
Xiao-Yu Zhang, Wei-Chuan Lin *

Department of Mathematics, Fujian Normal University, Fuzhou 350007, Fujian Province, PR China

Article info
Article history:
Available online 30 October 2008

We thank the referee of the original paper and a reader for pointing out that there is an error in our paper. The results of Theorem 1 are corrected as follows.

Theorem 1. Let \(f(z) \) and \(g(z) \) be two nonconstant entire functions, and let \(n, m \) and \(k \) be three positive integers with \(n > 2k + m^* + 4 \), and \(\lambda, \mu \) be constants such that \(|\lambda| + |\mu| \neq 0 \). If \([f^n(z)(\mu f^m(z) + \lambda)]^k \) and \([g^n(z)(\mu g^m(z) + \lambda)]^k \) share \(1 \) CM, then

(i) when \(\lambda \mu \neq 0 \), \(f(z) \equiv g(z) \), especially, when \(\lambda \mu = 1 \), \(f(z) \equiv g(z) \);

(ii) when \(\lambda \mu = 0 \), either \(f(z) \equiv t g(z) \), where \(t \) is a constant satisfying \(t^n m^* = 1 \), or \(f(z) = c_1 e^{cz} \), \(g(z) = c_2 e^{-cz} \), where \(c_1, c_2 \), and \(c \) are three constants satisfying \((-1)^k \lambda^2 (c_1 c_2)^{n+m^*} [(n+m^*) c]^2 k = 1 \) or \((-1)^k \mu^2 (c_1 c_2)^{n+m^*} [(n+m^*) c]^2 k = 1 \).

The proof on page 947 between line 9 and line 13 should be replaced with the following. If \(\lambda \mu \neq 0 \), then we suppose that \(h = f/g \). By (3.29), we can get

\[
\mu g^m(h^{n+m} - 1) = \lambda(1 - h^n);
\]

when \(h^{n+m} = 1 \), by the above equation, we obtain \(h^n = 1 \), that is, \(f^n = g^n \) and \(f^m = g^m \); when \(h^{n+m} \neq 1 \), then substituting \(f = gh \) into (3.29) we have

\[
g^m = \frac{-\lambda}{\mu} \times \frac{1 + h + \ldots + h^{n-1}}{1 + h + \ldots + h^{n+m-1}}.
\]

Thus, we deduce that every zero of \(h^{n+m} - 1 \) has to be zero of \(h^n - 1 \) and hence of \(h^m - 1 \) since \(g \) is an entire function. Note that \(n > 2k + m + 4 \); we obtain that \(h \) is a constant. Hence, \(g \) is a constant, a contradiction. Therefore, we deduce that \(h^{n+m} = 1 \), that is, \(f^{n+m}(z) \equiv g^{n+m}(z) \).