Weighted Composition Operators on Hardy Spaces

Manuel D. Contreras and Alfredo G. Hernández-Díaz

Departamento de Matemática Aplicada II, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, S / N, 41092, Sevilla, Spain
E-mail: mcm@matinc.us.es, alfredo@matinc.us.es

Submitted by William F. Ames
Received October 10, 2000

Let \(\varphi, \psi \) be analytic functions defined on \(\mathbb{D} \), such that \(\varphi(\mathbb{D}) \subseteq \mathbb{D} \). The operator given by \(f \mapsto \psi(f \circ \varphi) \) is called a weighted composition operator. In this paper we deal with the boundedness, compactness, weak compactness, and complete continuity of weighted composition operators on Hardy spaces \(H_p \). In particular, we prove that such an operator is compact on \(H_1 \) if and only if it is weakly compact on this space. This result depends on a technique which passes the weak compactness from an operator \(T \) to operators dominated in norm by \(T \).

Key Words: weighted composition operators; Hardy spaces; compact operators; weakly compact operators; completely continuous operators.

1. INTRODUCTION

When does a weighted composition operator map the Hardy space \(H_p \) into itself? A weighted composition operator \(W_{\varphi, \psi} \) is an operator that maps \(f \in \mathcal{H}(\mathbb{D}), \) the space of holomorphic functions on the unit disk \(\mathbb{D}, \) into \(W_{\varphi, \psi}(f)(z) = \psi(z)f(\varphi(z)) \), where \(\varphi \) and \(\psi \) are analytic functions defined in \(\mathbb{D} \) such that \(\varphi(\mathbb{D}) \subseteq \mathbb{D} \). These operators turn up in a natural way. For example, de Leeuw showed that the isometries between the Hardy space \(H_1 \) are weighted composition operators, and Forelli obtained the same result for the Hardy spaces \(H_p \) when \(1 < p < \infty \), \(p \neq 2 \) (see [7, 9]).

When \(\psi = 1 \), we just have the composition operator \(C_{\varphi} \) defined by \(C_{\varphi}(f) = f \circ \varphi \). In this case, Littlewood’s subordination theorem says that

1 This research has been partially supported by DGESIC project PB97-0706 and by La Consejería de Educación y Ciencia de la Junta de Andalucía.
$C_\phi(f) \in H_p$ whenever $f \in H_p$; that is, $C_\phi: H_p \to H_p$ is a continuous linear map for $1 \leq p < \infty$ [3, Corollary 2.24]. The situation is really different when we consider weighted composition operators $W_{\psi, \phi}$ on H_p. It is easy to find examples where $W_{\psi, \phi}(H_p) \not\subseteq H_p$. In Section 2, we characterize the boundedness of $W_{\psi, \phi}$ from H_p into H_p.

Once the problem of boundedness is solved, one of the most interesting problems is to analyze the compactness. In Sections 3 and 4, we tackle this problem from three points of view: we study the cases where $W_{\psi, \phi}$ is compact, weakly compact, and completely continuous on H_p. Let us recall that an operator T from a Banach space X into another Banach space Y is said to be compact if T maps bounded subsets into relatively norm compact sets; T is said to be weakly compact if it maps bounded subsets into relatively weakly compact sets; and T is said to be completely continuous (or Dunford–Pettis) if it maps weakly compact subsets into compact sets. It is well known that if T is compact, then it is weakly compact and completely continuous. The other implications are not true in general.

In [13], D. Sarason proved that if a composition operator is weakly compact on H_1, then it is, in fact, a compact operator on this space. In Theorem 3.4, we prove that $W_{\psi, \phi}$ is compact on H_1 if and only if it is weakly compact on this space. Our proof uses ideas different from Sarason’s. Whereas his proof uses the duality between H_1 and $BMOA$ and the boundedness of C_ϕ as an operator on $L_1(\mathbb{T}, m)$, we use a well-known characterization of weakly compact sets in $L_1(\mathbb{T})$ and a result which passes the weak compactness from one operator T to another operator S such that $\|Sx\| \leq \|Tx\|$ for all x (see Proposition 3.2). A similar result for compact operators is well known and can be seen, for example, in [5, p. 5]. We think that our proof is more elementary. It is worth mentioning that in [2] the first named author and Díaz-Madrigal proved that $W_{\psi, \phi}$ is compact on H_1 if and only if it is weakly compact on it.

In Section 3, we also characterize the case where $W_{\psi, \phi}$ is compact on H_p ($1 < p < \infty$). Note that when $1 < p < \infty$, $W_{\psi, \phi}$ is always weakly compact on H_p.

Although the classes of completely continuous and compact weighted composition operators agree on H_p for $1 < p \leq \infty$ (this result is obvious for $1 < p < \infty$, and it can be seen in [2] for $p = \infty$), they are not the same on H_1. This was pointed out for composition operators by Cima and Matheson [1] by showing that the composition operator C_ϕ, with $\phi(z) = z(z - 1)$, is completely continuous on H_1, but it is not compact. In Section 4, we study the case where $W_{\psi, \phi}$ is completely continuous on H_1. For composition operators this result was obtained by Cima and Matheson [1].

In what follows we denote by \mathbb{T} the unit circle, by m the normalized Lebesgue measure on \mathbb{T}, and by $\|f\|_p$ the usual norm of a function.
2. BOUNDEDNESS

In this section we characterize the boundedness of $W_{\varphi, \psi}$ on H_p in terms of a Carleson measure criterion. This criterion has been used to characterize boundedness of composition operators in different papers (see, for example, [10, 11]).

Definition 2.1. A positive measure μ on \mathbb{D} is called a Carleson measure (in \mathbb{D}) if there is a constant $M < \infty$ such that $\mu(S(b, r)) \leq Mr$ for all $b \in \mathbb{T}$ and $0 < r < 1$, where $S(b, r) = \{z \in \mathbb{D} : |z - b| \leq r\}$.

Most of the information we are going to obtain about weighted composition operators will be given in terms of a certain measure, which we turn to next. Given an analytic function φ of the unit disk into itself, it is well known from Fatou’s theorem that the radial limits $\lim_{r \to 1^-} \varphi(re^{it})$ exist almost everywhere. So, we can consider φ as a function belonging to $L_p(\mathbb{T}, m)$. Thus, taking $\psi \in H_p$, we can define the measure $\mu_{\varphi, \psi, p}$ on \mathbb{D} by

$$\mu_{\varphi, \psi, p}(E) := \int_{\varphi^{-1}(E) \cap \mathbb{T}} |\psi|^p \, dm,$$

where E is a measurable subset of the unit closed disk $\overline{\mathbb{D}}$.

The next lemma will be crucial in what follows. In fact, it is a slight generalization of [8, p. 163].

Lemma 2.1. Fixing $1 \leq p < \infty$ and given $\varphi, \psi \in H_p$ such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$, we have

$$\int_{\mathbb{D}} gd\mu_{\varphi, \psi, p} = \int_{\mathbb{T}} |\psi|^p (g \circ \varphi) \, dm,$$

where g is an arbitrary measurable positive function in \mathbb{D}.

Proof. If g is a measurable simple function defined on \mathbb{D} given by $g = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$, we have that

$$\int_{\mathbb{D}} gd\mu_{\varphi, \psi, p} = \sum_{i=1}^{n} \alpha_i \mu_{\varphi, \psi, p}(E_i) = \sum_{i=1}^{n} \alpha_i \int_{\varphi^{-1}(E_i) \cap \mathbb{T}} |\psi|^p \, dm$$

$$= \int_{\mathbb{T}} |\psi|^p \left(\sum_{i=1}^{n} \alpha_i \chi_{\varphi^{-1}(E_i)} \cap \mathbb{T} \right) \, dm = \int_{\mathbb{T}} |\psi|^p (g \circ \varphi) \, dm.$$
Now, if g is a measurable positive function in \mathbb{D}, we take an increasing sequence (g_n) of positive and simple functions such that $(g_n(z)) \to g(z)$ for all $z \in \mathbb{D}$. Then, we have $\int |g_n|^p dm \to \int |g|^p dm$. On the other hand, $(|\psi|^p g_n \circ \varphi)$ is an increasing sequence such that $(|\psi|^p(g_n(\varphi(z)))) \to |\psi|^p(\varphi(z))$ for all $z \in \mathbb{D}$, so $\int |g_n|^p dm \to \int |\psi|^p g \circ \varphi dm$.

An obvious necessary condition for $W_{\varphi, \psi}$ to be bounded on H_p is that $\psi = W_{\varphi, \psi}(1) \in H_p$. Whereas this condition is trivially sufficient for $p = \infty$, it is not sufficient for $p < \infty$.

Theorem 2.2. Fixing $1 \leq p < \infty$ and given $\varphi, \psi \in H_p$ such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$, we have that $W_{\varphi, \psi}$ is bounded on H_p if and only if $\mu_{\varphi, \psi, \rho}$ is a Carleson measure in \mathbb{D}.

Proof. On the one hand, by [3, Theorem 2.35], $\mu_{\varphi, \psi, \rho}$ is a Carleson measure in \mathbb{D} if and only if there is a constant $C > 0$ so that

$$\int_{\mathbb{D}} |f|^p dm \leq C\|f\|_p^p$$

for all $f \in H_p$. On the other hand, by Lemma 2.1, taking $g = |f|^p$, we have that

$$\int_{\mathbb{D}} |f|^p dm \mu_{\varphi, \psi, \rho} = \int_{\mathbb{D}} |\psi|^p |f \circ \varphi|^p dm = \|W_{\varphi, \psi}(f)\|_p.$$

Hence, $\mu_{\varphi, \psi, \rho}$ is a Carleson measure in \mathbb{D} if and only if there is a constant $C > 0$ so that $\|W_{\varphi, \psi}(f)\|_p \leq C\|f\|_p$ for all $f \in H_p$.

In [12], Mirzakarimi and Seddighi got a sufficient condition of the boundedness of $W_{\varphi, \psi}$ on H_2. Namely, they proved that if the measures given by

$$\mu(E) := \int_E |\psi'(z)|^2 (1 - |z|^2)dA(z) \quad \text{and} \quad \nu(E) := \int_E |\psi(z)|^2 |\psi'(z)|^2 (1 - |z|^2)dA(z)$$

for every measurable subset E of \mathbb{D}, where A denotes the Lebesgue measure on \mathbb{D}, satisfy

$$\sup_{0 < r < 1, b \in T} \frac{\mu(S(b, r))}{r^3} < \infty \quad \text{and} \quad \sup_{0 < r < 1, b \in T} \frac{\nu(S(b, r))}{r^3} < \infty,$$

then $W_{\varphi, \psi}$ is bounded on H_2.
3. COMPACTNESS AND WEAK COMPACTNESS

In this section, we present the main result of this paper, namely, every weakly compact weighted composition operator on H_1 is compact on this space. Its proof leans on the following preliminary results. The first one can be found in [4, Corollary 1].

Lemma 3.1. Let (x_n) be a bounded sequence in a Banach space X. Then (x_n) is weakly null if and only if for each subsequence (x_{n_k}) there is a sequence of convex combinations of (x_{n_k}), that we denote by (y_{n_k}), such that $\|y_{n_k}\| \to 0$.

Proposition 3.2. Let X, Y, Z be Banach spaces, and let $T: X \to Y$ and $S: X \to Z$ be bounded operators such that $\|Sx\| \leq \|Tx\|$ for all $x \in X$. Suppose that there are two linear topologies τ_1 on X and τ_2 on Y such that T is $\tau_1 - \tau_2$ continuous, (B_X, τ_1) is metrizable and compact, and the weak topology of Y is finer than τ_2. If T is weakly compact, then so is S.

Before proving this proposition, it is worth mentioning that we plan to apply it to the spaces $X = Y = H_1$, τ_1 the topology of uniform convergence on compact sets, τ_2 the topology of the pointwise convergence, and $T = W_{\psi, \theta}$.

Proof. Let (x_n) be a sequence in B_X. We have to find a subsequence (x_{n_k}) of (x_n) such that (Sx_{n_k}) converges in the weak topology of Z.

Since (B_X, τ_1) is metrizable and compact, there is a subsequence (x_{n_k}) of (x_n) and a point $x \in B_X$ such that $(x_{n_k} - x)$ converges to zero in the topology τ_1. This is the subsequence we are looking for. Now, using Lemma 3.1, we are going to prove that $(S(x_{n_k} - x))$ is a weakly null sequence. Bearing in mind that T is $\tau_1 - \tau_2$ continuous, the weak topology of Y is finer than τ_2, and T is weakly compact, we have that $(T(x_{n_k} - x))$ converges to zero in the weak topology. Let us take a subsequence (y_{n_k}) of (x_{n_k}). Then there is a sequence (z_k) of convex combinations of the y_{n_k} such that $\|T(z_k - x)\| \to 0$. Since $\|S(z_k - x)\| \leq \|T(z_k - x)\|$, we have that $\|S(z_k - x)\| \to 0$. Summing up, for each subsequence (y_{n_k}) of (x_n), we have found a sequence (z_k) of convex combinations of the y_{n_k} such that $\|S(z_k - x)\| \to 0$. By Lemma 3.1, $(S(x_{n_k} - x))$ converges to zero in the weak topology.

The proof of the following lemma can be obtained by adapting the proof of [3, Proposition 3.11].

Lemma 3.3. For $1 \leq p < \infty$ and $\varphi, \psi \in H_p$ such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $W_{\varphi, \psi}$ is continuous on H_p, we have that $W_{\varphi, \psi}$ is compact on H_p if and only if whenever f_n is bounded on H_p and $f_n \to 0$ uniformly on compact subsets of \mathbb{D}, then $\|W_{\varphi, \psi}(f_n)\|_p \to 0$.
Theorem 3.4. Given \(\varphi, \psi \in H_1 \) such that \(\varphi(\mathbb{D}) \subseteq \mathbb{D} \) and \(W_{\varphi, \psi} \) is continuous on \(H_1 \), we have that the following assertions are equivalent:

1. The operator \(W_{\varphi, \psi} \) is compact on \(H_1 \).
2. The operator \(W_{\varphi, \psi} \) is weakly compact on \(H_1 \).
3. The measure \(\mu_{\varphi, \psi, 1} \) satisfies

\[
\lim_{r \to 0} \sup_{b \in \mathbb{T}} \frac{\mu_{\varphi, \psi, 1}(S(b, r))}{r} = 0.
\]

Proof. (1) \(\Rightarrow \) (2). This is obvious.

(2) \(\Rightarrow \) (3). We apply Proposition 3.2 with \(X = Y = H_1 \), \(\tau_1 \) the topology of the uniform convergence on compact sets, \(\tau_2 \) the topology of the pointwise convergence, and, of course, \(T = W_{\varphi, \psi} \). It is clear that \(W_{\varphi, \psi} \) is \(\tau_1 \)-\(\tau_2 \) continuous. Consider the map \(S: H_1 \to L_1(\mathbb{T}, \mu_{\varphi, \psi, 1}) \) given by \(S(f) = f \). By Lemma 2.1, we have that \(||W_{\varphi, \psi}(h)||_1 = ||S(h)||_{L_1(\mathbb{T}, \mu_{\varphi, \psi, 1})} \) for all \(h \in H_1 \). Since \(W_{\varphi, \psi} \) is weakly compact on \(H_1 \), by Proposition 3.2, \(S \) is also weakly compact.

Now, suppose assertion (3) is not satisfied. Then there are \(\beta > 0 \), \(r_n \to 0 \) (\(0 < r_n < 1 \)), and \(b_n \in \mathbb{T} \) such that \(\mu_{\varphi, \psi, 1}(S(b_n, r_n)) \geq \beta r_n \). Let us denote \(a_n = (1 - r_n)b_n \) and \(f_n(z) = 1/(1 - \overline{a_n}z)^4 \). Then \(f_n \in H_1 \) and

\[
||f_n||_1 = \frac{1}{r_n^3} \left(1 + \frac{(1 - r_n)^2}{2 + r_n} \right).
\]

Now we take \(g_n = f_n/||f_n||_1 \). To get a contradiction, we are going to show that for each subsequence \((g_{n_k}) \), the sequence \(S(g_{n_k}) \) is not weakly convergent. By [14, p. 137], it will be enough to get that the set \(\{S(g_{n_k}) : k \in \mathbb{N}\} \) is not uniformly integrable, i.e., there is \(\varepsilon > 0 \) such that for every \(\eta > 0 \) there exists a measurable subset \(A \) of \(\mathbb{D} \) and \(k \in \mathbb{N} \) such that \(\mu_{\varphi, \psi, 1}(A) \leq \eta \) and \(\int_A |g_{n_k}| \, d\mu_{\varphi, \psi, 1} \geq \varepsilon \). Take \(\varepsilon = \beta/4 \) and let us fix an arbitrary \(\eta \). Since \(\mu_{\varphi, \psi, 1} \) is a Carleson measure, there is a constant \(M \) such that \(\mu_{\varphi, \psi, 1}(S(b, r)) \leq Mr \) for all \(b \in \mathbb{T} \) and \(0 < r < 1 \). So, we can take \(k \) such that \(\mu_{\varphi, \psi, 1}(S(b_n, r_n)) \leq \eta \). On the other hand, bearing in mind that \(|f_{n_k}(z)| \geq (2r_{n_k})^{-4} \) whenever \(z \in S(b_n, r_n) \), we have that

\[
\int_{S(b_n, r_n)} |g_{n_k}| \, d\mu_{\varphi, \psi, 1} \geq \frac{(2r_{n_k})^{-4}}{||f_{n_k}||_1} \mu_{\varphi, \psi, 1}(S(b_n, r_n)) \geq \frac{(2r_{n_k})^{-4}}{||f_{n_k}||_1} \beta r_{n_k} \geq \frac{\beta}{4}.
\]
(3) \implies (1). We will apply Lemma 3.3. Before doing this, we have to introduce an auxiliary Carleson measure \(\mu \). By (3),

\[
\lim_{r \to 0} \sup_{b \in \mathbb{T}} \frac{\mu_{\varphi, \psi, 1}(S(b, r))}{r} = 0.
\]

Then we also have that

\[
\lim_{r \to 0} \sup_{b \in \mathbb{T}} \frac{\mu_{\varphi, \psi, 1}(W(b, r))}{r} = 0,
\]

where \(W(b, r) \) are the Carleson windows in \(\mathbb{D} \) given by

\[
W(b, r) = \{ \varrho e^{i\theta} \in \overline{\mathbb{D}} : 1 - r \leq \varrho \leq 1, |\theta - t| \leq r \}
\]

where \(b = e^{it} \). Given \(\varepsilon > 0 \), we may find \(r_0 \) such that \(\mu_{\varphi, \psi, 1}(W(b, r)) \leq 2\varepsilon r \) for all \(b \in \mathbb{T} \) and \(r \leq r_0 \). Let us define the measure \(\mu \) given by

\[
\mu(E) := \mu_{\varphi, \psi, 1}(E \cap \{ z \in \overline{\mathbb{D}} : 1 - r_0 \leq |z| \leq 1 \}).
\]

Then \(\mu \) is a Carleson measure on \(\overline{\mathbb{D}} \) with \(\mu(W(b, r)) \leq 2\varepsilon r \) for \(0 < r < 1 \) (see [3, p. 130]). So, by [3, p. 43], there is a constant \(C \) (independent of \(\varepsilon \)) such that

\[
\int_{\mathbb{T}} |f|d\mu \leq C\varepsilon \| f \|_1.
\]

for all \(f \in H_1 \).

Once we have built the measure \(\mu \), we are going to apply Lemma 3.3 to get that \(W_{\varphi, \psi} \) is compact on \(H_1 \). Take \((f_n) \) a sequence in \(H_1 \) such that \((f_n) \to 0 \) uniformly on compact subsets of \(\mathbb{D} \) and \(\| f_n \|_1 \leq 1 \). Then, by Lemma 2.1,

\[
\| W_{\varphi, \psi}(f_n) \|_1 = \int_{\mathbb{T}} |\psi| |f_n \circ \varphi| dm = \int_{\mathbb{T}} |f_n| d\mu_{\varphi, \psi, 1}
\]

\[
= \int_{\mathbb{T} \setminus (1 - r_0)\mathbb{D}} |f_n| d\mu_{\varphi, \psi, 1} + \int_{(1 - r_0)\mathbb{D}} |f_n| d\mu_{\varphi, \psi, 1}.
\]

Since \((f_n) \to 0 \) uniformly on compact subsets of \(\mathbb{D} \), there is \(n_0 \) such that if \(n \in \mathbb{N} \) and \(n \geq n_0 \) we have that \(|f_n(z)| \leq \varepsilon / \mu_{\varphi, \psi, 1}((1 - r_0)\mathbb{D}) \) for all \(z \in (1 - r_0)\mathbb{D} \). So

\[
\int_{(1 - r_0)\mathbb{D}} |f_n| d\mu_{\varphi, \psi, 1} \leq \frac{\varepsilon}{\mu_{\varphi, \psi, 1}((1 - r_0)\mathbb{D})} \mu_{\varphi, \psi, 1}((1 - r_0)\mathbb{D}) = \varepsilon.
\]
On the other hand, we have that
\[
\int_{\mathbb{D} \setminus (1-r)\mathbb{D}} |f_n| d\mu_{\varphi, \psi, 1} = \int_{\mathbb{D} \setminus (1-r)\mathbb{D}} |f_n| d\mu
\]
\[
= \int_{\mathbb{D}} |f_n| d\mu \leq C \|f_n\|_1 \leq C.
\]
Hence \(\|W_{\varphi, \psi}(f_n)\|_1 \leq (1 + C)\varepsilon\).

Theorem 3.5. Fixing \(1 < p < \infty\) and given \(\varphi, \psi \in H_p\) such that \(\varphi, \psi \in H_p\), we have that \(W_{\varphi, \psi}\) is compact on \(H_p\) if and only if

\[
\lim_{r \to 0} \sup_{b \in \mathbb{T}} \frac{\mu_{\varphi, \psi, p}(S(b, r))}{r} = 0.
\]

Proof. Suppose that \(W_{\varphi, \psi}\) is compact on \(H_p\) and that there are \(\beta > 0, r_n \to 0 (0 < r_n < 1)\), and \(b_n \in \mathbb{T}\) such that \(\mu_{\varphi, \psi, p}(S(b_n, r_n)) \geq \beta r_n\). Let us denote \(a_n = (1 - r_n)b_n\) and \(f_n(z) = 1/(1 - \bar{a}_nz)^2\). Then \(f_n \in H_p\) and

\[
\|f_n\|_p^p = \frac{1}{r_n^2} \frac{1 + (1 - r_n)^2}{(2 + r_n)^2}.
\]

Now we take \(g_n = f_n/\|f_n\|_p\). By [3, p. 130], \(g_n\) converges to zero uniformly on compact subsets of \(\mathbb{D}\). By Lemma 3.3, to get that \(W_{\varphi, \psi}\) is not compact, we have just to prove that \(\|W_{\varphi, \psi}(g_n)\|_p\) does not converge to zero. Arguing as in the proof of Theorem 3.4, we have that

\[
\|W_{\varphi, \psi}(g_n)\|_p^p = \int_{\mathbb{T}} |\psi|^p |g_n \circ \varphi|^p dm = \int_{\mathbb{T}} |g_n|^p d\mu_{\varphi, \psi, p}
\]
\[
\geq \int_{S(b_n, r_n)} |g_n|^p d\mu_{\varphi, \psi, p} \geq \frac{(2r_n)^{-4}}{\|f_n\|_p} \mu_{\varphi, \psi, p}(S(b_n, r_n))
\]
\[
\geq \frac{(2r_n)^{-4}}{\|f_n\|_p^p} \beta r_n \geq \frac{\beta}{4}.
\]

The other implication can be obtained by following the same steps as in the proof of Theorem 3.4.
4. COMPLETE CONTINUITY

In this section we characterize the case where \(W_{\varphi, \psi} \) is a completely continuous operator. Its proof is a slight generalization of [1, Proposition 1].

Theorem 4.1. Given \(\varphi, \psi \in H_1 \) such that \(\varphi(\mathbb{D}) \subseteq \mathbb{D} \) and \(W_{\varphi, \psi} \) is continuous on \(H_1 \), we have \(W_{\varphi, \psi} \) is completely continuous on \(H_1 \) if and only if \(\psi = 0 \) almost everywhere in \(\{ e^{it} \in \mathbb{T} : \varphi(e^{it}) \in \mathbb{T} \} \).

Proof. Let \(f \) be a function in \(L_\phi(\mathbb{T}, m) \). By the Riemann–Lebesgue lemma, the sequence given by its Fourier coefficients is in \(c_0 \), so we have that \(\int_{\mathbb{T}} f(z) z^n \, dm \to 0 \) as \(n \to \infty \). Equivalently, the sequence \((z^n) \) converges to 0 in the weak topology of \(L_\phi(\mathbb{T}, m) \) and, hence, in \(H_1 \). Therefore, \(\| W_{\varphi, \psi}(z^n) \|_1 \to 0 \).

Moreover,

\[
\int_{\{ e^{it} \in \mathbb{T} : \varphi(e^{it}) \in \mathbb{T} \}} |\psi| \, dm = \int_{\{ e^{it} \in \mathbb{T} : \varphi(e^{it}) \in \mathbb{T} \}} |\psi| |\varphi|^n \, dm \\
\leq \int_{\mathbb{T}} |\psi| |\varphi|^n \, dm = \| W_{\varphi, \psi}(z^n) \|_1.
\]

Hence \(\int_{\{ e^{it} \in \mathbb{T} : \varphi(e^{it}) \in \mathbb{T} \}} |\psi| \, dm = 0 \), and we get that \(\psi = 0 \) almost everywhere on the set \(\{ e^{it} \in \mathbb{T} : \varphi(e^{it}) \in \mathbb{T} \} \).

Conversely, let \((f_n) \) be a weakly null sequence in \(H_1 \). Since \((f_n(z)) \to 0 \) for all \(z \in \mathbb{D} \) and \(\psi = 0 \) almost everywhere in \(\{ e^{it} \in \mathbb{T} : \varphi(e^{it}) \in \mathbb{T} \} \), we have that \(W_{\varphi, \psi}(f_n) \) goes to zero pointwise almost everywhere on the unit circle. In particular, the sequence \(W_{\varphi, \psi}(f_n) \) converges in measure to zero in \(L_\phi(\mathbb{T}, m) \). Moreover, \(W_{\varphi, \psi}(f_n) \) goes to zero in the weak topology of \(H_1 \) and, so, in the weak topology of \(L_\phi(\mathbb{T}, m) \). Finally, bearing in mind that a sequence in \(L_\phi(\mathbb{T}, m) \) converges to zero in the norm topology whenever it converges to zero in measure and in the weak topology (see, for example, [6, p. 295]), we have that \(\| W_{\varphi, \psi}(f_n) \|_1 \to 0 \).

Acknowledgments

The authors thank Santiago Díaz-Madrigal for some fruitful discussions on the content of this paper.

References

2. M. D. Contreras and S. Díaz-Madrigal, Compact-type operators defined on \(H^\infty \), *Contemp. Math.* **232** (1999), 111–118.