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Abstract

The method of pairwise comparisons is widely applied in the decision making process. The inconsistency of data may significantly

affect the final result. Since the notion of consistency is based on triads or cycles, there is a great need for defining the measure of

a triad or cycle inconsistency.

In the paper a set of properties of a good cycle inconsistency index is proposed. Two construction methods of a cycle-based

inconsistency index for a pairwise comparisons matrix are introduced. All is supported by the examples.
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1. Introduction

The first use of the method of Pairwise Comparisons (PC method) is attributed to Ramon Llull. In his recently

discovered manuscript Ars eleccionis13 this Catalan philosopher, logician and a pioneer of computation theory, de-

scribed the Borda count (an election system) and the Condorcet cryterium (a cryterium for a voting system), which

Jean-Charles de Borda1 and Nicolas de Condorcet5 independently discovered centuries later. In the 20th century the

PC method was used by Thurstone16, Kendall and Babington-Smith6, as well as many others.

The method is used when we are supposed to order a set of alternatives. We compare them pairwise and write the

numerical result of these comparisons to a square matrix called a pairwise comparisons matrix (a PC matrix). The

problem occurs when it appears that an alternative A is considered to be better than B, B - better than C, and C - better

than A. This situation was described as a Condorced’s paradox5 and it results in the so-called triad inconsistency.

Obviously, this paradox may involve more alternatives. For instance, A wins with B and C, B - with C and D, C -

with D, but A loses with D. This results in the so-called cycle inconsistency.
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Many researchers describe different types of measures of inconsistency. Recently, some attempts to give a set of

axioms for a good inconsistency index have been undertaken by Cavallo and d’Apuzzo4 or Koczkodaj, Szybowski

and Wajch11,10 for the case of triads, and by Koczkodaj and Szwarc8 or Brunelli and Fedrizzi3 for the case of whole

PC matrices. However, there has been no axiomatization for a cycle inconsistency index, so this paper tries to fill this

gap.

2. Preliminaries

An n×n matrix A = [ai j] with all positive elements is called a pairwise comparisons matrix (a PC matrix) if n ≥ 3.

A PC matrix A is called reciprocal if ai j =
1

a ji
for every i, j = 1, . . . , n (then obviously aii = 1 for every i = 1, . . . , n).

When we compare two entities X and Y and we judge, that X is twice better (longer, more expensive etc.), it is quite

natural to accept that Y is half as good (long, expensive) as X. That is why we will assume that each PC matrix is

reciprocal.

Fix a PC matrix A and s ∈ N, such that 3 ≤ s ≤ n.

Definition 2.1. An ordered sequence (ai j, aik, a jk) of 3 elements of A is called a triad if i, j, k are pairwise different

elements of the set {1, . . . , n}.
We will denote the set of all triads in A by TA.

Definition 2.2. A triad (ai j, aik, a jk) is said to be consistent if ai j · a jk = aik.

Remark 2.3. A triad (ai j, aik, a jk) is consistent⇔ ai j · a jk · aki = 1.

Definition 2.4. An ordered sequence (ai1i2 , ai2i3 , . . . , ais−1is , ai1is ) of s elements of A is called an s−cycle if i1, . . . , is are

pairwise different elements of the set {1, . . . , n}.
We will denote the set of all s−cycles in A by Cs

A.

Definition 2.5. An s−cycle (ai1i2 , ai2i3 , . . . , ais−1is , ai1is ) is said to be consistent if ai1i2 · ai2i3 · . . . · ais−1is = ai1is .

Remark 2.6. An s−cycle (ai1i2 , ai2i3 , . . . , ais−1is , ai1is ) is consistent⇔ ai1i2 · ai2i3 · . . . · ais−1is · aisi1 = 1.

Definition 2.7. A PC matrix is consistent if all its triads are consistent.

Proposition 2.8. A PC matrix A is consistent⇔ all its s−cycles are consistent.

Proof. The proof is inductive. It is enough to show that ∀p ∈ {3, . . . , s − 1}

All p−cycles of A are consistent⇔ all (p + 1)−cycles of A are consistent.

To prove the⇒ notice that

ai1i2 · ai2i3 · . . . · aip−1ip · aipip+1
· aip+1i1 = ai1i2 · ai2i3 · . . . · aip−1ip · aipi1 = 1

For the reverse implcation take any j � {i1, , . . . , ip} and multiply the below equations by themselves:

ai1 j · a ji2 · ai2i3 · . . . · aip−1ip · aipi1 = 1

ai1i2 · ai2 j · a ji3 · . . . · aip−1ip · aipi1 = 1

· · ·
ai1i2 · ai2i3 · ai3i4 · . . . · aip−1 j · a ji1 = 1.

It follows that

ai1 j · a ji1 · . . . · aip−1 j · a jip−1
· ap−2

i1i2
· ap−2

i2i3
· . . . · ap−2

ip−1ip
· ap−2

ipi1
= 1,

so

(ai1i2 · ai2i3 · . . . · aip−1ip · aipi1 )p−2 = 1,

and finally,

ai1i2 · ai2i3 · . . . · aip−1ip · aipi1 = 1.
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3. The triad inconsistency index

Recall some definitions and results from10.

Definition 3.1. A function ii : R
3
+ → [0,+∞) is called a triad inconsistency index, if there exists a metric

d : R
2
+ → [0,+∞)

such that ∀x, y, z it holds

ii(x, y, z) = d(xz, y). (1)

Definition 3.2. We say that a triad inconsistency index ii satysfying (1) is induced by a metric d.

Straight from the definition of a triad inconsistency index we get

Proposition 3.3. For all numbers a, b, c, d and e a triad inconsistency index ii satisfies the conditions

ii(a, b, c) = 0 ⇔ ac = b (2)

ii(a, b, c) = ii(b, ac, 1) (3)

ii(a, de, c) ≤ ii(a, b, c) + ii(d, b, e) (4)

Example 3.4. Since function d : R
2
+ → [0, 1) given by formula

d(x, y) = 1 −min

(
x
y
,

y
x

)
(5)

is a metric, the Koczkodaj triad inconsistency index

KI(a, b, c) = 1 −min

(
b
ac
,

ac
b

)
,

is a triad inconsistency index induced by d.

4. The cycle inconsistency index

Now we may define the inconsistency index for cycles by analogy to the case of triads.

Definition 4.1. A function ii : R
s
+ → [0,+∞) is called a cycle inconsistency index, if there exists a metric

d : R
2
+ → [0,+∞)

such that ∀x1, . . . xs it holds

ii(x1, . . . , xs) = d(x1 · . . . · xs−1, xs). (6)

Definition 4.2. We say that a cycle inconsistency index ii satysfying (6) is induced by a metric d.

Straight from the definition of a cycle inconsistency index we get

Proposition 4.3. For all numbers x1, . . . , x2s−1 a cycle inconsistency index ii satisfies the conditions

ii(x1, . . . , xs) = 0 ⇔ x1 · . . . · xs−1 = xs (7)

ii(x1, . . . , xs) = ii(xs, 1, . . . , 1, x1 · . . . · xs−1) (8)

ii(x1, . . . , xs−1, xs+1 · . . . · x2s−1) ≤ ii(x1, . . . , xs−1, xs) + ii(xs+1, . . . , x2s−1, xs) (9)
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Proof. The first statement is obvious. For the proof of the second one notice that

ii(x1, . . . , xs) = d(x1 · . . . · xs−1, xs) = d(xs, x1 · . . . · xs−1) = d(xs · 1 · . . . · 1, x1 · . . . · xs−1) = ii(xs, 1, . . . , 1, x1 · . . . · xs−1).

Finally,

ii(x1, . . . , xs−1, xs+1 · . . . · x2s−1) = d(x1 · . . . · xs−1, xs+1 · . . . · x2s−1) ≤
≤ d(x1 · . . . · xs−1, xs) + d(xs+1 · . . . · x2s−1, xs) =

= ii(x1, . . . , xs−1, xs) + ii(xs+1, . . . , x2s−1, xs).

Remark 4.4. We may treat conditions (7) – (9) as axioms for a cycle inconsistency index.

As a consequence of (8) we obtain

Corollary 4.5. For all numbers x1, . . . , xs and any permutation j of a set {1, . . . , s − 1}

ii(x1, . . . , xs−1, xs) = ii(x j(1), . . . , x j(s−1), xs). (10)

Proposition 4.6. For each function ii : R
s
+ → [0,+∞) satisfying (7) − (9) function dii : R

2
+ → [0,+∞) given by

dii(x, y) = ii(x, 1, . . . , 1, y) (11)

is a metric. Moreover, index ii is induced by the metric dii.

Definition 4.7. We say that a metric dii satysfying (11) is induced by a cycle inconsistency index ii.

Definition 4.8. We say that a cycle inconsistency index ii is bounded if ∃M > 0 ∀x1, . . . , xs ∈ R+ ii(x1, . . . , xs) ≤ M.

Fix a natural number s ≥ 3.

Example 4.9. The function D : R
s
+ → {0, 1} given by

D(x1, . . . , xs−1, y) =

{
0, x1 · . . . · xs−1 = y
1, otherwise

.

is a bounded s-cycle inconsistency index induced by a discrete metric.

Example 4.10. The function E : R
s
+ → [0,+∞) given by

E(x1, . . . , xs−1, y) = |x1 · . . . · xs−1 − y|

is an unbounded s-cycle inconsistency index induced by a Euclidean metric.

Example 4.11. The function I1 : R
s
+ → [0, 1) given by

I1(x1, . . . , xs−1, y) =
|x1 · . . . · xs−1 − y|

1 + |x1 · . . . · xs−1 − y|

is a bounded s-cycle inconsistency index induced by a metric d1 given by formula d1(x, y) =
|x−y|

1+|x−y| .

Example 4.12. The function K : R
s
+ → [0, 1) given by

K(x1, . . . , xs−1, y) = 1 −min

(
y

x1 · . . . · xs−1

,
x1 · . . . · xs−1

y

)

is a bounded s-cycle inconsistency index induced by the metric (5).
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Notice, that a given triad (cycle) inconsistency index ii may be applied to the triads (cycles) of a PC matrix A.

Basing on the inconsistency indices for triads or s-cycles, we can introduce the inconsistency s-indices for the whole

PC-matrices. Obviouslly, we can do it in various ways. However, two approaches seem the most natural.

The first one, introduced in14 or4 (for the case of triads) involves the arithmetic or geometric means of triad indices.

Example 4.13. The Peláez-Lamata index was defined as

PLI(A) =

6
∑

(ai j,aik ,a jk)∈TA

PL(ai j, aik, a jk)

n(n − 1)(n − 2)
,

where

PL(ai j, aik, a jk) =
aik

ai ja jk
+

ai ja jk

aik
− 2.

It is natural to generalize the above definition to a cycle-based Peláez-Lamata inconsistency index:

PLIs(A) =

∑
(ai1 i2 ,...,ais−1 is ,ai1 is )∈Cs

A

PLs(ai1i2 , . . . , ais−1is , ai1is )

(
n
s

) ,

where

PLs(ai1i2 , . . . , ais−1is , ai1is ) =
ai1is

ai1i2 · . . . · ais−1is

+
ai1i2 · . . . · ais−1is

ai1is

− 2.

Proposition 4.14. PLs does not satisfy (9).

Proof. Consider s = 4.

PL4(1, 4, 1, 1 · 2 · 1) =
1 · 2 · 1
1 · 4 · 1

+
1 · 4 · 1
1 · 2 · 1

− 2 =
1

2
>

1

4
=

3

4
+

4

3
− 2 +

3

2
+

2

3
− 2 = PL4(1, 4, 1, 3) + PL4(1, 2, 1, 3).

The second type of definitions uses the maximum function. This approach was used (for triads and cycles) for the

Koczkodaj inconsistency indices proposed in7 and simplified in8.

Example 4.15.
KI(A) = max

(ai j,aik ,a jk)∈TA
K(ai j, aik, a jk),

where

K(ai j, aik, a jk) = 1 −min

(
aik

ai ja jk
,

ai ja jk

aik

)
,

and

KIs(A) = max
(ai1 i2 ,...,ais−1 is ,ai1 is )∈Cs

A

K(ai1i2 , . . . , ais−1is , ai1is ),

where

K(ai1i2 , . . . , ais−1is , ai1is ) = 1 −min

(
ai1is

ai1i2 · . . . · ais−1is

,
ai1i2 · . . . · ais−1is

ai1is

)
.

Remark 4.16. As it was shown in12 indices PLI and KI are not equivalent, which means that there are no positive
constants α and β such that

αKI ≤ PLI ≤ βKI.
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Example 4.17. Similarly, using the inconsistency index from Ex. 4.9 we can define

DI(A) = max
(ai j,aik ,a jk)∈TA

D(ai j, a jk, aik)

and

DIs(A) = max
(ai1 i2 ,...,ais−1 is ,ai1 is )∈Cs

A

D(ai1i2 , . . . , ais−1is , ai1is )

However, from Proposition 2.8, we get

Corollary 4.18. ∀s ∈ {4, . . . , n}
DI(A) = DIs(A).

This means that defining dicrete cycle inconsistency index DIs is useless, since it carries the same information as

the simpler one based on triads.

On the other hand, this is not the case for other indices, for example KI, as the following example shows.

Example 4.19. Consider the PC matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 1
1
2

1 3 1
1 1

3
1 5

1 1 1
5

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 9 1 2
1
9

1 9 2

1 1
9

1 1

1
2

1
2

1 1.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A simple calculation shows that

K(a23, a24, a34) = 1 −min

(
1

3 · 5
,

3 · 5
1

)
=

14

15

(a triad in bold), and

K(a12, a23, a34, a14) = 1 −min

(
1

2 · 3 · 5
,

2 · 3 · 5
1

)
=

29

30

(a cycle marked in frames).

It is easy to notice that

KI(A) = K(a23, a24, a34) =
14

15
<

29

30
= K(a12, a23, a34, a14) = KI4(A)

On the other hand,

AV(A) :=
1

|TA|

∑
(ai j,aik ,a jk)∈TA

K(ai j, aik, a jk) =
1

24
· 6 ·

(
5

6
+

14

15
+

1

2
+

4

5

)
=

23

30
≈ 0.7667

and

AV4(A) :=
1

|C4
A|

∑
(ai j,a jk ,akl,ail)∈C4

A

K(ai j, a jk, akl, ail) =
1

24
· 8 ·

(
29

30
+

3

5
+

2

3

)
=

67

90
≈ 0.7444

so

AV(A) > AV4(A).
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Similarly,

K(b12, b13, b23) = 1 −min

(
1

9 · 9
,

9 · 9
1

)
=

80

81

(a triad in bold), and

K(b34, b41, b12, b32) = 1 −min

⎛⎜⎜⎜⎜⎜⎝
1
9

1 · 1
2
· 9
,

1 · 1
2
· 9

1
9

⎞⎟⎟⎟⎟⎟⎠ = 79

81

(a cycle marked in frames).

It is also easy to notice that

KI(B) = K(b12, b13, b23) =
80

81
>

79

81
= K(b34, b41, b12, b32) = KI4(B).

On the other hand,

AV(B) =
1

24
· 6 ·

(
80

81
+

7

9
+

8

9
+

1

2

)
=

511

648
≈ 0.7886

and

AV4(B) =
1

24
· 8 ·

(
79

81
+

17

18
+

8

9

)
=

455

486
≈ 0.9362

so

AV(B) < AV4(B).

Note that definitions of some inconsistency indices are based neither on triads nor on cycles, like the Saaty’s

consistency index defined in15 as

CI(A) =
λmax − n

n − 1
,

where λmax is the principle eigenvalue of A.

However, as indicated in10, one may easily identify a triad with a 3 × 3 PC matrix, so we can introduce a triad

inconsistency index on the base of a matrix inconsistency index. A detailed comparison of indices CI and KI for 3×3

matrices was done in2.

5. Conclusion

It seems very natural to measure the level of a cycle (ai1i2 , . . . , ais−1is , ai1is ) inconconsistency by means of a distance

between ai1i2 · . . . · ais−1is and ai1is . The formulas (7) – (9) allow to easily check if a given index is distance-based.

Applying different metrics gives an opportunity to define various triad, cycle or PC matrix inconsistency indices.

Althouth the definitition of a matrix consistency bases on triads, Example 4.19 shows that the level of inconsistency

may increase or decrease if we consider longer cycles instead.

The high level of inconsistency indicates errors in comparison of alternatives. This is why the inconsistency

reduction is desirable before prioritization. An algorithm of the reconstruction of a consistent PC matrix from an

(n − 1)- subset of its elements (named a base) was proposed in9. A cycle inconsistency index might be applied to

choose the least inconsistent n-cycle as a base for the construction of the most reliable consistent PC matrix.
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2. Bozóki S, Rapcsák T. On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparisons matrices. J. Global Optim. 2008; 42(2): 157–175.

3. Brunelli M, Fedrizzi M. Axiomatic properties of inconsistency indices for pairwise comparisons. Journal of the Operational Research Society
2015; 66(1): 1-15.

4. Cavallo B, D’Apuzzo L. A general unified framework for pairwise comparisons matrices in multicriterial methods. Int. J. Intell. Syst. 2009; 24:

377–398.
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