
573

⁄ 0885-064X/02 $35.00
© 2002 Elsevier Science (USA)

All rights reserved.

journal of complexity 18, 573–588 (2002)
doi:10.1006/jcom.2002.0638

On the Complexity of Exclusion Algorithms
for Optimization

Eugene Allgower,1Melissa Erdmann, and Kurt Georg1,2

1 Partially supported by NSF via grant DMS-9870274
2 E-mail: georg@math.colostate.edu, URL: http://www.math.colostate.edu/~georg/.

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523

Received November 20, 2001; accepted February 26, 2001;
published online April 23, 2002

Exclusion algorithms are a well-known tool in the area of interval analysis for
finding all solutions of a system of nonlinear equations or for finding the global
minimum of a function over a compact domain. The present paper discusses a new
class of tests for such algorithms in the context of global optimization and presents
complexity results concerning the resulting algorithms. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Exclusion algorithms are a well-known tool in the area of interval anal-
ysis, see, e.g., [6, 7], for finding all solutions of a system of nonlinear
equations or for finding the global minimum of a function over a compact
domain. They also have been introduced in [11, 12] from a slightly differ-
ent viewpoint. In particular, such algorithms seem to be very useful for
finding all solutions of low-dimensional, but highly nonlinear systems
which have many solutions or for finding the global minimum of a func-
tion of a few variables in the presence of many local minima. Such systems
occur, e.g., in mechanical engineering.
In [4], the third author introduced some new exclusion tests and
analyzed the efficiency and computational complexity of exclusion algo-
rithms based on this approach, for the case of finding all zero points of a
system of nonlinear equations. The present paper investigates the complex-
ity of exclusion algorithms for finding the global minimum of a function,
where the exclusion tests are suitable modifications of the ones obtained
in [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81981896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We briefly describe our view of the exclusion method.
In Rn and Rm×n we use the component-wise [as a partial ordering, and
| · | is the component-wise absolute value. We only use the max norm || · ||.
For example, for two matrices A, B ¥ Rn×n the symbol A [B means that
A(i, j) [B(i, j) for i, j=1 : n.
An interval s in Rn is a rectangular box, i.e., there are two vectors ms,
rs ¥ Rn with rs(i) > 0, i=1 : n, such that

s=[ms−rs, ms+rs]={x ¥ Rn : ms−rs [x [ms+rs}.

We call ms−rs the lower corner, ms+rs the upper corner, ms the mid-
point, and rs the radius of s. (This corresponds to the midpoint–radius
representation in interval analysis.)
Let s … Rn be an interval and F: sQ Rn a function defined on s. We call
a test

TF(s) ¥ {0, 1} where 0 — no and 1 — yes

an exclusion test for F on s iff TF(s)=0 implies that F has no zero point in
s. Hence, TF(s)=1 is a necessary condition for F to have a zero point in s.
This notion is strongly reminiscent of the inclusion test introduced in an
abstract setting in [5]. It seems that the notion and use of exclusion tests
goes at least back to Moore; see [9, E(X) on p. 77].
If an exclusion test is given, then we can recursively bisect intervals and
discard the ones which yield a negative test. This leads to the following
recursive exclusion algorithm which we start from some initial interval L on
which F is defined. We assume that an exclusion test TF(s) is available for
all subintervals s … L.

Algorithm 1 (Exclusion Algorithm).
CP {L} (initial interval)
for a=1 : maximal_level
for a=1 : n
let C̃ be obtained by bisecting each s ¥ C along the axis a
for s ¥ C̃
if TF(s)=0
drop s from C̃ (s is excluded)

CP C̃

Ca P C (for later reference)

Remark 2. The exclusion algorithm is similar to early algorithms in
interval analysis. It turns out that bisection is an efficient partitioning

574 ALLGOWER, ERDMANN, AND GEORG

strategy. In order to simplify and unify our efficiency investigations, we
have considered only the strategy of cyclic bisections of the intervals along
subsequent axes. Various authors have investigated bisection schemes. For
a fairly early discussion see [9, pp. 77–81]. For a further careful compari-
son of bisection schemes, see [2]. This will be further investigated in [3].
For clarity of exposition and notation, the list of intervals is processed
breadth-first rather than depth-first. However, we mention that the other
choice (which uses less memory) was actually implemented in [4]. It is easy
to see that the complexity analysis presented in [4] is not influenced by this
difference in choice. We refer also to the analysis appearing in [10,
pp. 77–80, 85–102].
However, let us already point out here that for the present paper the
choice between breadth-first and depth-first is crucial; see Remark 5.
Whenever one cycle of bisections is accomplished, we say that we have
reached a new bisection level, and we think of an exclusion algorithm as
performing a fixed number of bisection levels. The intervals which have not
been discarded after a bisection levels will be considered as the intervals
which the algorithm generates on the ath bisection level; see Fig. 1 for an
illustration. The list of these intervals is denoted by Ca in the algorithm.
Obviously, if Ca=” for some level a, then the algorithm has shown that
there are no zero points of F in the initial interval L.
It is clear that the efficiency of exclusion algorithms hinges mainly on the
construction of a good exclusion test which is computationally inexpensive
but relatively tight. Otherwise, too many intervals remain undiscarded on
each bisection level, and this leads to significant numerical inefficiency.
In the area of interval analysis, the idea of exclusion is exploited in
interval branch and bound algorithms which are used to find all the zero
points of a nonlinear system of equations or also to minimize functions;
see, e.g., Kearfott [7] and the references cited therein, and the software

FIG. 1. Illustration of bisection levels.

COMPLEXITY OF EXCURSION ALGORITHMS 575

package GlobSol accompanying the book [6]. From an interval analysis
viewpoint, a simple exclusion test could be designed in the following way,

Tf(s)=1 :Z 0 ¥ [f](s),

where [f](s) is the interval obtained from s by applying f in an interval
analysis sense. More sophisticated tests employ an interval-Newton step.
The following complexity result was shown in [11, 12] for a certain class
of exclusion tests:

Theorem 3. Let L … Rn be an interval, and let F: LQ Rn be sufficiently
smooth and zero a regular value of F. Then there is a constant C > 0 such
that the exclusion algorithm, started in L, generates no more than C intervals
on each bisection level; i.e., #(Ca) [C independent of a.

A related analysis concerning clustering of undiscarded intervals on
various levels as a function of the sharpness of the lower bound on the
range was given in [8].
Hence, if the complexity of one exclusion test is known, then this leads
immediately to a complexity statement on the efficiency of an exclusion
algorithm. However, the constant C could be very big, and numerical
experiments, see [4], show that the efficiency of exclusion algorithms varies
considerably with the choice of the test. This is of particular importance for
more demanding nonlinear systems, such as those which typically occur in
engineering.
Furthermore, some applications lead to nonlinear systems where some of
the zero points are singular. In this case, Theorem 3 cannot be applied, and
in fact is wrong, as some examples in [4] show. Therefore, for a certain
improved class of exclusion tests, the assumptions in Theorem 3 were con-
siderably relaxed in [4].
The aim of this paper is to begin a similar investigation for optimization
codes. It will turn out that the techniques used in [4] cannot be simply
translated into the new situation, but a significantly different analysis has
to be performed.

2. EXCLUSION ALGORITHMS FOR UNCONSTRAINED
MINIMIZATION

Let s … Rn be an interval and f: sQ R a function defined on s. We call
a number Ef(s) ¥ R a lower bound of f on s iff

inf
x ¥ s
f(x) \ Ef(s).

576 ALLGOWER, ERDMANN, AND GEORG

Note that Ef(s) is also a lower bound (possibly not a good one) of f on y
if y … s is a subinterval.
If such bounds are available, then we can recursively bisect intervals and
discard the ones whose lower bounds are larger than a currently found low
value M of f. This leads to the following recursive exclusion algorithm
which we start from some initial interval L … Rn on which f is defined. We
assume that a lower bound Ef(s) is available for all subintervals s … L.

Algorithm 4 (Exclusion algorithm for minimization).
CP {L} (initial interval)
MP f(mL) (initial low value of f)
for a=1 : max_level
for a=1 : n
let C̃ be obtained by bisecting each s ¥ C along the axis a
for s ¥ C̃
if Ef(s) >M
drop s from C̃
else
MPmin(M, f(ms)) (update)

CP C̃

Ca P C,Ma PM (for later reference)

Remark 5. The preceding algorithm processes the list of intervals
breadth-first rather than depth-first. Contrary to Algorithm 1, this distinc-
tion is now very important. The reason is that for our upcoming complex-
ity results the global variable M needs to be updated uniformly over the
initial interval L.

Let us draw some immediate conclusions from the design of the above
algorithm:

Lemma 6. Ca]” for all a.

Lemma 7. The sequenceMa is monotonically decreasing, and infx ¥ L f(x) [
Ma [mins ¥ Ca f(ms).

Lemma 8. Let s ¥ Ca. Then

1. Ef(s) [M whereMa−1 \M \Ma,

2. Ma [f(ms),
3. ||rs ||=2−arL.

Lemma 9. If t ¥ L such that f(t)=infx ¥ L f(x), then t ¥1s ¥ Ca
s for

each a.

COMPLEXITY OF EXCURSION ALGORITHMS 577

Lemma 10. If f is continuous on L, then

lim
aQ.

Mt=min
x ¥ L
f(x).

Proof. Since f is continuous, there is a t ¥ L such that f(t)=
infx ¥ L f(x). By Lemma 9 we know that there is a sequence sa with
t ¥ sa ¥ Ca. Note that limaQ. msa=t. By Lemma 7 we know that f(t) [
Ma [f(msa) and limaQ. f(msa)=f(t) concludes the proof. L

Again, it is clear that the efficiency of the above exclusion algorithm
hinges mainly on the construction of good lower bounds which are com-
putationally inexpensive but relatively tight. Otherwise, too many intervals
remain undiscarded on each bisection level, and this leads to significant
numerical inefficiency. It is natural to involve higher derivatives in such
bounds; see also [1].
In order to obtain refined lower bounds Ef(s), in this paper we will use
the construction of dominant functions introduced in [4]. Let us briefly
review this concept in the next section.

3. CONSTRUCTION OF DOMINANT FUNCTIONS

We denote by Z+the set of nonnegative integers. For a multi-index

a=(a1, ..., an) ¥ Zn+

we consider the following definitions:

1. The length of a is defined by |a| :=; i ai.
2. The factorial of a is defined by a ! :=< i ai!.
3. If x ¥ Rn, then we define xa :=< i x

ai
i .

4. We define the partial derivatives “a=(a !)−1< i “
ai
i .

Furthermore, we introduce the probability measures

wk(dt)=k(1−t)k−1 dt

on the interval [0, 1].
Using these definitions, Taylor’s formula with k > 0 and integral
remainder is easy to write:

f(m+h)=f(m)+ C
0 < |a| < k

“
af(m) ha

+ C
|b|=k

F
1

0
“
bf(m+th) wk(dt) hb. (11)

578 ALLGOWER, ERDMANN, AND GEORG

Definition 12. Let s … Rn be an interval. By Ak(s) we denote the
space of functions f: sQ R such that “af is absolutely continuous for
|a| < k. Note that for f ¥Ak the Taylor formula (11) holds. In Ak(s) we
introduce the cone

Kk(s)={g ¥Ak(s): 0 [“ag(x) [“ag(y) for 0 [x [y, |a| [k}.

We also set

A.(s) :=3
.

k=1
Ak(s) and Ko(s) :=3

.

k=1
Kk(s).

We now introduce the notion of a dominant function which will be the
basis for the lower bounds considered in this paper:

Definition 13. Let f ¥Ak(s) and g ¥Kk(s). Then f(x)Ok g(x) for
x ¥ s (g dominates f with order k on s) iff the estimates

|“af(x)| [“ag(|x|)

hold for all x ¥ s and |a| [k. If f ¥A.(s) and g ¥K.(s), then f(x)O.

g(x) for x ¥ s means that fOk g for x ¥ s and all k \ 0.

Note that f(x)Ok g(x) for x ¥ s obviously implies that f(x)Oq g(x) for
x ¥ y, provided that q [k and y … s. We will frequently use the notation
fOk g or f(x)Ok g(x) if there is no ambiguity about the underlying
interval.
The following examples point out the differences between the various
estimates:

Example 14.

1. If g ¥Kk then gOk g. This includes examples such as exp(m+x)O.

exp(m+x), and tan xO. tan x for |x| <
p
2 .

2. sin xO. sinh x, but sin xO3 x+
1
6 x
3.

3. cos xO. cosh x, but cos xO1 1+x, cos xO2 1+
1
2 x
2, and cos xO3

1+12 x
2+16 x

3.
4. log(1+x)O. log(1−x) but log(1+x)O3 x+

1
2 x
2+13 x

3 for |x| < 1.
5. sin(m+x)O. sinh(|m|+x) but sin(m+x)O2 |sin(m)|+|cos(m)| x+

1
2 x
2.

We list some rules, see [4], that can be used as a tool to generate domi-
nant functions in much the same way as rules about differentiation are
used as a tool to generate derivatives.

COMPLEXITY OF EXCURSION ALGORITHMS 579

Theorem 15.

1. fOk g implies f(m+x)Ok g(|m|+x).
2. fO1 g implies |f|O1 g.
3. Let fOk g and l ¥ R. Then lfOk |l| g.
4. Let fi Ok gi, i=1 : q. Then ; i fi Ok ; i gi.
5. Let fi Ok gi, i=1, ..., q. Then< i fi Ok < i gi.
6. Let fOk g and fi Ok gi, i=1, ..., n. Set F=f(f1, ..., fn) and

G=g(g1, ..., gn). Then FOk G.

Here are some examples of how the preceding rules could be applied:

Example 16.

1. e |sin(m+x)|O1 e |sin m|+x.
2. 1

1+t O.

1
1−t for |t| < 1 and sin(x)O3 x+

1
6 x
3 implies

1
1+12 sin(x)

O3
1

1− 12 (x+
1
6 x
3)

for |x+16 x
3| < 2.

3. sin(x21) cos(x2−x3)O2 (x
2
1+

1
2 (x

2
1)
2)(1+12 (x2+x3)

2).

4. LOCAL EXPANSIONS TO OBTAIN LOWER BOUNDS

The following theorem summarizes the possible choices of lower bound
estimates which we will consider in this paper for Algorithm 4:

Theorem 17. Let s … Rn be an interval, and let q > 0 be an integer. Let
f(ms+x)Oq g(x) for |x| [rs. Then

Ef(s) :=f(ms)−(g(rs)−g(0))z
\ 0

+ C
0 < |a| < q

(“ag(0)− |“af(ms)|)z
\ 0

ras (18)

is a lower bound for f on s.

Proof. Let ms+h ¥ s such that f(ms+h)=minx ¥ s f(x). We have to
show that f(ms+h) \ Ef(s). Using the Taylor formula (11) we obtain

g(rs)=g(0)+ C
0 < |a| < q

“
ag(0) ras+F

1

0
C
|b|=q

“
bg(trs) wq(dt) r

b
s

580 ALLGOWER, ERDMANN, AND GEORG

and consequently

f(ms+h)=f(ms)+ C
0 < |a| < q

“
af(ms) ha+F

1

0
C
|b|=q

“
bf(ms+th) wq(dt) hb

\ f(ms)− C
0 < |a| < q

|“af(ms) ha|−F
1

0
C
|b|=q

|“bf(ms+th) wq(dt) hb|

\ f(ms)− C
0 < |a| < q

|“af(ms)| r
a
s−F

1

0
C
|b|=q

“
bg(trs) wq(dt) r

b
s

=f(ms)−(g(rs)−g(0))+ C
0 < |a| < q

(“ag(0)− |“af(ms)|) r
a
s.

Corollary 19. Let s … Rn be an interval, and let q > 0 be an integer.
Let f(x)Oq g(x) for x ¥ s. Then

Ef(s) :=f(ms)−(g(|ms |+rs)−g(|ms |))z
\ 0

+ C
0 < |a| < q

(“ag(|ms |)− |“af(ms)|)z
\ 0

ras (20)

is a lower bound for f on s.

Proof. Note that f(ms+x)Oq g(|ms |+x) for |x| [rs and apply the
theorem. L

The terms inside the summation sign in (18) and (20) are nonnegative,
and hence the estimate tightens with increasing q ; i.e., the lower bound
estimate increases. To increase the efficiency of implementations, one
would successively apply the estimate for q=1 : q0 in Algorithm 4 and
discard the interval as soon as possible.

5. COMPLEXITY RESULTS

In this section we investigate the complexity of Algorithm 4 in the sense
of Theorem 3.
Throughout this section, let L … Rn be an initial interval, q > 0 an
integer, f: LQ R, and f(x)Oq g(x) for x ¥ L. We start Algorithm 4 in L
using the lower bound estimate (20) for all subintervals s … L. Recall that
Algorithm 4 generates for each level i > 0 a list of intervals Ci. For the
purpose of an asymptotic analysis, we assume that maximal_level=.;
i.e., we consider the algorithm to run without termination.

COMPLEXITY OF EXCURSION ALGORITHMS 581

We introduce the set of minimal points

Mf(L) :={t ¥ L : f(x)=min
x ¥ L
f(x)}.

Note thatMf(L)]”. We will need the following technical definition:

Definition 21. We say that t ¥Mf(L) has uniform order p if

1. “af(t)=0 for 0 < |a| [p,
2. there exists an e > 0 such that e ||m−t||p+1 [f(m)−f(t) for

||m−t|| [e.

We recall that a point t ¥Mf(L) which is also in the interior of L satis-
fies the (necessary) minimality conditions

1. “aF(t)=0 for |a|=1.
2. The quadratic form ; |b|=2 “

bf(t) xb is positive semidefinite.

Here we have to assume that f is sufficiently smooth; say, f ¥A3(L).
If furthermore t is a regular point of the gradient of f (the generic case),
then the quadratic form is positive definite, and Taylor’s formula implies
immediately that t has uniform order 1. Hence the previous definition (for
p > 1) allows some singularity. The following lemma is the basis for our
complexity analysis.

Lemma 22. Let each point in Mf(L) have some uniform order p with
p < q. Then there exists an A > 0 such that the following holds: if s ¥ Ca with
a > A, then there exists a t ¥Mf(L) such that ||ms−t|| [A ||rs ||.

Proof. Assume not. Then there is a sequence si ¥ Ci of intervals such
that ||rsi || [1/i and

||msi −g|| > i ||rsi || for all g ¥Mf(L). (23)

Since L is compact, we find a convergent subsequence of the msi ; i.e., there
is an unbounded set I of natural numbers such that

lim
i ¥ I
msi=t

for some t ¥ L. From Lemma 8 and from (20) it follows that

f(msi)−(g(|msi |+rsi)−g(|msi |))

+ C
0 < |a| < q

(“ag(|msi |)− |“
af(msi)|) r

a
si
[Mi−1.

582 ALLGOWER, ERDMANN, AND GEORG

Letting iQ. while i ¥ I, from Lemma 10 we obtain that t ¥Mf(L). By
assumption we know that t has a certain uniform order, say p, with p < q.
Since the estimate (20) is increasing for increasing q, we have

f(msi)−(g(|msi |+rsi)−g(|msi |))

+ C
0 < |a| [p

(“ag(|msi |)− |“
af(msi)|) r

a
si
[Mi−1.

Since

g(|msi |+rsi)=g(|msi |)+ C
0 < |a| [p

“
ag(|msi |) r

a
si
+O(||rsi ||

p+1)

we have

f(msi)+ C
0 < |a| [p

|“af(msi)| r
a
si
[Mi−1+O(||rsi ||

p+1). (24)

Expanding “af(msi) about t and using the fact that all derivatives of order
[p vanish, we obtain

“
af(msi)= C

c : |c|+|a|=p+1
F
1

0
“
c
“
af(t+t(msi −t)) wp+1−|a|(dt)(msi −t)

c.

This leads to

|“af(msi)| r
a
si
=O(||rsi ||

|a| ||msi −t||
p+1−|a|).

Using this and (23) in (24) gives

f(msi) [Mi−1+O(||rsi || ||msi −t||
p).

On the other hand, for i ¥ I there is a yi−1 ¥ Ci−1 such that t ¥ yi−1. Hence,
using the Taylor formula and Lemma 8 we see that

Mi−1 [f(myi)=f(t)+O(||ryi−1 ||
p+1)=f(t)+O(||rsi ||

p+1).

The last two inequalities now lead to

f(msi)−f(t) [O(||rsi || ||msi −t||
p).

COMPLEXITY OF EXCURSION ALGORITHMS 583

Since t has uniform order p, there is an e > 0 such that

e ||msi −t||
p+1 [f(msi)−f(t)

for all but finitely many i ¥ I. Combining the last two inequalities leads to

e ||msi −t||
p+1 [O(||rsi || ||msi −t||

p)

for all but finitely many i ¥ I, clearly in contradiction to (23). L

The proof of the following theorem is now simple, but somewhat tech-
nical in its precise details; see also [4].

Theorem 25. Let each point in Mf(L) have some uniform order p with
p < q. Then #Ca is bounded as aQ..

Proof. Given the radius rL of the initial interval L, let g :=
minn rL(n) > 0 be its minimal entry. Let e denote the vector with all entries
equal to 1. Let A be the constant of the previous lemma. We only need to
consider bisection levels a > A.
Let s ¥ Ca, and let t ¥Mf(L) be such that ||ms−t|| [A ||rs ||. Note that
we can write this inequality as

t−A ||rs || e [ms [t+A ||rs || e.

Note that rs=2−arL. From e [rL/g it follows that

t−
A ||rL ||
g
rs=t−

A ||rs ||
g
rL [t−A ||rs || e

[ms [t+A ||rs || e [t+
A ||rs ||
g
rL=t+

A ||rL ||
g
rs.

Hence, if L is an integer such that

L \
A ||rL ||
g
+1,

then s is contained in the interval yt=[t−Lrs, t+Lrs]. There are at most
Ln intervals in Ca that can be contained in yt. SinceMf(L) is compact, and
the assumptions imply that the points in Mf(L) are isolated, we have
#Mf(L) [C for some C > 0, and hence #Ca [LnC. L

Remark 26. Not all isolated zero points of the gradient of f, even if f
is analytic, satisfy Definition 21 for some p ; in fact, orders of such zero

584 ALLGOWER, ERDMANN, AND GEORG

points are defined in a different way. Modifications of the above proof for
more general cases will be investigated elsewhere.

Remark 27. The preceding theorem indicates that Algorithm 4 should
be used with an estimate (20) where q \ 2, i.e., should involve at least first-
order derivatives of f, in order to avoid a blow-up in the number of inter-
vals per bisection level.

6. SPECIAL CASE: POLYNOMIAL SYSTEMS

For polynomial systems it is natural to use the following simple domi-
nance. Given a polynomial of degree r

p(x)= C
|a| [r
caxa,

we define

p̂(x)= C
|a| [r
|ca | xa,

and therefore have pO. p̂. The estimate (20) now reads

Ef(s) :=p(ms)−(p̂(|ms |+rs)− p̂(|ms |))z
\ 0

+ C
0 < |a| < q

(“ap̂(|ms |)− |“ap(ms)|)z
\ 0

ras. (28)

A numerically important observation is that under certain conditions the
terms in the above sum are zero. More precisely:

Definition 29. We call a polynomial p monotone iff all nonzero coef-
ficients of p have the same sign.

The following two lemmas are rather obvious:

Lemma 30. A polynomial p is monotone iff p̂(|m|)=|p(m)| for all m \ 0.

Lemma 31. If p is monotone, then “bp is monotone for all b.

The case when our initial interval L is in the positive cone is an impor-
tant one. Often for systems with physical significance, variables only take
on positive values. Then the preceding observations enable us to identify
the multi-indices a, for which the summation in (28) needs to be carried

COMPLEXITY OF EXCURSION ALGORITHMS 585

out. The following recursion generates these multi-indices in an efficient
way:

function GenerateMultiIndices(a)
set n=|a|
if “a(p) is monotone
return
print(a)
set b=a
set b1=b1+1
GenerateMultiIndices(b)
for k=1 : n−1
if ak] 0
return
set b=a
set bk+1=bk+1+1
GenerateMultiIndices(b)

The recursion is started with a=(0, ..., 0).
On the other hand, for q=. in (28), we obtain a simplification:

Ef(s) :=p(ms)− C
0 < |a| < q

“
a |“ap(ms)| r

a
s. (32)

This estimate is valid for all ms, not just ms \ 0. All relevant multi-
indices can be obtained in a recursion similar to the above. The line ‘‘if
“
a(p) is monotone’’ only needs to be replaced by ‘‘if “a(p)=0.’’
With these remarks it is now clear that Algorithm 4, applied to polyno-
mials with the estimates (28) or (32), can be implemented as a black box
algorithm: the only input required is the coefficients of the polynomials and
an initial interval. An implementation in JAVA is a current project;
see [3].

7. SUMMARY

An application of Algorithm 4 typically consists of three steps:

1. Given the problem minx ¥ L f(x), construct a g such that fOq g.
The results in Section 3 are used in this step.
2. Implement the estimates (18) or (20) for the given q. Note that for

q > 1 many partial derivatives are involved, so we have to construct a
MAPLE script that actually implements these estimates (say, in JAVA),
once f and g are given.

586 ALLGOWER, ERDMANN, AND GEORG

3. Run Algorithm 4 based on the estimate constructed in step 2.
4. A typical feature of Algorithm 4 is that each global minimal point

causes the generation of several intervals, and therefore in a final step we
have to sort out which intervals represent the same global minimal point.
We call two intervals in Ca close iff their midpoints m1 and m2 satisfy an
inequality |m1−m2 | [C2−ar where r=rL is the radius of the initial inter-
val. Ideally, C=2; however, a more practical choice is some constant
C > 2. This notion of closeness defines connected components in the set Ca.
Lemma 22 implies the existence of a C \ 2 such that for sufficiently large a
each global minimal point is represented by exactly one connected compo-
nent of intervals. We say that the algorithm has isolated all global minimal
points (for such a). It is not difficult to write a program that generates such
connected components.

Note that for polynomials, items 1 and 2 can be automated and incor-
porated directly into an implementation of Algorithm 4 as indicated in
Section 6.

ACKNOWLEDGMENT

We express our appreciation to Baker Kearfott for advice on the connections between
exclusion algorithms and some results in interval analysis.

REFERENCES

1. A. Arazyan and R. B. Kearfott, Taylor series models in deterministic global optimization,
in ‘‘Proceedings of AD 2000, the Third International Conference and Workshop on
Automatic Differentiation, June 19–23, 2000, Nice, France,’’ SIAM, Philadelphia, in press.

2. T. Csendes and D. Ratz, Subdivision direction selection in internal methods for global
optimization, SIAM J. Numer. Anal. 34 (1997), 922–938.

3. M. Erdmann, ‘‘On the Implementation and Analysis of Cellular Exclusion Algorithms,’’
Ph.D. thesis, Colorado State University, 2001, in preparation.

4. K. Georg, Improving the efficiency of exclusion algorithms, manuscript submitted for
publication.

5. K. B. Kearfott, Abstract generalized bisection and a costbound,Math. Comput. 49 (1987),
187–202.

6. R. B. Kearfott, ‘‘Rigorous Global Search: Continuous Problems,’’ Kluwer Academic,
Dordrecht, 1996.

7. R. B. Kearfott, Empirical evaluation of innovations in internal branch and bound algo-
rithms for nonlinear algebraic systems, SIAM J. Sci. Comput. 18 (1997), 574–594.

8. R. B. Kearfott and K. Du, The cluster problem in multivariate global optimization,
J. Global Optim. 5 (1994), 253–265.

9. R. E. Moore, ‘‘Methods and Applications of Interval Analysis,’’ SIAM, Philadelphia,
1979.

COMPLEXITY OF EXCURSION ALGORITHMS 587

10. H. Ratschek and J. Rokne, ‘‘New Computer Methods for Global Optimization,’’ Wiley,
New York, 1988.

11. Z.-B. Xu, J.-S. Zhang, and Y.-W. Leung, A general CDC formulation for specializing the
cell exclusion algorithms of finding all zeros of vector functions, Appl. Math. Comput. 86
(1997), 235–259.

12. Z.-B. Xu, J.-S. Zhang, and W. Wang, A cell exclusion algorithm for determining all the
solutions of a nonlinear system of equations, Appl. Math. Comput. 80 (1996), 181–208.

588 ALLGOWER, ERDMANN, AND GEORG

	1. INTRODUCTION
	FIG. 1
	2. EXCLUSION ALGORITHMS FOR UNCONSTRAINED MINIMIZATION
	3. CONSTRUCTION OF DOMINANT FUNCTIONS
	4. LOCAL EXPANSIONS TO OBTAIN LOWER BOUNDS
	5. COMPLEXITY RESULTS
	6. SPECIAL CASE POLYNOMIAL SYSTEMS
	7. SUMMARY
	ACKNOWLEDGMENT
	REFERENCES

