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Abstract

QCD motivated effective models coupled with the cosmological dilaton field are analyzed. It is shown that all models possess
confining solutions with the linear potential of confinement even thought such solutions are not observed in the original effective
theory. In case of the Pagels—Tomboulis model analytical solutions are explicit found.

0 2003 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction Lagrangian density in the Euclidean space—time [4]

. . 1 fa/,l,vfa

The non-perturbative behavior of the quantumchro- 7 — -~ " #¥
modynamics in the low energy sector is one of the 4 221
main problem of the temporary theoretical physics. In \where
spite of the many efforts such effects like the confine- r
ment of quarks and gluons are not satisfactorily under- = |n — (2
stood. Because of the fact that we cannot use the well- H
known perturbative methods we have to find a new andg is the running coupling constant andis a di-
way analyzing the non-perturbative features. In fact, mensional constant. Hete = 1 F¢ Fanv and F¢, =

. . . 7Y Ay
there are several methods of investigating of the low 0, A% —0,A% +g€abcAzA6 is the standard field tensor

energy QCD. Roughly speaking, they can be divided gepends on th8U (2) gauge fields. The model (1) was

into two groups. Namely, the lattice models and the primary invented to reproduce, at the classical level,
effective Ginzburg—Landau-like models. The second the trace anomaly known from the quantum chromo-
group contains for example such popular models like gynamics [4]. Indead, one can find that trace of the

model [2] and the stochastic vacuum model [3]. In the

present Letter we will focus on the second class of the ., _ A(8) FH T 3)
effective models given by the following ansatz forthe "#* = 2z z2(r)

: @

This is in agreement with result obtained in the
E-mail address: wereszcz@th.if.uj.edu.pl (A. Wereszdwki). full quantum theory. Particular examples of the La-
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grangian (1) are obtained by calculatigg) from: takes the following form:
po Fanv pa
e’ 4 1
_ Lgen= ——— ———~ + Z8,09"¢, 5
&(t) dg gen 4 320 + 2 3¢ )
=] B (4) wherer is given by
80 L 1 F2
For example, the usual perturbative one-lgifunc- 2 A8
tion g = —%éﬁ gives the famous Sawvidy—Adler andb is a dimensionless constant. Hereis a di-
model [5-7]. Forg = —8g one gets the Pagels— mensional constant andl corresponds taF in the

Tomboulis model [4]. Both models provide confine- Minkowski space—time. For convenience we introduce
ment of quarks and can be treated as first approxima-a new function

tion to the true effective model. Here confinement is

understood in the following way. Field configurations SF) = 22(1)

ggnerated by an external electric source possess mﬁ'The pertinent equations of motion read:
nite energy due to the long range behavior of the fields.

However, a dipole-like source with zero total charge |:eb¢/A I(f(F)F) Fa//,vi| _ jav, )
has finite energy. Because of that the physical spec- oF

trum of the theory consists of the dipoles—mesons
whereas charge solutions are excluded from it.

~ The main aim of this Letter is to analyze such effec- |n the present Letter we are mainly interested in ana-
tive models together with the cosmological dilaton [8].  |yzing of the field configurations generated by external

There are many papers where classical solutions of glectric static sources. Due to that the external current
the dilaton Yang—-Mills theory has been considered jg

[9-11]. However, because the classical Yang—Mills ant O a3
Lagrangian seems to have little to do with physics de- J** =4Tqd(r)8™8%°, )
scribed by the low energy QCD it is probably more whereq is an external charge. We would like to no-
correct to investigate model where Yang-Mills partis tice that restriction to the Abelian current is not es-
substituted by (1). sential. Using the results presented in [11] one can
On the other hand, the non-minimal coupling be- find the solution of these equations in the general
tween scalar and gauge fields has been often used tohon-Abelian case as well. However, they differ from
reproduce the non-trivial quantum phenomena in the the Abelian solutions only by a multiplicative color-
framework of classical field theories (c.f. color dielec- dependent constant. The dependence on spatial co-
tric model). The scalar field represents unusual proper- ordinates remains unchanged. One could argue that
ties of the non-perturbative vacuumin which the gauge the smalll difference between Abelian and non-Abelian
fields propagate. It can suggest that the correct effec- case is in the contradiction with the well-known fact
tive model should contain more than only gauge fields. that the non-perturbative features of QCD originate in
It is in agreement with lattice gauge theory where, in  the non-Abelian character of the gauge fields. But one
the low energy limit, many additional effective fields should remember that there is no simple correspon-
(scalar, vector, tensor) appear [12]. dence between the quantum gauge fields in QCD and
the fields in the presented classical model. The non-
Abelian character of the original quantum theory is
implemented by taking into account the QCD moti-
vated running coupling constant. The particular form
of the Lie group on which the classical gauge fields in
Let us now couple an effective model for the low the effective model are based seems to play less im-
energy QCD with the cosmological scalar field, i.e., portantrole (at leastin the problem of the confinement
dilaton. Then the action, in the Minkowski space—time, of external sources).

(6)

30" ¢ = %eb"’/Af(F)F. (8)

2. Thelinear potential
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Because of that we will consider only Abelian For the static, pure electric solutions we obtain
degrees of freedom. For example, one canApt=

2\ 2
A,8%. The equations of motion can be rewritten as:  Tpg = |:eb¢/A (Ez%
If(EDHE?) 1 1
[rzeb"’/ AfaTE =4mqs(r), (10) -3 f(EZ)EZ) + E(aﬂp)z]. (18)
V2¢p = —zif(Ez)EZebWA. (11) Then after substituting the solutions (12), (13) and
r A

using relations (15) one gets
Here, we have assumed the spherical symmetry of the ) 9. 1.2
F—EF i - iation i A A(f(E)E")
problemE = E7. The prime denotes differentiationin 7, — — ebPo/A Egiz
r oE

respect to.. The solutions take the following form: E=Ej
1 27 A2
? = —% Inr A + ¢o, (12) - Ef(ES)E(%) * ﬁ] =z fog- (19)
E = EgA? = const (13) The energy stored in the ball with radius around
Where ¢o and Eo are yet to be determined. This ;c_he exterr_lal static, point-like electric charge diverges
. . : inearly with R
corresponds to linear electric potential
R
2
U= EorA®. a9 g = / Tood®r = 47 Eoq RA. (20)
Inserting these solutions into the field equations we 0
giggg)tam the algebraic equations for the consiggts T_he field configura_\tio_n_s generated by external elgc-
tric sources have infinite total energy. In contradic-
Af (E2)E? tory to the Maxwell theory energy diverges due to the
eb%o Eo=gq, . . .
0E2  |p_p, long range beha\{|or of the fields. In that sense electric
4 charges are confined. It should be underlined that ap-
gb¢0f(E§) E= —. (15) pearance of the linear potential (constant energy den-
b sity) is independent on the form of the original effec-
After eliminating ¢o we find that the constanko tive Lagrangian. One can find many examples of phys-
is given by the following (in general non-linear) jcally interesting models which originally do not have
algebraic equation linear potential. However, because of the interaction
2 with the dilaton field, the potential becomes linear.
e-Ln(rEey) =1 (16)
dE? =g, 4

Unfortunately, we are not able to solve this equation 3. An example
in the general case. However, as it is shown below,

for particular forms of the functiorf one can find the In order to find explicit solutions one has to choose
value of constant&£o anddo. a particular form of the functiorf. Here we will take

Let us analyze the energy of these solutions. The the Pagels—Tomboulis model [4]
energy component of the energy—momentum tensor 1/ Fa pamvy 2
corresponding to the Lagrangian (1) has the following g = —Z( £2____ | Fa panv, (21)
form: 4 244 -

vorn{ ad(F(F)F) 1 wheres is a dimensionless parameter. It was shown

Too= [e ¢/ (E Y Zf(F)F> that the Pagels—Tomboulis model can serve as a

candidate for the low energy effective action foe
+ }(30@2 + }(3@)2}_ (17) (711, 00). In partigular, it assures_confinemgntof electfic
2 2 charges and gives the following confining potential
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(13]

2445 8  4-1
UpT = aplq|T+% AT+& y 25+1

(22)

which, after fitting the values of the parameter, is
in agreement with the experimental data. Hexe
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The corresponding electric field is given in the follow-
ing form:

is @ numerical constant. One can easily see that theFinally, we obtain linear confining potential

linear potential is achieved only in the limit— oo.
Obviously, such a limit cannot be implemented in
the Lagrangian. That means that it is not possible to
realize the linear confinementin the Pagels—Tomboulis
model.

Let us turn to the model with the dilaton field. Then
the Lagrangian density reads

eb¢/A (

4

a papv
FWF

L=-—
244

) iy F 4 S0,

(23)
Then equations of motion are:
vornl F 25
Dy, |:(23 +De @/ (F) Fa/wi| — jav, (24)
b poral F 2
8M8“¢) = ﬂe F F. (25)

Similar as in the previous section we will consider an
Abelian static and point-like external electric charge.
Thus the field equations take the form:

2 boya EXTHY
|:(28+1)r e/ W] =qd(r), (26)
b E4¢§+2
2. bp/A
One can solve Eg. (26) and find the electric field
1
q +4 b 9
E=A%— %1 &5 4, 28
((1+28)r2A2> ¢ (28)
Then Eq. (27) reads
2 3b q° HE 4
Vép=—A° - —————— “w&A,. (29
re 2<(1+25)2r4A4) ¢ (29)
After some calculation one can find that the solution is
o) 2
=——InraA , 30
1 5 Inr + ¢o (30)
where the constant
1445 [ 4 /1425\%5%
=———In| 5| —— ) 31
po=-1" [ (22 } 31)

E(r)= @A? (32)
qb
4(1+ 25)
BT rA®. (33)

As it was said before it is really remarkable that
the potential takes the linear form for all The
dependence on the parameétés, unlikely the original
Pagels—Tomboulis model, visible only in the ‘string
tension’. The functional dependence is always linear.
One can notice that the case= 0 is a little
bit special. Then the additional symmetry appears in
the equations of motion. Namely, if one defines a
new variablex = 2 then the translatiow — x + xo
remains equations unchanged. Because of that we find
a whole family of the solutions which depends on the
translation parametetg [11]. These solutions have
finite energy. One should remember that this effect
is present only fos = 0 and does not occur in the
general case.

4. Conclusions

In the present Letter we have shown that the
cosmological dilaton field coupled with the effective
model (1), originally dependent only on tH&J(2)
gauge fields, provides the linear confinement of the
electric charges. It is striking that this behavior is
observed for all models based on gauge fields with the
U (1) subgroup. Even though the original gauge model
does not possess confining solutions then interaction
with the dilaton causes that the electric charges are
confined. The confining potential is always linear
and only string tension is model dependent. In other
words, the particular form of the effective model
is not important if one would like to model the
confinement of the quarks. The essential is the form
of the coupling between the scalar field and the gauge
field. The linear confinement is not observed if one
takes, for example, power-like coupling in stead of
exponential one [14,15]. Then the potential strongly
depends on the particular form of the gauge part of the
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model. Only exponential coupling gives indifferently
the same functional form of the potential.

Of course, this result can be applied not only
to QCD effective models but to all model with at
least U (1) gauge field (for instance, the non-linear
electrodynamics).

There are several directions in which the present
work can be continued. First of all, one can analyze
more general than the tree level approximated dilaton
coupling [16]. It would be interesting to know how
this more realistic interaction inflects on the electric
solutions of the QCD induced effective models. Sim-
ilar, one should consider the non-perturbative dilaton
potential [17] and/or the mass term [18]. Moreover,

one could also ask about another cosmological scalar

field, i.e., the modulus field [16,19]. However, in our
opinion the most important problem is to analyze di-
pole sources. As we have mentioned it before, dis-

appearance of the electric charge from physical spec-

trum is not sufficient to have confinementin the theory.
One has to show that fields generated by a dipole-like

source possess finite energy. It would be interesting to

know whether the functional form of the total energy

is also in this case independent on the gauge part of

the model. We plan to address this last problem in out
next paper.
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