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Role of laminin carbohydrates on cellular interactions
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Role of laminin carbohydrates on cellular interactions. Laminins, a
family of large multidomain glycoproteins of the basal lamina, have
been implicated in the development and maintenance of cellular and
tissue organization. Considerable interest has arisen concerning the
ways in which laminin carries out its biological functions. Previously
these biologic responses have been primarily attributed to the peptide
sequences of laminin, however, newer studies suggest that laminin
carbohydrates may also participate in such cellular activities. Recently,
a subpopulation of laminin molecules purified from EHS sarcoma by
lectin affinity chromatography has been shown to contain about 25 to
30% carbohydrate. Most of the carbohydrates present are complex-type
asparagine-linked oligosaccharides encompassing many different struc-
tures, some of which are unique to laminin. To date, the biological
function of the carbohydrates of laminin remains somewhat unclear.
They do not appear to be needed for heparin binding or to enhance
proteinase stability, however, current evidence suggests they are im-
portant in cellular spreading and neurite outgrowth. It is our hypothesis
that the covalently-linked carbohydrate moieties of laminin will ulti-
mately prove to be involved in information transfer to responsive cells.
It is the purpose of this review to delineate current concepts of the
structure and function of this unique glycoprotein's sugar chains.

The basement membrane is a specialized extracellular com-
plex of macromolecules which forms a barrier to segregate
epithelial and endothelial cells from the stromal tissues. This
sheet-like structure appears early in development and has been
thought to play roles in the promotion of cell differentiation and
growth, selective permeability, and cell attachment [1]. This
structure has also been shown to be of importance in the
alterations which occur during carcinomatous cell invasion and
metastasis [2]. The extracellular macromolecules of basement
membranes include type IV collagen, noncollagenous glycopro-
teins, and proteoglycans [3].

The major noncollagenous glycoprotein of the extracellular
matrix is laminin, which is localized in the lamina lucida of
basement membranes [4]. Laminin was first isolated by Timpi et
al in 1979 from neutral salt extracts of the mouse Engelbreth-
Holm-Swarm (EHS) tumor [5]. Since that time, laminin has
been found to promote cell adhesion, growth, migration, differ-
entiation, and neurite outgrowth [1]. Previously these biologic
responses have been primarily attributed to the peptide se-
quences of laminin, however, recent studies suggest that lami-
nm carbohydrates may also participate in such cellular activi-
ties [6—8].

Laminin carbohydrates are recognized by several different
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kinds of integrin and non-integrin cell surface components [9].
Among the non-integrin components are: (1) a 67 kDa protein
which has both a peptide recognition site and a lectin-like
galactoside binding site [10], (2) two S-type lectins, the Mac-2
surface antigen of macrophages [11] and one obtained from
cardiac tissue [12], and (3) a cell surface galactosyl transferase
which has also been demonstrated to play an important role in
the mediation of biological responses to laminin [13].

Considerable interest has arisen concerning the ways in
which laminin carries out its biological functions. As a prereq-
uisite, a clear understanding of the biological function of
laminin requires a knowledge of its structure. Although the
function of laminin carbohydrates has not yet been definitively
determined, it will be the purpose of this review to delineate
current concepts of the structure and function of this unique
glycoprotein's sugar chains.

Molecular structure and organization of laminin

Laminin, a large basement membrane glycoprotein (Mr =
900,000), is made up of three distinct polypeptide chains (B 1,
B2, and A) linked by disulfide bonds [1, 14]. The three chains of
laminin are arranged in a unique cruciform shape (Fig. 1) as
viewed by electron microscopy, with three arms of similar
length (about 37 nm) and one longer arm (about 77 nm) [15]. The
A chain has one large terminal globule on its long arm and
another at its carboxy-terminus. Two smaller globules evenly
spaced along its shorter arm, are also present. The B chains
each have a small globular region at their amino-termini with
another globular region closer to the center of molecule. Intra-
chain disulfide bonds also contribute to the structure of this
molecule and numerous biologically-active domains have been
identified [16, 5]. The cruciform shape of laminin is remarkably
conserved through evolution from sea urchin [17] and Dros-
ophila [18, 19] to humans [20, 21]. Isoforms of laminin have
been found that differ only in the ratio or size of the three
component chains compared to the prototypical A-B1-B2 mol-
ecule of EHS tumor-derived laminin [22, 23].

The complete amino acid sequence of the B 1 (Mr = 220,000)
[24], B2 (M = 200,000) [16] and A (Mr = 400,000) [25] chains of
mouse and human [20, 21, 26] laminin have been deduced by
molecular cloning. The three globular regions of the short arm
of the A chain are separated by intervening cysteine-rich,
epidermal growth factor-like (EGF) rods. Similarly, the B chain
globular domains are also separated by EGF-like repeats. The
long arm a-helix of the A chain forms a super helical coiled-coil
region with corresponding a-helices of the 81 and B2 chains,
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Fig. 1. Diagram of laminin structure and
binding domains adapted from reference 1.
NXS/T sites signify the number of consensus
sequences for asparagine glycosylation.

ending in a carboxy-terminal globule composed of five homol-
ogous repeats [27]. The B chains are structurally similar to each
other but lack the carboxy-terminal globule of the A chain.
However, the amino terminus of the A chain is homologous to
the corresponding regions of the B chains [281. The B chains
from mouse and human laminin are 90% homologous while the
A chains exhibit 74% homology [26]. Thus, laminin structure is
highly conserved, reflecting its cross-species prominence in
basal laminae.

Glycosylation of laminin

Two studies show that laminin contains 12 to 15% carbohy-
drate [29, 30] although the most recent data suggest that the
actual percentage might reach twice that amount. Recently, a
subpopulation of laminin molecules purified from EHS sarcoma
by lectin affinity chromatography (Gr(ffonia simplicfolia agglu-
tinin I) has been shown to contain about 25 to 30% carbohydrate
[31]. Sixty-eight consensus sequences for potential asparagine
glycosylation have been identified in mouse laminin, with the
majority of sites concentrated in the long arm [51. The A chain
has 43 potential N-glycosylation sites [25], the Bi chain has 11
potential sites [24] and the B2 chain has 14 potential sites [16]
(Fig. 1). Mouse EHS tumor larninin has about 40 different
glycosyl substituents on these 68 potential sites [30]. Most of
the carbohydrates present are complex-type asparagine-linked
oligosaccharides encompassing many different structures [29—
31], some of which are unique to laminin.

The structural studies of laminin carbohydrates carried out to
date suggest that laminin contains exclusively N-linked oh-
gosaccharides [29—31]. Unlike some glycoproteins, the pres-
ence of carbohydrates on laminin does not seem to confer
protection from proteolytic degradation nor are they necessary
for binding to heparin [32]. The biosynthetic assembly of

laminin chains into a molecule also seems to be independent of
N-glycosylation [33].

All the N-linked sugar chains share a common Man3GlcNAc2
core. Methylation analysis has revealed that the oligosaccha-
rides of laminin contains bi- and triantennary chains and repeat-
ing sequences of 3Gal/31,4GlcNAc/31 units [31]. Prominent
features of the oligosaccharides are the presence of terminal
a-galactose moieties, terminal N-acetyl-neuraminic acid resi-
dues, and poly-N-acetyllactosamine-containing chains. The lat-
ter have both linear blood group i and branched blood group I
structures [31]. Figure 2 shows representative structures of the
N-linked oligosaccharides of laminin, adapted from references
[29—31]. Similar to other glycoproteins, laminin glycosyl sub-
stituents may vary with the species and tissue source of the
molecule, the stage of tissue or organ development, and onco-
genesis, among other factors [34].

Within the same set of oligosaccharides in any given group,
extensive microheterogeneity appears to be present [29]. For
example, the poly-N-acetyllactosamine-containing chains con-
tain a-galactosyl, f3-galactosyl and sialyl end groups in addition
to the polylactosaminyl chain. The relative distribution of the
lactosamine repeating units on the branched N-linked ohigosac-
charides is not yet known. Furthermore, it is not clear whether
siahic acid and a-galactosyl residues occur at the non-reducing
ends of the branches of the same oligosaccharide molecule [29,
35].

Interactions of laminin's sugar chains
N-linked oligosaccharides are often found as signals which

incite lectin-mediated responses by animal cells [36—38]. The
prototypical example has been hepatic cell receptors which
recognize terminal galactose residues of oligosaccharides of
circulating glycoproteins [39]. The recognition signal designates
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Termini Core structures removal of the glycoprotein from the circulation, followed by its
intracellular degradation [40]. In this instance, and in other

Gala Ga113-GICNACMan \ examples [41], it is the carbohydrate moiety which is critical for

L
R biological activity, rather than the polypeptide backbone of the

molecule.
Gall-GIcNAc-Mafl Correct and complete glycosylation has been shown to be

essential for complete biological activity in some target cells;

Gala-GaI-GIcNAc-Man receptor binding to the a subunit of unglycosylated gonado-\ tropic hormones is intact, but subsequent intracellular signal-
A ling via a second messenger pathway is defective whenspecific

N-linked glycosyl groups are cleaved from the polypeptide
NeuAc-Gal-GIcNAc-Man structure of the hormone [42, 43]. This phenomenon may

provide a clue to the ways in which cells progressively respond
GaII-(GIcNAc-Gal)-GIcNAc-Man to a laminin surface, initially adhering, then spreading. Con-

Gala A ceivably, the information encoded by both the protein and
NeuAc carbohydrate domains of laminin may be important for the

Gala-Gal-GIcNAc-Man sequence of cellular responses.
Several receptors that may mediate the biological effects of

[

Gal-GlcNAc laminin carbohydrate moieties have recently been found. A
newly discovered 67 kDa lamininreceptorhas been shown to be

Gaq3-(GlcNAc-Gal)-GlcNAC-Mafl structurally and functionally similar to the 67 kDa elastin
receptor [101. This receptor interacts with a hydrophobic Se-

Gala R quence in the B 1 chain of laminin, similar to the cell recognition

NeuAc-Gal-GIcNAc-Man / domain of elastin. Of special interest is the finding that this
receptor contains a galactoside binding domain which shows
immunological similarity to a rat lung lectin; apparently the

[
Gal-GlcNAc lectin-like domain has a regulatory function in the 67 kDa

receptor [441. The receptor can be eluted from an elastin or
Gal-(GlcNAc-Gal)-GlcNAc-Man laminin column by 1 m lactose and is thought to function in

Gala vivo in the macromolecular assembly of elastic fibers [44].
NeuAc Another example of a lectin's potential interaction with

Gal-(GlcNAc-Gal)m-GlCNAC-Mafl / basement membrane components is the recent isolation of a
lectin which is specific for poly-N-acetyllactosamine chains
from calf heart [45]. When this lectin was used in an affinity

Fuc column, laminin was bound with high affinity, leading to spec-
ulation about the possible role of this soluble animal lectin in

Ga1J3-GIcNAc-Man extracellular matrix interactions [12].
A second category of molecules that have shown to interact

A with laminin's sugar chains, the cell surface glycosyltrans-

GalnGlcNAcMan
d' ferases, have been implicated in cell-cell adhesion and cell

I' migration on extracellular matrix substrates. These molecules
were first shown to be active in sperm/egg binding interactions

Man-Man [46]. It was reported in 1982 that the only glycosyltransferase
present in significant quantity on the surface of embryonal

A carcinoma cells was galactosyltransferase and that it acted as a

GalRGlcNAcMan/ surface receptor for poly(N)-acetyllactosamine glycoconjugates
F' [46, 47]. Subsequently, Runyan, Maxwell and Shur reported

that neural crest cells expressed these cell surface galactosyl-

Galp-(GlcNAc-Gal)-GlCNAC-Mafl transferase molecules during migration and that laminin, with

NeuAc
its many carbohydrate residues was the preferred substrate in

R vitro [48]. There is some evidence indicating that there are two

10 l NA M / separate populations of /3-1 ,4-galactosyltransferase moleculesGa C C an that are similar yet distinct, one for Golgi processing of glyco-
proteins and the other for cell surface attachment [49, 50].

A further indication of the importance of laminin in the
Gal-(GlcNAc-Gal)-GlcNAc-Mafl

Gala
NeuAc R __________________________________________

Gal-(GlcNAc-Gal)m-GlCNAC-Mafl Fig. 2. Representative structures of the N-linked oligosaccharides of
laminin adapted from references 29—31. R = Man-GIcNAc-G1cNAc.
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phenomena involving cell surface galactosyltransferase was the
finding by Eckstein and Shur that laminin containing matrices
induced the stable expression of this enzyme on the surface of
migratory cells [51]. By using antibodies to the enzyme, they
found that the increased numbers of galactosyltransferase mol-
ecules were primarily localized to the active lamellipodia of the
cells, and could be co-localized with actin-containing microfil-
aments. Conversely, fibronectin was found to have no inductive
effect on the expression of cell surface galactosyltransferase
and cells tended to remain stationary on this substrate [51].
Also, cell surface galactosyltransferase participates in the initi-
ation of neurite outgrowth from PC12 cells on laminin sub-
strates [52]. These results highlight the potential role of the
oligosaccharide chains present on laminin and present intrigu-
ing possibilities for cell surface galactosyltransferase in regulat-
ing cell motility and outgrowth of processes.

As noted earlier, Woo et a! have also reported a major,
non-integrin binding protein in macrophages that can bind to
laminin with high affinity. This molecule has been determined to
be an S-type lectin which appears to be identical to the
carbohydrate binding protein Mac-2 [11]. Concurrently, Zhou
and Cummings have reported that an S-type lectin from calf
heart tissue selectively binds to the carbohydrate chains of
laminin [12]. This receptor primarily recognizes poly-N-acetyl-
lactosamine units.

Dennis, Wailer and Schirrmacher reported in 1984 that cell
attachment to laminin could be partially modulated by the
expression of specific cell surface-associated oligosaccharide
structures [53]. Recently, a cell surface receptor [54] responsi-
ble for concanavalin A induced inhibition of fibroblast spread-
ing on laminin [55] has been isolated. The finding that this
carbohydrate-containing receptor is operant in cell spreading on
laminin but not on fibronectin highlights the diversity and
specificity of these systems.

Chammas et al report that carbohydrates from both laminin
and the a6/pl integrin play a role in their interaction [56]. They
postulate alternative mechanisms of: (1) lectin-lectin interac-
tions; and (2) carbohydrate-carbohydrate interactions. They
also postulate that integrin glycosylation may modulate func-
tional specificities of similar or identical integrins.

The importance of carbohydrates in development has been
demonstrated by Bronner-Fraser who was able to disrupt avian
neural crest cell migration in vitro on a laminin substrate by
introducing an antibody (HNK-l) known to bind to a carbohy-
drate epitope on the cell surfaces [57]. A monoclonal antibody
known to react with fucosyl residues in large poly-N-acetyllac-
tosamine carbohydrates was found to inhibit cell substrate
adhesion of F9 embryonal carcinoma cells [58]. This antibody
also caused previously bound and spread cells to round up three
hours after its addition to cultures. The studies of Trinkaus-
Randall et al have shown that different lectins prevent cell
binding and spreading on rabbit corneal basal laniinae in vitro
[59]. They reported that some lectins prevented cell binding
while others allowed binding but inhibited cell spreading.

Deutzmann et al report that significant changes in cell adhe-
sion, spreading and neurite outgrowth are produced by impair-
ing the secondary and tertiary structure of the E8 fragment of
laminin [60]. Using limited protease digestion these authors
created a repertoire of degraded and denatured E8 fragment
substrates; they found certain native conformations to be

essential for full cell responsiveness. Yet circular dichroism
studies [7] have indicated that unglycosylated laminin has a
similar conformation to glycosylated laminin, but lacks full
biologic activity. Therefore it can be concluded that the glyco-
sylation state of the molecule is at least as important in
determining cell responsiveness.

Work from our laboratory
Work in our laboratory has also focused upon how the

carbohydrate moieties of laminin might influence its cellular
interactions. In 1988 we reported that two lectins, namely,
wheat germ agglutinin (WGA) and Grjffonia simplicifolia agglu-
tinin I (GSA I), when bound to laminin substrates were capable
of preventing the adhesion of a mouse melanoma cell line (B 16
Fl) and a rat pheochromocytoma cell line (PC12) [6]. We
postulated that the lectins became bound to N-linked carbohy-
drates adjacent to polypeptide recognition sequences and
blocked cellular access to them. When the lectin concanavalin
A was used, both cell types were able to bind, but no spreading
or neurite outgrowth was subsequently found. This result
suggested that the carbohydrates on laminin might play a role in
cell spreading and neurite outgrowth. Bouzon et al also indicate
the importance of laminin carbohydrates in the spreading of B 16
Fl cells [8]. Their results differ from our findings in that they
found reduced cell spreading on laminin substrates using wheat
germ agglutinin whereas we found WGA inhibited cell attach-
ment. However, there were methodological differences be-
tween the two studies and Bouzon et al did not mention testing
other lectins.

We next produced unglycosylated laminin by using tunicamy-
cm with a cell line that constitutively produces laminin. The
resultant unglycosylated laminin was isolated from cell lysates
by sequentially using an anti-laminin monoclonal antibody
affinity column and a GSA I lectin affinity column [7]. When
either the neuron-like PC 12 cells or the B 16 Fl melanoma cells
were seeded onto unglycosylated laminin substrates, as many
of them attached as did cells seeded onto glycosylated laminin.
However, they failed to extend neurites or become spread,
respectively [7]. We concluded that the carbohydrate moieties
of laminin did indeed have a biological role, that is, to specifi-
cally signal certain types of cells to spread or others to extend
neurite processes.

This conclusion has recently been reinforced by our ability to
restore the biological responses to the attached, arrested cells
either using: (1) appropriate mixtures of glycosylated and
unglycosylated laminin as substrata; (2) laminin containing
certain immature glycosyl groups; and (3) a Pronase digest of
glycosylated laminin [61]. We find that a higher concentration of
the Pronase digest, compared to intact laminin, is required to
restore cell spreading, similar to results in other systems when
the biological activity of released peptides or oligosaccharides
was examined [62, 63].

Conclusions

In contrast to proteins and nucleic acids, carbohydrates are
capable of encoding considerably more information per mono-
mer unit, due to a repertoire of positional and anomeric
linkages. This feature is both a strength and a weakness. Many
unique structures can be generated, and indeed, are found.
Such diversity of structure has sometimes been viewed as
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implying lack of specificity. This point, coupled with the fact
that the structures must be generated by posttranslational CeO surface Lamiriin

pathways has often tempered interest in the biological roles of
glycoconjugates. However, a resurgence of interest has oc-
curred, in part due to elucidation of important functional roles
for animal lectins [35—38, 56]. It is our hypothesis that the
covalently-linked carbohydrate moieties of laminin are inti-
mately involved in information transfer to responsive cells.

Figure 3 schematically illustrates possible mechanisms by
which laminin carbohydrates could signal cells. Cell surface
lectins have been isolated by many investigators [11, 64, 651;
such lectins could potentially interact with the sugar chains of
laminin. Carbohydrate-carbohydrate interactions may also oc-
cur as noted elsewhere [56, 66]. Cell surface galactosyltrans-
ferase have already been shown to help mediate neural crest
cell migration [48] and thus represents still another possibility
which must be considered. Finally, soluble lectins may mediate
attachment between carbohydrates on cell surfaces and those
on laminin [12] or perhaps there are dual receptors that contain
both peptide-specific and lectin-like domains [10].

There is growing evidence that these "dual receptors" are
responsible for binding to laminin in several biological systems.
Recently an elastin receptor of this nature has been discovered
that shows structural and functional similarities to the 67 kDa
tumor cell laminin receptor and, in fact, may be the same
protein. A conspicuous characteristic of this receptor is that its
affinity for elastin or laminin is highly influenced by its carbo-
hydrate-binding lectin domain [10]. This receptor model could
also explain the mechanism by which both PC12 cells and B16
Fl melanoma cells bind equally to wells coated with either an
unglycosylated or glycosylated laminin substrate but fail to
exhibit neurite outgrowth or cell spreading unless laminin sugar
chains are present [71. In other words, these cells may have a
dual receptor that differentially triggers binding and spreading
depending on whether one or both recognition domains are
occupied.

Finally, it is noteworthy that clinical interest has recently
focused on the terminal a-galactosyl residues of glycoproteins
including laminin. Human antibodies to the epitope, Galctl-
3GalJ3-4GlcNac, are normally present in the serum as 1% of
circulating IgG [67]; the epitope itself is not ordinarily ex-
pressed on human cells and glycoproteins [68]. In at least two
human disease states, namely metastatic cancer and Chagas'
disease, it is thought that these antibodies may participate in
defense processes. Human cancer cells often express the
epitope. The antibody will inhibit adhesion of those cells to
laminin [69]. The parasitic trypanosome which causes Chagas'
disease carries the same epitope [70]. The markedly elevated
levels of circulating antibody in infected individuals may be
causative in the chronic phase of the disease, perhaps by means
of an autoimmune response [71].

Clearly, further understanding of how cells interact with
laminin will require additional study of its carbohydrate moi-
eties and related receptors. Despite the recent attention paid to
laminin sugar chains, both in the laboratory and clinic, there
remain many more questions than answers. Additional infor-
mation is required to allow assignment of function to the
numerous different oligosaccharide chains found on laminins
and to comprehend cell-to-laminin interactions which play a Fig. 3. Potential modes of recognition of laminin oligosaccharides by
key role in so many physiological processes. the cell surface.
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Reprint requests to Dr. Martin S. Giniger, University of Connecticut
Health Center, Department of BioStructure and Function, Room
L-7041, 263 Farmington Avenue, Farmington, Connecticut 06030-3705
USA.

Note added in proof

Subsequent to the submission of this manuscript, high-mannose
oligosacchandes and structurally similar compounds have been used in
reconstitution experiments to determine which of these oligosaccha-
rides could provide essential information to potentially metastatic
melanoma cells. The results indicated that of all the various branched
oligosaccharide structures tested, only mannose-based structures sim-
ilar to the type of high mannose oligosaccharides found on laminin were
capable of eliciting a cellular response. Furthermore, these mannose
containing oligosaccharides were alone sufficient to promote spreading
of laminin-adherent melanoma cells [721.
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