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Abstract

QCD motivated effective models coupled with the cosmological dilaton field are analyzed. It is shown that all models
confining solutions with the linear potential of confinement even thought such solutions are not observed in the original
theory. In case of the Pagels–Tomboulis model analytical solutions are explicit found.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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1. Introduction

The non-perturbativebehavior of the quantum ch
modynamics in the low energy sector is one of
main problem of the temporary theoretical physics
spite of the many efforts such effects like the confi
ment of quarks and gluons are not satisfactorily und
stood. Because of the fact that we cannot use the w
known perturbative methods we have to find a n
way analyzing the non-perturbative features. In fa
there are several methods of investigating of the
energy QCD. Roughly speaking, they can be divid
into two groups. Namely, the lattice models and
effective Ginzburg–Landau-like models. The seco
group contains for example such popular models
the dual superconductor model [1], the color dielec
model [2] and the stochastic vacuum model [3]. In
present Letter we will focus on the second class of
effective models given by the following ansatz for t
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Lagrangian density in the Euclidean space–time [4

(1)Leff = −1

4

FaµνFa
µν

ḡ2(t)
,

where

(2)t = ln
F
µ4

and ḡ is the running coupling constant andµ is a di-
mensional constant. HereF = 1

2F
a
µνF

aµν andFaµν =
∂µA

a
ν−∂νAaµ+gεabcAbµAcν is the standard field tenso

depends on theSU(2) gauge fields. The model (1) wa
primary invented to reproduce, at the classical le
the trace anomaly known from the quantum chrom
dynamics [4]. Indead, one can find that trace of
energy–momentum tensor corresponding to (1) rea

(3)T µµ = β(ḡ)

2ḡ

FaµνFa
µν

ḡ2(t)
.

This is in agreement with result obtained in t
full quantum theory. Particular examples of the L
nse.
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grangian (1) are obtained by calculatingḡ(t) from:

(4)t =
ḡ(t )∫
g0

dg

β(g)
.

For example, the usual perturbative one-loopβ-func-
tion β = − 11

32πg
3 gives the famous Savvidy–Adle

model [5–7]. Forβ = −δg one gets the Pagels
Tomboulis model [4]. Both models provide confin
ment of quarks and can be treated as first approxi
tion to the true effective model. Here confinemen
understood in the following way. Field configuratio
generated by an external electric source possess
nite energy due to the long range behavior of the fie
However, a dipole-like source with zero total char
has finite energy. Because of that the physical sp
trum of the theory consists of the dipoles—meso
whereas charge solutions are excluded from it.

The main aim of this Letter is to analyze such effe
tive models together with the cosmological dilaton [
There are many papers where classical solution
the dilaton Yang–Mills theory has been conside
[9–11]. However, because the classical Yang–M
Lagrangian seems to have little to do with physics
scribed by the low energy QCD it is probably mo
correct to investigate model where Yang–Mills par
substituted by (1).

On the other hand, the non-minimal coupling b
tween scalar and gauge fields has been often use
reproduce the non-trivial quantum phenomena in
framework of classical field theories (c.f. color diele
tric model). The scalar field represents unusual pro
ties of the non-perturbativevacuum in which the gau
fields propagate. It can suggest that the correct ef
tive model should contain more than only gauge fie
It is in agreement with lattice gauge theory where
the low energy limit, many additional effective field
(scalar, vector, tensor) appear [12].

2. The linear potential

Let us now couple an effective model for the lo
energy QCD with the cosmological scalar field, i.
dilaton. Then the action, in the Minkowski space–tim
takes the following form:

(5)Lgen= −e
b
φ
Λ

4

FaµνF aµν

ḡ2(t)
+ 1

2
∂µφ∂

µφ,

wheret is given by

t = 1

2
ln
F 2

Λ8

and b is a dimensionless constant. HereΛ is a di-
mensional constant andF corresponds toF in the
Minkowski space–time. For convenience we introdu
a new function

(6)f (F ) := 1

ḡ2(t)
.

The pertinent equations of motion read:

(7)Dµ

[
ebφ/Λ

∂(f (F )F )

∂F
Faµν

]
= jaν,

(8)∂µ∂
µφ = b

2Λ
ebφ/Λf (F )F.

In the present Letter we are mainly interested in a
lyzing of the field configurations generated by exter
electric static sources. Due to that the external cur
is

(9)jaµ = 4πqδ(r)δ0µδa3,

whereq is an external charge. We would like to n
tice that restriction to the Abelian current is not e
sential. Using the results presented in [11] one
find the solution of these equations in the gene
non-Abelian case as well. However, they differ fro
the Abelian solutions only by a multiplicative colo
dependent constant. The dependence on spatia
ordinates remains unchanged. One could argue
the small difference between Abelian and non-Abe
case is in the contradiction with the well-known fa
that the non-perturbative features of QCD originate
the non-Abelian character of the gauge fields. But
should remember that there is no simple corresp
dence between the quantum gauge fields in QCD
the fields in the presented classical model. The n
Abelian character of the original quantum theory
implemented by taking into account the QCD mo
vated running coupling constant. The particular fo
of the Lie group on which the classical gauge fields
the effective model are based seems to play less
portant role (at least in the problem of the confinem
of external sources).
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Because of that we will consider only Abelia
degrees of freedom. For example, one can setAaµ =
Aµδ

a3. The equations of motion can be rewritten as

(10)

[
r2ebφ/Λ

∂(f (E2)E2)

∂E2 E

]′
= 4πqδ(r),

(11)∇2
r φ = − b

2Λ
f

(
E2)E2ebφ/Λ.

Here, we have assumed the spherical symmetry o
problem �E =Er̂ . The prime denotes differentiation
respect tor. The solutions take the following form:

(12)
φ(r)

Λ
= −2

b
ln rΛ+ φ0,

(13)E =E0Λ
2 = const.

Where φ0 and E0 are yet to be determined. Th
corresponds to linear electric potential

(14)U =E0rΛ
2.

Inserting these solutions into the field equations
can obtain the algebraic equations for the constantφ0
andE0

ebφ0
∂f (E2)E2

∂E2

∣∣∣∣
E=E0

E0 = q,

(15)ebφ0f
(
E2

0

)
E2

0 = 4

b2 .

After eliminating φ0 we find that the constantE0
is given by the following (in general non-linea
algebraic equation

(16)E
∂

∂E2 ln
(
f

(
E2)E2)∣∣∣∣

E=E0

= qb2

4
.

Unfortunately, we are not able to solve this equat
in the general case. However, as it is shown bel
for particular forms of the functionf one can find the
value of constantsE0 andφ0.

Let us analyze the energy of these solutions. T
energy component of the energy–momentum ten
corresponding to the Lagrangian (1) has the follow
form:

T00 =
[
ebφ/Λ

(
E2∂(f (F )F )

∂F
− 1

4
f (F )F

)

(17)+ 1

2
(∂0φ)

2 + 1

2
(∂iφ)

2
]
.

For the static, pure electric solutions we obtain

T00 =
[
ebφ/Λ

(
E2∂(f (E

2)E2)

∂E2

(18)− 1

2
f (E2)E2

)
+ 1

2
(∂iφ)

2
]
.

Then after substituting the solutions (12), (13) a
using relations (15) one gets

T00 = Λ2

r2

[
ebφ0/Λ

(
E2

0
∂(f (E2)E2)

∂E2

∣∣∣∣
E=E0

(19)− 1

2
f

(
E2

0

)
E2

0

)
+ 2

b2

]
= Λ2

r2 E0q.

The energy stored in the ball with radiusR around
the external static, point-like electric charge diverg
linearly withR

(20)E(R)=
R∫

0

T00d
3r = 4πE0qRΛ

2.

The field configurations generated by external e
tric sources have infinite total energy. In contrad
tory to the Maxwell theory energy diverges due to
long range behavior of the fields. In that sense elec
charges are confined. It should be underlined that
pearance of the linear potential (constant energy d
sity) is independent on the form of the original effe
tive Lagrangian. One can find many examples of ph
ically interesting models which originally do not ha
linear potential. However, because of the interact
with the dilaton field, the potential becomes linear.

3. An example

In order to find explicit solutions one has to choo
a particular form of the functionf . Here we will take
the Pagels–Tomboulis model [4]

(21)L= −1

4

(
FaµνF

aµν

2Λ4

)2δ

F aµνF
aµν,

whereδ is a dimensionless parameter. It was sho
that the Pagels–Tomboulis model can serve a
candidate for the low energy effective action forδ ∈
(1

4,∞). In particular, it assures confinement of elect
charges and gives the following confining poten



A. Wereszczyński / Physics Letters B 570 (2003) 260–264 263

is

the

in
to

ulis

n

an
ge.

is

w-

at

g
ar.

s in
a

find
the
e
ect
e

the
ve

the
is
the
del
tion
are
ar
her
el
e
rm

uge
ne
of

gly
the
[13]

(22)UPT = a0|q| 2+4δ
1+4δ Λ

8δ
1+4δ r

4δ−1
4δ+1 ,

which, after fitting the values of the parameter,
in agreement with the experimental data. Herea0
is a numerical constant. One can easily see that
linear potential is achieved only in the limitδ → ∞.
Obviously, such a limit cannot be implemented
the Lagrangian. That means that it is not possible
realize the linear confinement in the Pagels–Tombo
model.

Let us turn to the model with the dilaton field. The
the Lagrangian density reads

(23)

L= −e
bφ/Λ

4

(
FaµνF

aµν

2Λ4

)2δ

F aµνF
aµν + 1

2
∂µφ∂

µφ.

Then equations of motion are:

(24)Dµ

[
(2δ+ 1)ebφ/Λ

(
F

Λ4

)2δ

F aµν
]

= jaν,

(25)∂µ∂
µφ = b

2Λ
ebφ/Λ

(
F

Λ4

)2δ

F.

Similar as in the previous section we will consider
Abelian static and point-like external electric char
Thus the field equations take the form:

(26)

[
(2δ+ 1)r2ebφ/Λ

E4δ+1

Λ8δ

]′
= qδ(r),

(27)∇2
r φ = − b

2Λ

E4δ+2

Λ8δ e
bφ/Λ.

One can solve Eq. (26) and find the electric field

(28)E =Λ2
(

q

(1+ 2δ)r2Λ2

) 1
1+4δ

e−
b

1+4δ
φ
Λ .

Then Eq. (27) reads

(29)∇2
r φ = −Λ3 b

2

(
q2

(1+ 2δ)2r4Λ4

) 1+2δ
1+4δ

e−
b

1+4δ
φ
Λ .

After some calculation one can find that the solution

(30)
φ(r)

Λ
= −2

b
ln rΛ+ φ0,

where the constant

(31)φ0 = −1+ 4δ

b
ln

[
4

b2

(
1+ 2δ

q

)21+2δ
1+4δ

]
.

The corresponding electric field is given in the follo
ing form:

(32)E(r)= 4(1+ 2δ)

qb2 Λ2.

Finally, we obtain linear confining potential

(33)U = 4(1+ 2δ)

qb2 rΛ2.

As it was said before it is really remarkable th
the potential takes the linear form for allδ. The
dependence on the parameterδ is, unlikely the original
Pagels–Tomboulis model, visible only in the ‘strin
tension’. The functional dependence is always line

One can notice that the caseδ = 0 is a little
bit special. Then the additional symmetry appear
the equations of motion. Namely, if one defines
new variablex = 1

r
then the translationx → x + x0

remains equations unchanged. Because of that we
a whole family of the solutions which depends on
translation parameterx0 [11]. These solutions hav
finite energy. One should remember that this eff
is present only forδ = 0 and does not occur in th
general case.

4. Conclusions

In the present Letter we have shown that
cosmological dilaton field coupled with the effecti
model (1), originally dependent only on theSU(2)
gauge fields, provides the linear confinement of
electric charges. It is striking that this behavior
observed for all models based on gauge fields with
U(1) subgroup. Even though the original gauge mo
does not possess confining solutions then interac
with the dilaton causes that the electric charges
confined. The confining potential is always line
and only string tension is model dependent. In ot
words, the particular form of the effective mod
is not important if one would like to model th
confinement of the quarks. The essential is the fo
of the coupling between the scalar field and the ga
field. The linear confinement is not observed if o
takes, for example, power-like coupling in stead
exponential one [14,15]. Then the potential stron
depends on the particular form of the gauge part of
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model. Only exponential coupling gives indifferen
the same functional form of the potential.

Of course, this result can be applied not on
to QCD effective models but to all model with
leastU(1) gauge field (for instance, the non-line
electrodynamics).

There are several directions in which the pres
work can be continued. First of all, one can analy
more general than the tree level approximated dila
coupling [16]. It would be interesting to know ho
this more realistic interaction inflects on the elect
solutions of the QCD induced effective models. Si
ilar, one should consider the non-perturbative dila
potential [17] and/or the mass term [18]. Moreov
one could also ask about another cosmological sc
field, i.e., the modulus field [16,19]. However, in o
opinion the most important problem is to analyze
pole sources. As we have mentioned it before,
appearance of the electric charge from physical sp
trum is not sufficient to have confinement in the theo
One has to show that fields generated by a dipole-
source possess finite energy. It would be interestin
know whether the functional form of the total ener
is also in this case independent on the gauge pa
the model. We plan to address this last problem in
next paper.
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