

(
R∗,A

) ⊗ K2(R) ⊗ A.

Define ϕ|S′
1

: S′
1 → H3(GL2,A) to be the shuffle product and define the map ϕ|S′′

1
: S′′

1 →
H3(GL2,A) as the composition

H1
(
Z(R)∗,A

) ⊗ K2(R) ⊗ A
f−→ H1

(
Z(R)∗,A

) ⊗ H2(GL2,A)

g−→ H3
(
Z(R)∗ × GL2,A

) h−→ H3(GL2,A),

where f = 1
2λ, λ being the natural map

λ : K2(R) ⊗ A = H2
(
E(R),A

) → H2
(
GL(R),A

) � H2(GL2,A),

and g is the shuffle product. Here h is induced by the map

Z(R)∗ × GL2 → GL2, (a,B) 
→ aB.

By Proposition 4.1 we have H3(R
∗2 × GL1,A) = ⊕8

i=0 Ti , where

T0 = H3(GL1,A),

T1 =
3⊕

i=1

Hi

(
R∗

1 ,A
) ⊗ H3−i (GL1,A),

T2 =
3⊕

i=1

Hi

(
R∗

2 ,A
) ⊗ H3−i (GL1,A),

T3 = H1
(
R∗

1 ,A
) ⊗ H1

(
R∗

2 ,A
) ⊗ H1(GL1,A),

T4 = TorA1
(
H1

(
R∗

1 ,A
)
,H1

(
R∗

2 ,A
))

,

T5 = TorA1
(
H1

(
R∗

1 ,A
)
,H1(GL1,A)

)
,

T6 = TorA1
(
H1

(
R∗

2 ,A
)
,H1(GL1,A)

)
,

T7 = H1
(
R∗

1 ,A
) ⊗ H2

(
R∗

2 ,A
)
,

T8 = H2
(
R∗

1 ,A
) ⊗ H1

(
R∗

2 ,A
)
.

Note that here R∗
i = R∗, i = 1,2, is the ith summand of R∗2 = R∗ × R∗. We know that d1

1,3 =
σ1 −σ2, where σi = H3(αi,2). It is not difficult to see that d1

1,3(T0 ⊕T1 ⊕T2 ⊕T7 ⊕T8) ⊆ ker(ϕ).
Here one should use the isomorphism H1(GL1,A) � H1(GL2,A). Now (σ1 − σ2)(T4) ⊆ S4,
σ1(T5) ⊆ S0 and σ2(T5) ⊆ S4, σ1(T6) ⊆ S4 and σ2(T6) ⊆ S0. With this description one can see
that d1

1,3(T4 ⊕T5 ⊕T6) ⊆ ker(ϕ). To finish the proof of the claim we have to prove that d1
1,3(T3) ⊆

ker(ϕ). Let x = a ⊗ b ⊗ c ∈ T3. By Lemma 5.1, we may assume that a, b, c ∈ Z(R)∗. Then
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d1
1,3(x) = −b ⊗ c

(
diag(a,1),diag(1, c)

) − a ⊗ c
(
diag(b,1),diag(1, c)

) ∈ S1

= (−b ⊗ c(a, c) − a ⊗ c(b, c), b ⊗ [a, c] + a ⊗ [b, c]) ∈ S′
1 ⊕ S′′

1 ,

where

[a, c] := c
(
diag

(
a,1, a−1),diag

(
b, b−1,1

)) ∈ H2
(
E(R),A

)
= c

(
diag(a,1),diag

(
b, b−1)) ∈ H2(GL2,A).

Thus,

ϕ
(
d1

1,3(x)
) = −c

(
diag(b,1),diag(1, a),diag(1, c)

) − c
(
diag(a,1),diag(1, b),diag(1, c)

)
+ 1

2
c
(
diag(b, b),diag(a,1),diag

(
c, c−1))

+ 1

2
c
(
diag(a, a),diag(b,1),diag

(
c, c−1)).

Set p := diag(p,1), q := diag(1, q),pqr := c(diag(p,1),diag(1, q),diag(1, r)), etc. Conjuga-
tion by

( 0 1
1 0

)
induces the equality pqr = pqr and it is easy to see that pqr = −qpr and

p−1qr = −pqr . With these notations and the above relations we have

ϕ
(
d1

1,3(x)
) = −bac − abc + 1

2

(
bac + bac−1 + bac + bac−1

)
+ 1

2

(
abc + abc−1 + abc + abc−1

) = 0.

This proves that H3(GL2,A) is a summand of E2
0,3. This proves (i) and (ii).

The proof of (iii) is almost the same as the proof of (i), only we need to modify the definition
of the map f . If R∗ = R∗2, f should be induced by the map

K2(R) = KM
2 (R) → H2(GL2), {a, b} 
→ c

(
diag(

√
a,1),diag

(
b, b−1)).

Note that if R is commutative and R∗ = R∗2, then KM
2 (R) is uniquely 2-divisible [2, Proposi-

tion 1.2], so in this case f is well-defined.
Now let R = R. It is well-known that KM

2 (R) = 〈{−1,−1}〉 ⊕ KM
2 (R)◦, where 〈{−1,−1}〉

is a group of order 2 generated by {−1,−1} and KM
2 (R)◦ is a uniquely divisible group. In fact

every element of KM
2 (R) can be uniquely written as m{−1,−1} + ∑{ai, bi}, ai, bi > 0 and

m = 0 or 1. Now we define the map KM
2 (R) → H2(GL2(R)) by {−1,−1} 
→ 0 and {a, b} 
→

c(diag(
√

a,1),diag(b, b−1)) for a, b > 0.
For the proof of (iv) we should mention that R>0 = KM

1 (R)◦ � K1(H) and KM
2 (R)◦ � K2(H)

[17, p. 188]. Since K2(H) and H2(R
>0) are uniquely divisible, the proof of injectivity is similar

to the above approach. Surjectivity follows from [8, Theorem 2] and the fact that KM
n (H) are

trivial for n � 2 [16, Remark B.15]. �
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Corollary 5.5. Let Z(R) be the center of R. Let k be a field such that 1/2 ∈ k.

(i) If K1(Z(R)) ⊗ Q � K1(R) ⊗ Q, then we have the exact sequence

0 → H3(GL2,Q) → H3(GL3,Q) → KM
3 (R) ⊗ Q → 0.

If R is commutative, then Q can be replaced by k.
(ii) If R is an infinite field or a quaternion algebra with an infinite center, then we have the split

exact sequence

0 → H3

(
GL2,Z

[
1

2

])
→ H3

(
GL3,Z

[
1

2

])
→ KM

3 (R) ⊗ Z

[
1

2

]
→ 0.

(iii) Let R be an infinite field such that R∗ = R∗2. Then we have the split exact sequence

0 → H3(GL2) → H3(GL3) → KM
3 (R) → 0.

(iv) We have the (non-split) exact sequence

0 → H3
(
GL2(R)

) → H3
(
GL3(R)

) → KM
3 (R) → 0.

Proof. The exactness in all cases follows from Theorem 5.4 and the following exact sequence
[8, Theorem 2]

H3(GL2) → H3(GL3) → KM
3 (R) → 0.

If R is commutative, we have a natural map KM
3 (R) → K3(R) such that the composition

KM
3 (R) → K3(R) → H3(GL3) → KM

3 (R)

coincides with the multiplication by 2 [8, Proposition 4.1.1]. Now splitting maps can be con-
structed easily. �
Remark 5.6.

(i) Let R = Mm(D), where D is a finite-dimensional division F -algebra. Then GLn(R) �
GLmn(D). So by the stability theorem and [8, Theorem 2], KM

i (R) = 0 for m � 2 and
i � 2.

(ii) It seems that it is not known whether for a finite-dimensional division F -algebra D,
H2(GL1(D),Q) → H2(GL2(D),Q) is injective. The only case that is known to us is when
D = H. This follows from applying the Künneth theorem to GLn(H) = SLn(H) × R>0 for
n = 1,2 and the isomorphism K2(H) � H2(SL1(H)) from [17, p. 287].

6. Third homology of SL2 and the indecomposable K3

In this section we assume that R is a commutative ring with many units, unless it is men-
tioned otherwise. When a group G acts on a module M , we use the standard definition MG
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for H0(G,M). Consider the action of R∗ on SLn defined by

a.B :=
(

a 0
0 1

)
B

(
a−1 0

0 1

)
,

where a ∈ R∗ and B ∈ SLn. This induces an action of R∗ on Hi(SLn). So by Hi(SLn)R∗ we
mean H0(R

∗,Hi(SLn)).

Theorem 6.1. Let k be a field such that 1/2 ∈ k.

(i) H3(SL2, k)R∗ → H3(SL, k) is injective.
(ii) If R is an infinite field, then H3(SL2,Z[ 1

2 ])R∗ → H3(SL,Z[ 1
2 ]) is injective.

(iii) If R is either R or an infinite field such that R∗ = R∗2, then H3(SL2) → H3(SL) is injective.
(iv) The map H3(SL2(H)) → H3(SL3(H)) is bijective.

Proof. Part (iv) follows from Theorem 5.4 and by applying the Künneth theorem to GLn(H) =
SLn(H) × R>0, n � 1.

Since H3(SL) → H3(GL) is injective, to prove (i), (ii) and (iii), by Theorem 5.4 it is suf-
ficient to prove that H3(SL2, k)R∗ → H3(GL2, k), H3(SL2,Z[ 1

2 ])R∗ → H3(GL2,Z[ 1
2 ]) and

H3(SL2) → H3(GL2) are injective.
Set A := Z[ 1

2 ] or k. From the map γ : R∗ × SL2 → GL2, (a,M) 
→ aM , we obtain two short
exact sequences

1 → μ2,R → R∗ × SL2 → im(γ ) → 1,

1 → im(γ ) → GL2 → R∗/R∗2 → 1.

Writing the Lyndon–Hochschild–Serre spectral sequence of the above exact sequences and car-
rying out a simple analysis, one gets

H3
(
im(γ ),A

) � H3
(
R∗ × SL2,A

)
, H3

(
im(γ ),A

)
R∗/R∗2 � H3(GL2,A).

Since the action of R∗2 on H3(im(γ ),A) is trivial,

H3
(
im(γ ),A

)
R∗ � H3(GL2,A).

These imply

H3(GL2,A) � H3
(
R∗ × SL2,A

)
R∗ .

Now the Künneth theorem implies that H3(SL2,A)R∗ → H3(GL2,A) is injective. This proves
parts (i) and (ii).

(iii) First let R∗ = R∗2. The map γ induces the short exact sequence

1 → μ2,R → R∗ × SL2 → GL2 → 1.
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From the Lyndon–Hochschild–Serre spectral sequence of this exact sequence, one sees that
H3(inc) : H3(SL2) → H3(GL2) has a kernel of order dividing 4. To show that this kernel is
trivial we look at the spectral sequence induced by 1 → SL2 → GL2 → R∗ → 1,

E′2
p,q = Hp

(
R∗,Hq(SL2)

) ⇒ Hp+q(GL2).

By Proposition 2.6 and the fact that the action of R∗ on Hi(SL2) is trivial, we get the following
E′2-terms:

∗ ∗
H3(SL2) ∗ ∗
KM

2 (R) R∗ ⊗ KM
2 (R) E′2

2,2 ∗
0 0 0 0 0

Z H1
(
R∗) H2

(
R∗) H3

(
R∗) H4

(
R∗).

Here E′2
2,2 = H2(R

∗)⊗KM
2 (R)⊕TorZ1 (μR,KM

2 (R)), which is 2-divisible as KM
2 (R) is uniquely

2-divisible. Hence

H3(SL2)/ im
(
d ′2

2,2

) � E′∞
0,3 ⊆ H3(GL2),

which is induced by SL2 ↪→ GL2. Thus, im(d ′2
2,2) ⊆ ker(H3(inc)). This means that im(d ′2

2,2) is

2-divisible of order dividing 4. This is possible only if im(d ′2
2,2) is trivial.

Now let R = R. Consider the following exact sequences

0 → Z/4Z → H3
(
SL2(R)

) → H3
(
PSL2(R)

) → 0,

0 → H3
(
PSL2(R)

) → H3
(
PGL2(R)

) → Z/2Z → 0

(see [15, App. C, C.10, Theorem C.14]). In the first exact sequence Z/4Z is mapped onto
the subgroup of order 4 generated by w := ( 0 1

−1 0

)
(see [15, p. 207]). Set α : H3(SL2(R)) →

H3(GL2(R)). From the diagram

H3(SL2(R)) H3(GL2(R))

H3(PSL2(R)) H3(PGL2(R))

and the above exact sequences, one sees that ker(α) is of order dividing 4. Here we describe the
E2-terms E2

1,2 and E2
2,2 of the spectral sequence

E2
p,q = Hp

(
R∗,Hq

(
SL2(R)

)) ⇒ Hp+q

(
GL2(R)

)
,

which is associated to 1 → SL2(R) → GL2(R)
det−−→ R∗ → 1. It is well-known that

H2
(
SL2(R)

) � KM(R)◦ ⊕ Z,
2
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where KM
2 (R)◦ is the uniquely divisible part of KM

2 (R). The action of R∗ on KM
2 (R)◦ is trivial

and its action on Z is through multiplication by sign(r), where r ∈ R∗ (see the proof of Proposi-
tion 2.15 in [17, p. 288]). Let Z̄ be Z with this new action of R∗. Thus for p = 1,2,

E2
p,2 = Hp

(
R∗) ⊗ KM

2 (R)◦ ⊕ Hp

(
R∗, Z̄

)
.

It is not difficult to see that H1(R
∗, Z̄) = 0 and H2(R

∗, Z̄) = Z/2Z. Now by an easy analysis of
the above spectral sequence, one sees that ker(α) is of order diving 2. Since w2 = −I2 ∈ GL2(R),
ker(α), if not trivial, must be generated by x = [−I2|− I2|− I2]. But α(x) = [−I2|− I2|− I2] ∈
H3(GL2(R)) is non-trivial. Therefore ker(α) = 0. Note that here one has to use the fact that the
action of R∗ on H3(SL2(R)) is trivial (see [15, App. C.14] and [6, 2.10, p. 230]). Therefore
E2

0,3 = H3(SL2(R)). �
Corollary 6.2. Let k be a field such that 1/2 ∈ k.

(i) We have the split exact sequence

0 → H3(SL2, k)R∗ → H3(SL, k) → KM
3 (R) ⊗ k → 0.

(ii) If R is an infinite field, then we have the split exact sequence

0 → H3

(
SL2,Z

[
1

2

])
R∗

→ H3

(
SL,Z

[
1

2

])
→ KM

3 (R) ⊗ Z

[
1

2

]
→ 0.

(iii) If R is an infinite field such that R∗ = R∗2, then

0 → H3(SL2) → H3(SL) → KM
3 (R) → 0

is split exact.
(iv) We have the split exact sequence

0 → H3
(
SL2(R)

) → H3
(
SL(R)

) → KM
3 (R)◦ → 0,

where KM
3 (R) � 〈{−1,−1,−1}〉 ⊕ KM

3 (R)◦.

Proof. First we prove (iv). The injectivity follows from Theorem 6.1. From the diagram

1 SL2(R) GL2(R) R∗ 1

1 SL(R) GL(R) R∗ 1,

we obtain a map of spectral sequences
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E2
p,q = Hp(R∗,Hq(SL2(R))) Hp+q(GL2(R))

E′2
p,q = Hp(R∗,Hq(SL(R))) Hp+q(GL(R)),

which give us a map of filtration

0 = F−1 ⊆ F0 ⊆ F1 ⊆ F2 ⊆ F3 = H3(GL2(R))

0 = F ′−1 ⊆ F ′
0 ⊆ F ′

1 ⊆ F ′
2 ⊆ F ′

3 = H3(GL(R)).

Since H3(SL2(R)) → H3(GL2(R)) is injective, F0 = E∞
0,3 � H3(SL2(R)). It is easy to see that

E∞
p,1 = E′∞

p,1 = 0, F ′
0 = E′∞

0,3 � H3(SL(R)) and E∞
3,0 � E′∞

3,0 . Since

H2
(
SL2(R)

) = Z ⊕ KM
2 (R)◦ → Z/2Z ⊕ KM

2 (R)◦ = H2
(
SL(R)

)
is surjective, E∞

2,2 ↪→ E′∞
2,2 with coker(E∞

2,2 → E′∞
2,2 ) � Z/2Z (see the proof of Theorem 6.1(iii)).

By an easy analysis of the above filtration, one gets the exact sequence

0 → H3
(
SL(R)

)
/H3

(
SL2(R)

) → H3
(
GL(R)

)
/H3

(
GL2(R)

) → Z/2Z → 0.

Therefore H3(SL(R))/H3(SL2(R)) � KM
3 (R)◦. A splitting map can be constructed using the

composition KM
3 (R)◦ → H3(GL(R)) → H3(SL(R)).

The proof of (i), (ii) and (iii) are similar. In the proof of (iii) we need the homology stability
H2(SL2) = H2(SL), and in the proof of (i) and (ii) we need the isomorphism

H1

(
R∗,H2

(
SL2,Z

[
1

2

]))
� H1

(
R∗,H2

(
SL,Z

[
1

2

]))
.

To prove the latter, consider the exact sequence

1 → R∗2 → R∗ → R∗/R∗2 → 1.

This induces a map of Lyndon–Hochschild–Serre spectral sequences, with coefficients in
H2(SL2,Z[ 1

2 ]) and H2(SL,Z[ 1
2 ]) respectively, from which one easily obtains the commutative

diagram

H1(R
∗2,H2(SL2,Z[ 1

2 ]))R∗
�

H1(R
∗,H2(SL2,Z[ 1

2 ]))

H1(R
∗2,H2(SL,Z[ 1

2 ])) �
H1(R

∗,H2(SL,Z[ 1
2 ])).

The action of R∗2 on H2(SL2,Z[ 1 ]) is trivial, so
2
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H1

(
R∗2,H2

(
SL2,Z

[
1

2

]))
R∗

�
(

H1

(
R∗2,Z

[
1

2

])
⊗ H2

(
SL2,Z

[
1

2

]))
R∗

� H1

(
R∗2,Z

[
1

2

])
⊗ H2

(
SL2,Z

[
1

2

])
R∗

� H1

(
R∗2,Z

[
1

2

])
⊗ H2

(
SL,Z

[
1

2

])

� H1

(
R∗2,H2

(
SL,Z

[
1

2

]))
.

Thus the left-hand column map in the above diagram is an isomorphism. This implies the iso-
morphism of the right-hand column map. �
Remark 6.3. Let R = R, R = H or R be an infinite field such that R∗ = R∗2. Then H3(SL2) →
H3(SL3) is injective. This follows from Theorem 6.1, and the commutativity of the following
diagram

H3(SL2) H3(SL3)

H3(SL).

This generalizes the main theorem of Sah in [17, Theorem 3.0].

Let KM
3 (R) → K3(R) be the natural map from the Milnor K-group to the Quillen K-group.

Define K3(R)ind := coker(KM
3 (R) → K3(R)). This group is called the indecomposable part of

K3(R).

Proposition 6.4. Let k be a field such that 1/2 ∈ k.

(i) K3(R)ind ⊗ k � H3(SL2, k)R∗ .
(ii) If R is an infinite field, then K3(R)ind ⊗ Z[ 1

2 ] � H3(SL2,Z[ 1
2 ])R∗ .

(iii) If R is either R, or an infinite field such that R∗ = R∗2, then K3(R)ind � H3(SL2).

Proof. Let A = Z[ 1
2 ], Z or k. By Corollary 6.2, we have the commutative diagram

0 KM
3 (R) ⊗ A K3(R) ⊗ A

h3

K3(R)ind ⊗ A 0

0 KM
3 (R) ⊗ A H3(SL,A) H3(SL2,A)R∗ 0.

Here h3 is the Hurewicz map K3(R) = π3(B SL+) → H3(SL) and it is surjective with two tor-
sion kernel [17, Proposition 2.5]. In case R∗ = R∗2, h3 is an isomorphism. The snake lemma
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implies (i), (ii) and the second part of (iii). If R = R, we look at the following commutative
diagram

KM
3 (R) K3(R)

h3

K3(R)ind 0

0 KM
3 (R)◦ H3(SL(R)) H3(SL2(R)) 0.

The claim follows from the snake lemma using the fact that ker(K3(R)
h3−→ H3(SL(R))) = Z/2Z

[17, 2.17]. �
Remark 6.5. Theorem 6.4 generalizes Theorem 4.1 in [17], where three torsion is not treated.

We can offer the following non-commutative version of the above results.

Proposition 6.6.

(i) Let R be a quaternion algebra. Then

0 → H3

(
SL2,Z

[
1

2

])
R∗

→ H3

(
SL,Z

[
1

2

])
→ KM

3 (R) ⊗ Z

[
1

2

]
→ 0

is exact.
(ii) If R is an Azumaya R-algebra, where R is a commutative local ring with an infinite residue

field, then

0 → H3(SL2,Q)R∗ → H3(SL,Q) → KM
3 (R) ⊗ Q → 0

is exact.

Proof. (i) From the commutative diagram

1 SL2 GL2 K1(R) 1

1 SL GL K1(R) 1,

we obtain a map of spectral sequences

E2
p,q = Hp(K1(R),Hq(SL2,Z[ 1

2 ])) Hp+q(GL2,Z[ 1
2 ])

E′2
p,q = Hp(K1(R),Hq(SL,Z[ 1

2 ])) Hp+q(GL,Z[ 1
2 ]).
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Since the map Z(R)∗ × SL2 → GL2, (a,B) 
→ aB , has two torsion kernel and cokernel
(use Example 5.2), Hi(SL2,Z[ 1

2 ])R∗ ↪→ Hi(GL2,Z[ 1
2 ]) (see the proof of Theorem 6.1(i)). By

Lemma 5.1, Hi(Z(R)∗,Z[ 1
2 ]) ↪→ Hi(GL2,Z[ 1

2 ]), and it is easy to prove the injectivity of
Hi(SL,Z[ 1

2 ]) ↪→ Hi(GL,Z[ 1
2 ]). By an easy analysis of the above spectral sequences, as in the

proof of Corollary 6.2, we get the desired result. The proof of (ii) is similar. �
Corollary 6.7. Let D be a finite-dimensional F -division algebra. Let

KM
3 (F,D) := ker

(
KM

3 (F ) → KM
3 (D)

)
.

Then we have the following exact sequence

0 → H3
(
SL2(F ),Q

)
F ∗ → H3

(
SL2(D),Q

)
D∗ → KM

3 (F,D) ⊗ Q → 0.

Proof. By Corollary 2.3 from [9], K3(F ) ⊗ Q � K3(D) ⊗ Q. Therefore,

H3
(
SL(F ),Q

) � H3
(
SL(D),Q

)
(see [17, Theorem 2.5]). Now the claim follows from Corollary 6.2 and Proposition 6.6. �
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