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Inherited Groups and Kernels of Derived Translation Planes 

N. L. JOHNSON AND T. G. OSTROM 

When an affine plane is converted to another plane by derivation, the point permutations 
which act as collineations of both planes form the inherited group. The full group can be larger 
than the inherited group. For finite translation planes in which some of the Baer subplanes 
involved are not vector spaces over the kernel of the original plane then the full collineation 
group of the derived plane is the inherited group provided the order of the plane is greater than 
16. 

1. INTRODUCTION 

Let lr be any finite derivable affine plane with derivable net D. Replace (derive) D to 
obtain the affine plane fr, with corresponding derivable net D. The most basic question 
regarding the collineation group of fr is whether the full collineation group of fr is the 
group inherited from the collineation group of lr or, equivalently, whether the full 
group leaves the net D invariant. 

If the plane lr is a strict dual translation plane then the derived plane fr is a strict 
semi-translation plane, and Ostrom [13] showed that the full group is the inherited 
group. 

If lr is a generalized Hall plane then fr is a semi-field plane and, of course, the full 
group is not the inherited group as it contains an elation group with affine axis acting 
transitively on the components different than its axis. On the other hand, if the order is 
greater than 16 the full group of any derived semi-field plane (by a net containing a 
shears axis) is the inherited group [41]. Note that the kernel of a derived semi-field 
plane is a subfield of the kernel of the associated semi-field plane [9]. 

Thus, if lr is a derivable translation plane with derivable net D and the Baer 
subplanes of D incident with the zero vector are all kernel subspaces, then the 
inherited group of the derived plane is not necessarily the full group. 

But, what if the Baer subplanes of D incident with the zero vector are not all kernel 
subspaces? Can any general statement be made regarding the inherited group of the 
derived plane? 

If lr is a semi-field plane of order 16 and kernel K isomorphic to GF(4) then there is 
a derivable net D containing the shears axis such that not all Baer subplanes of D 
incident with the zero vector are K-subspaces. However, the derived plane fr admits 
PSL(2, 7) and, obviously, the full group of fr is not the full group [5,8]. 

If I is the affine Desarguesian plane of order 9 and D is a derivable net then the 
corresponding derived translation plane I is the near-field plane of order 9. Since the 
kernel of I is isomorphic to GF(9) then no Baer subplane of D incident with the zero 
vector can be a GF(9) subspace, even though the full group of I is not the inherited 
group. 

In spite of the above counterexamples to a potential general statement, we prove the 
following result: 

THEOREM A. Let lr be a finite translation plane of order> 16. Let D be a derivable 
net and let K be the kernel of lr. If the Baer subplanes of D incident with the zero vector 
are not all K-subspaces, then the full group of the translation plane obtained by deriving 
D is the inherited group. 

In [6], one of the authors gave conditions under which the kernel K of a derived 
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translation plane fr is a subfield of the kernel K of the corresponding translation plane 
:Jr. For example, if :Jr is of order q2 and kernel k isomorphic to GF(q) and admits an 
affine elation group of order >2 leaving a derivable net D invariant, then the kernel K 
of the associated derived translation plane fr is a subfield of K. 

In this note, we show that K is always a subfield of K unless :Jr is a Hall plane. 

THEOREM B. Let:Jr be a derivable translation plane of order q2 and kernel containing 
K isomorphic to GF(q). Let fr denote the associated derived translation plane and let K 
denote the kernel of fro Let D denote the derivable net of :Jr. If :Jr is not Hall then the 
kernel K of fr is the maximal subfield L of K such that each Baer subplane of D incident 
with the zero vector is an L-space. 

2. THEOREM ON PARTIAL SPREADS 

(2.1) THEOREM. Let K and L be any two fields that act as scalar groups on a finite 
partial spread of order prt and degree >prt-l + 1. Then the ring (K, L) generated over 
the prime field G F(p) is contained in a field. 

PROOF. Choose three components to be represented in the form x = 0, y = 0, and 
y = X. Then the partial spread p may be represented in the form y = xAi for 
i = 0,1,2, ... k for k > prt-t, where Ao is the zero matrix. Now the mappings X~XAi 
acting on an rt-dimensional vector subspace over GF(p) for i > 0 are fixed-point-free 
and the corresponding matrices and their differences are non-singular (or zero). We 
consider the group G generated by the matrices Ai for i > O. We assert that G acts 
irreducibly on W. Note that since each element Ai is non-singular and Ai - Aj for i * j 
is non-singular, the G-orbit length of any non-zero vector is at least k - 1. But if 
k -1 > prt-l -1 then G could fix no proper subspace of W. 

Then, by Schur's lemma the centralizer of G is a field. Since both k and I centralize 
G, we have the proof to (2.1). 0 

3. THE ISOMORPHISM THEOREM 

Our result, Theorem A, stated in the introduction, is actually a corollary to the 
following isomorphism theorem: 

(3.1) THEOREM. Let:Jr and p be derivable translation planes of the same order 
q2> 16, with derivable nets D and R respectively. Let the kernels of:Jr and p be K and L 
respectively, and assume that not all of the Baer subplanes of D (or R) incident with the 
zero vector are K (or L respectively) subspaces. Let fr and p denote the corresponding 
derived planes from :Jr and p respectively. If fr and p are isomorphic then :Jr and pare 
isomorphic by an isomorphism mapping D onto R. 

We first state a lemma: 

(3.2) LEMMA. For q = pr > 4 then q2 - 2q - 1> p2r-l + 1. 

PROOF. The inequality we wish to establish is equivalent to p2r - 2pr > p2r-l + 2. 
First of all (neglecting the 2), note that p2r - 2pr > p2r-l is equivalent, on dividing by 
p2r-t, to p > 1 + 2p l-r, which is true if p > 2 and r> 1 or p = 2 and r > 2. Now suppose 
that p2r - 2pr ~ p2r-l + 2 and p2r - 2pr > p2r-t, with p satisfying the conditions of the 
lemma. Then pr(pr - 2) = p2r-l + 1 or p2r-l + 2, This can only occur if pr divides 2, 
contrary to the condition that pr > 4. 
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(3.3) LEMMA. Let V and R refer to the derived nets of D and R respectively. Let f be 
any isomorphism from if onto p. If Vf n R contains ;;a.:(c -1) components then Vf = R. 

PROOF. Let f be any isomorphism from if onto p. V(R) is a Desarguesian net 
contained in a Desarguesian affine plane 1:'(1:'*). (See Foulser [2J for finite translation 
planes. This result is also valid for arbitrary finite derivable nets: see Johnson [7).) 
Thus, 1:'f is also a Desarguesian affine plane defined on the same points as 1:', the 
components of which are f-images of the components of 1:'. Since q - 1 > 2, the degree 
of 1:'* n 1:'f = 1 + pS by Ostrom [15J (for q = pr and some integer s) so that 
i + pS ;;a.: q - 1. If 1 + pS :s:; q then 1 + pS =q - 1 and pS = q - 2, so that q is even. But, 
clearly, this implies that pS = 2 and q = 4. But, for q2 > 16, 1 + pS ;;a.: 1 + q. This implies 
that 1:'* n 1:'f is either a regulus in the spread of 1:'* or 1:'* = 1:'f. In the initial case, let T 
denote the common regulus. Since Vf nTis a net with at least q - 1 components and 
Vf is a regulus in 1:'*, clearly Vf = T. Similarly, R = T. In the latter case, 1:'* = 2/, so 
that Vf and R are both reguli in the same Desarguesiona spread and share at least 
q - 1 components, so that Vf = R. 0 

PROOF OF (3.2). By (2.2), we may assume that f is an isomorphism from if to p and 
Vf n R share less than q - 1 components. Let H K • denote the homology group of Jr, 

which acts as a collineation group of if fixing all components of the net Jr - V. By 
Biliotti and Lunardon [1, Theorem 3J, H K • fixes either 0 or 2 components of D. 
Similarly, let H L • denote the homology group of p, which acts as a collineation group 
of p fixing all components of p - Rand 0 or 2 components of R. Note that 
Ip - Vf n RI = q2 + 1-IVf n RI > q2 + 1- (q -1) = q2 - q + 2. Now assume that 
H"'. = Hu. Then H"'. would fix each component of p not in Vf and Hu would fix each 
component of p not in R, so that Hu would fix at least q2 - q + 3 components. 
However, as above, Hp fixes at most q2 - q + 2 components of p. Thus, Hp =1= H"' •. 
Now Hu acts on p - R as a scalar group and H"'. acts on p - Df as a scalar group. 
Hence, H"'. and Hu both act on the partial spread p - Df U R as a scalar group. Since 
Ip - Vf U RI;;a.: q2 + 1 - 2(q + 1) and by Theorem (2.1), q2 + 1- 2(q + 1) > p2r-l + 1, 
and since H L " and H"'" are subgroups isomorphic to the multiplicative groups L* and 
K* respectively, we have by Theorem (2.1) that (HL ., H"'.) is contained in a finite 
field. However, since both are cyclic groups of the same order, it must be that 
Hu = H"'., which is a contradiction. Thus, any isomorphism must map V onto Rand 
thus induce an isomorphism 1 from D onto R, and hence from Jr onto p, which proves 
(3.2). 0 

4. ANNIHILATING THE KERNEL 

Assume the conditions in the statement of Theorem B. Assume that K is not 
contained in K. We considerthe partial spread if - V of degree q2 - q. K and K act as 
scalar groups on this partial spread. By Theorem (3.1) and Theorem (2.1), (K, K) is 
contained in an finite field F. However, if K is not contained in K this forces F to be 
isomorphic to GF(q2), so that the net if- D is Desarguesian and is contained in a 
Desarguesian affine plane 1:'. The deficiency of the net if - D is (q + 1), · i.e. 'critical'. 
By Ostrom [11], either Jr is equal to 1:' or Jr is derived from 1:' so that Jr is Hall. This 
completes the proof of Theorem B. 

(4.1) COROLLARY. Let Jr be a non-Hall translation plane of order q2, q > 4 and 
kernel K isomorphic to GF(q). If D is a derivable net but D does not correspond to a 
regulus in PG(3, K) then the kernel K of the derived plane if is the subfield of K which 
fixes each Raer subplane of D incident with the zero vector and the full collineation 
group of if is the inherited group of Jr. 
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PROOF. Apply Theorems A and B. 0 

5. COLLINEATION GROUPS OF DERIVED TRANSLATION PLANES 

For more details on the following remarks, see Ostrom [16]. The Class of groups 
which are known to occur in the translation complement of some finite translation 
plane is very limited. Here we use the convention that the plane has order qd and 
kernel GF(q) = K, so that the spread is defined on a vector space of dimension 2d. 
Since larger-dimensional vector spaces admit larger classes of groups, it has been 
suggested that we should look at planes where d is large. Johnson [6] has shown how to 
produce planes with very large values of d by derivation. If K = GF(ij) is a subfield of 
K = GF(q) and the new plane (derived) is a vector space over K then the effect is to 
replace d by d, where d is larger than d. 

However, Theorem A tells us that the full collineation group of the plane it is the 
inherited group in this case and thus is a subgroup of the collineation group of the 
original plane. Hence, even though d has been increased to d, we do not obtain any 
new groups. 

However, in some cases, we can say something about the original groups which act 
on it (again see Ostrom [16]). 

When d = 2, the non-solvable composition factors which can occur are known. They 
are also known when d is odd (note that the case where A7 occurs is still open). Hering 
and Ho [3] have given an explicit list of possibilities for the case in which d ;;; 2 mod 4 
and q is even. These results are independent of any assumptions about derivation. 

This leaves the cases where d ;;; 2 mod 4 and q is odd and d == 0 mod 4. 
The rest of this section is devoted to the case in which Theorem A applies and where 

d is increased by derivation to d;;; 0 mod 4. The result is that the groups involved are 
essentially two-dimensional over some field. 

(5.1) THEOREM. Let Jr denote a derivable translation plane of order q2> 16 with 
derivable net D and kernel K. Assume that not all of the Baer subplanes incident with 
the zero vectqr are K-subspaces. Let GF(ij) denote the kernel of the derived plane it, 
where q2 = ijd and d;;; 0 mod 4. If G is the full translation complement of the derived 
plane it then there is a normal series ~ ~ ~ ~ Cfi such that the index of Cfit is 1 or 2, ~ is 
solvable of order dividing (q -1) and Cfitf~ is isomorphic to a subgroup of rL(2, q). 

PROOF. Cfi is a subgroup of rL(Jr, K) and normalizes the kernel homology group 
HK * of Jr. Since 41 d then if q = pr and K isomorphic to GF(pk), 4r = 2kd. By Biliotti 
and Lunardon [1, Theorem 3], there are 0 or 2 Baer subplanes of D incident with the 
zero vector which are k-subspaces. First assume that there are 0 Baer subplanes which 
are K-subspaces. K* acts fixed-point-free on the components of Jr so that pk -1 
divides q2 - 1 or k divides 2r. If k divides r then pk - 1 divides pr - 1 so that K* fixes 
two Baer subplanes incident with the zero vector. Hence, k divides 2r but k does not 
divide r. However, r = kd/2 and d is even, which is a contradiction. Thus, HK * fixes 
exactly two Baer subplanes Jro and Jrt of D incident with the zero vector so that Cfi fixes 
the set {Jro, Jrt}. Let ~ denote the subgroup of Cfi which fixes both subplanes. Thus, 
the index of Cfit in Cfi is 1 or 2. Let ~ be the subgroup of Cfit which fixes Jro pointwise. By 
Foulser [2], ~ must be a subgroup of a I-dimensional affine group and thus is solvable 
of order dividing (q -1), as this subgroup must fix the second Baer subplane Jrt. Then 
~/ ~ acts faithfully on the Desarguesian affine plane Jro and thus is a subgroup of 
rL(2, q). 0 
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(5.2) COROLLARY. Let Jr denote a derivable translation plane of odd order q2 > 9 with 
derivable net D and kernel K. Assume that not all of the Baer subplanes of D incident 
with the zero vector are K -subspaces. Then the derived plane ir cannot admit 
non-Abelian simple groups in the translation complement. 

PROOF. Let G be a non-Abelian simple collineation group in the translation 
complement of Jr. By Theorem A, G must leave the derived net D invariant. By 
Ostrom [14], if ir has vector dimension 2d then 41 d. By (5.1), WI = W and ~= (1). By 
the argument to (5.1), there are exactly two Baer subplanes, say Jro and Jrv of D 
incident with the zero vector which are K -subspaces. Thus, W fixes the two Baer 
subplanes incident with the zero vector which are K-subspades. However, Jro is a 
Desarguesian subplane and, by Foulser [2], the group which fixes Jro pointwise is a 
subgroup of a I-dimensional affine group of order q(q - 1). Therefore, G acts faithfully 
on a Desarquesian plane of order q, which is clearly a contradiction as, in particular, 
by Ostrom [14] 41 (the vector dimension of Jro)/2 = 1 as G is forced to act in the general 
linear group of Jro over its kernel GF(q). 
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