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Abstract

We establish the duality between the torus knot superpolynomials or the Poincaré polynomials of the 
Khovanov homology and particular condensates in �-deformed 5D supersymmetric QED compactified on 
a circle with 5d Chern–Simons (CS) term. It is explicitly shown that n-instanton contribution to the conden-
sate of the massless flavor in the background of four-observable exactly coincides with the superpolynomial 
of the T (n, nk + 1) torus knot where k is the level of CS term. In contrast to the previously known results, 
the particular torus knot corresponds not to the partition function of the gauge theory but to the particular 
instanton contribution and summation over the knots has to be performed in order to obtain the complete 
answer. The instantons are sitting almost at the top of each other and the physics of the “fat point” where 
the UV degrees of freedom are slaved with point-like instantons turns out to be quite rich. Also we see 
knot polynomials in the quantum mechanics on the instanton moduli space. We consider the different lim-
its of this correspondence focusing at their physical interpretation and compare the algebraic structures at 
the both sides of the correspondence. Using the AGT correspondence, we establish a connection between 
superpolynomials for unknots and q-deformed DOZZ factors.
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1. Introduction

The knot invariants were introduced into the QFT framework long time ago [1] however the 
subject has been getting new impact during the last decade. It turns out that the knot invariants 
should be considered in the QFT in much more broader context. They are playing several inter-
esting roles besides the original interpretation as the Wilson loop observables in the CS theory. 
New approaches to their evaluation have been developed. It was recognized in [2] that the open 
topological strings with Calabi–Yau (CY) target space provide an effective tool to derive the knot 
invariants and simultaneously knot invariants count the particular BPS states in the gauge theory. 
The target space for the topological string was identified with O(−1) × O(−1) → P

1 and the 
knot is selected by the Lagrangian brane wrapping the Lagrangian submanifold. The boundary of 
the open string worldsheet is fixed at the Lagrangian submanifold in the CY internal space. The 
recent discussion on the topological string approach to the knot invariants can be found in [3,4]. 
The simplicity of torus knots stimulated the derivation of very explicit results and representations 
for them [5,2].

The progress in the knot theory brings on the scene the Khovanov–Rozansky homolo-
gies which categorize the HOMFLY polynomial. The Poincaré polynomial of the Khovanov–
Rozansky homologies has been interpreted in the framework of the topological strings in [6]
and it was shown that such Poincaré polynomial, called superpolynomial [7], provides the re-
fined counting of the BPS states. The Khovanov–Rozansky homologies were also related with 
the space of the solutions to the topological fields theories in four and five dimensions [8,9]. The 
way to evaluate the superpolynomials for some class of knots has been suggested in [10] via the 
refined Chern–Simons theory or equivalently the particular matrix model.

Another way the knot invariants are related with the gauge theories concerns the 3d/3d duality 
[11] which relates the 3d theory on the submanifold in the CY space and the 3d SUSY gauge the-
ory. The knot complement yields the particular 3d SUSY gauge theory with some matter content. 
The superpolynomial is related to the partition sum of 3d theory and the parameters (A, q, t) in 
the superpolynomial were identified with the mass and two equivariant parameters with respect 
to two independent rotations in R4 [12]. The relation between the partition function on the vortex 
and the knot polynomials has been discussed in [13]. If we introduce the defects, say 2d defect in 
4d theory or 3d defect in 5d theory, any physical phenomena should be recognized equivalently 
from the worldvolume theories of all branes involved into configurations. This simple argument 
suggested long time ago [14] works well and provide some interesting crosschecks (see, for 
instance [15]). In particular, all knot invariants should be recognized by all participants of the 
configuration.

There is one more important characteristic of the knot – so-called A-polynomial and its gen-
eralization – super-A-polynomial [12] depending on the set of variables (x, y) which become 
operators upon the quantization of the (x, y) symplectic pair. The A-polynomial defines the 
twisted superpotential in 3d theory [12,16]. The simplest interpretation of the (x, y) variables 
concerns the realization of the 3d theory as the theory on the domain wall separating two 4d the-
ories [17,18]. They are identified with the Wilson and ’t Hooft loops variables. The nice review 
on the subject can be found in [19].

There was some parallel progress in mathematics concerning the homologies of the torus 
knots and links. In what follows we shall use quite recent results concerning superpolynomials 
of the torus knots and their relation with the higher (q, t)-Catalan numbers [20–23].

Another interesting line of development motivating our consideration concerns the UV com-
pletion of the different theories and the features of the decoupling of the heavy degrees of 
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freedom. Some phenomena can happen and we know from the textbooks that the heavy de-
grees of freedom decouple when the masses of the corresponding excitations get large enough 
with the only exception – anomaly which matters at any scale since it arises from the spectral 
flow. However one could wonder what happens at the non-perturbative level. The issue of the 
role of small size instantons in the RG was raised long time ago in QCD when the integrals over 
the instanton size tend to diverge. The issue of the point-like instantons is also very important in 
the considerations of the so-called contact terms which measure the difference between the prod-
ucts of the different observables in UV and IR regions (see in this context, for instance [24,25]). 
Therefore some regularization is needed to handle with this region in the instanton moduli space.

There were several attempts to analyze the point-like instantons carefully imposing a kind 
of regularization. We can mention the freckled instantons in [26], Abelian instantons in the 
non-commutative gauge theories [27] and the Abelian instantons on the commutative R4 blow-
upped in a few points [28]. In all these cases one could define the corresponding solutions to the 
equations of motion with the non-vanishing topological charges. The last example concerns the 
Abelian instantons in the �-deformed abelian theory where the point-like instantons can be de-
fined as well [29]. The different deformations provide the possibility to work with the point-like 
instantons in a well-defined manner. In these cases we can pose the question concerning the role 
of these defects in the non-perturbative RG flows.

Moreover one could ask what is the fate of the extended non-perturbative configurations which 
involve the heavy degrees of freedom in a non-trivial way. This issue has been examined in 
[30,13,31] where the vortex solution involving the “heavy fields” was considered. The starting 
point is the superconformal theory then one adds the bi-fundamental matter. One considers the 
non-Abelian string in the emerging UV theory. At the next step the RG flow generated by the 
FI term has been analyzed and it was argued that the remnant of the UV theory is the surface 
operator, that is, the non-Abelian string with the infinite tension. Hence the decoupling in the 
non-perturbative sector for the extended object is incomplete – we obtain at the end the defect 
with the infinite tension which provides the boundary conditions for the fields.

The third motivation for this study has more physical origin. When investigating the superflu-
idity it is very useful to rotate the system since the superfluid component of the current can be 
extracted in this way. In the first quantization approach the density of the superfluid component is 
related to the correlator of the winding numbers. The � deformation which is essentially two in-
dependent rotations in R4 was introduced by Nekrasov to regularize the instanton moduli space. 
On the other hand, it allows to look at the response of the ground state of to the rotations like in 
superfluidity. Since the curvature of the graviphoton field is just the angular velocity we could 
consider the behavior of the partition function at small angular velocities ε1, ε2. It turns out that 
the dependence on the angular velocities is very simple [32] and the derivative of the partition 
function with respect to the angular velocity yields the mean angular momentum of the system 
[33]. It can be seen immediately that there is a non-vanishing density of the angular momentum 
and one could be interested in its origin. It is not a simple question what is the elementary rota-
tor like the roton in the superfluid case in the 5d gauge theory. However no doubts it should be 
identified as some non-perturbative configuration related to instantons.

The starting point of our analysis is the observation made in [34] concerning the relationship 
between certain knots invariants and the 5d SUSY gauge theory in the �-background with CS 
term at level one and matter in fundamental. It was shown that the particular correlator in U(1)

SQED coincides with the sum over the bottom rows of the superpolynomials of the Tn,n+1 torus 
knot. Contrary to the previous relations between knots and the gauge theories in this case the 
particular gauge theory involves the infinite sum over the torus knots.
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In this paper we generalize the observation made in [34] and find a similar relation between 
the sums over the torus knot superpolynomials and the U(1) 5d gauge theories with CS term. 
In more general situation the second derivative of Nekrasov partition function for 5d SQED 
with CS term serves as the generating function for the superpolynomial of the torus knots. It 
is useful to interpret the 4-observable considered in [34] in a bit different manner. We start 
with the superconformal 5d theory and add matter in fundamental. Then the “Wilson loop” 
operator in [34] can be considered as the derivative with respect to the mass of the one-loop 
determinant of the matter in the fundamental at the infinite mass limit. To some extend the 
approach used in this paper is along the lines of development elaborated in [8,9] where the 
knot homologies were interpreted in terms of the particular solutions to the equations of motion 
in 5D SUSY gauge theories. However from our analysis it is clear that the proper generating 
function for the torus knot superpolynomials implies the particular matter content in the 5D the-
ory.

One more lesson concerns the question about the mutual back reaction of IR and UV de-
grees of freedom. Our answer for the torus knot superpotential involves the derivatives of the 
partition function in 5D theory with respect to the masses of the light and the “regulator” fla-
vors hence it allows the twofold interpretation. First, it can be treated as a kind of the point-like 
instanton renormalization of the VEV d

dM
〈ψ̃ψ〉 of the light flavor in the �-background and is 

treated as the back reaction of the UV degrees of freedom on the condensate of the massless 
flavor. The operator has a non-vanishing anomalous dimension hence to some extend the su-
perpolynomial yields the instanton contribution to the anomalous dimensions of the composite 
operator. Oppositely the same correlator can be read in the opposite order and can be thought of 
as a kind of the backreaction of the light flavor on the defect which involves the UV degrees of 
freedom.

Summarizing, we shall demonstrate that the gauge theory whose n-instanton contribution to 
the particular correlator coincides with the superpolynomial of Tn,nk+1 torus knot is the U(1) 5d 
gauge theory with one compact dimension, CS term at level k, 2 flavors in fundamental and one 
flavor in the anti-fundamental representation. One mass of the fundamental tends to zero while 
the second tends to infinity. The mass of the anti-fundamental is arbitrary. The remnant of the 
heavy flavor in the IR is the chiral ring operator.

The paper is organized as follows. In Section 2 we briefly remind the main facts concerning 
the 5d SQED with CS term and focus at the decoupling procedure in this theory. In Section 3
we describe the relation between the instanton contribution to the derivative of condensate of 
the light hyper with respect to the regulator scale and the torus knot superpolynomials. In Sec-
tion 4 we attempt to interpret the result of calculation in terms of a kind of composite defect 
involving UV degrees of freedom. Section 5 is devoted to the consideration of the different limits 
for parameters involved in the picture. The interpretation of the correlator from the AGT dual 
Liouville theory viewpoint will be considered in Section 6. The question concerning the identifi-
cation of the knot polynomials in the quantum mechanics on the instanton moduli space will be 
analyzed in Section 7. Our findings and the lines for the further developments are summarized in 
Section 8.
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2. Supersymmetric QED with CS term

2.1. Fields, couplings, symmetries and Lagrangian with � deformation

Five-dimensional supersymmetric QED involves of vector field AA, four-component Dirac 
spinor λ and Higgs field φ, all lying in the adjoint representation of U(1). The Lagrangian reads 
as follows:

L = − 1

4g2
FABF AB + 1

g2
(∂Aφ)2 + 1

g2
λ̄γ A∂Aλ (1)

γ A, A = 1, . . . , 5 are five-dimensional gamma matrices.
When looking for the superfluidity it is useful to rotate the system to feel the dissipation-

less component of the liquid. The same trick was used by Nekrasov [32] when introducing the 
�-background which corresponds to switching on the graviphoton field whose components of 
curvature are identified with two independent angular velocities in R4. The response of the par-
tition function in the �-deformed theory yields the gravimagnetization of the ground state or the 
average angular momentum of the system. To some extend it measures the “superfluid” compo-
nent of the vacuum state of the 4d gauge theory.

Let us start from the discussion of pure gauge N = 2 super Yang–Mills theory in presence 
of �-background in four Euclidean dimensions. Then we will lift the theory to five-dimensions. 
The field content of the theory is the gauge field Am, the complex scalar ϕ, ϕ̄ and Weyl fermions 

I

α, 
̄I
α̇ in the adjoint of the U(1) group. Here m = 1, . . . , 4, I = 1, 2 are SU(2)I R-symmetry in-

dex, α, α̇ are the SU(2)L × SU(2)R spinor indices. To introduce �-background one can consider 
a nontrivial fibration of R4 over a torus T 2 [32,35]. The six-dimensional metric is:

ds2 = 2dzdz̄ + (
dxm + �mdz̄ + �̄mdz

)2
, (2)

where (z, ̄z) are the complex coordinates on the torus and the four-dimensional vector �m is 
defined as:

�m = �mnxn, �mn = 1

2
√

2

⎛
⎜⎝

0 iε1 0 0
−iε1 0 0 0

0 0 0 −iε2
0 0 iε2 0

⎞
⎟⎠ . (3)

In general if �mn is not (anti-)self-dual the supersymmetry in the deformed theory is broken. 
However one can insert R-symmetry Wilson loops to restore some supersymmetry [35]:

AI
J = −1

2
�mn

(
σ̄ mn

)I

J
dz̄ − 1

2
�̄mn

(
σ̄ mn

)I

J
dz. (4)

The most compact way to write down the supersymmetry transformations and the Lagrangian 
for the �-deformed theory is to introduce ’long’ scalars (do not confuse them with N = 1 super-
fields):

 = ϕ + i�mDm, ̄ = ϕ̄ + i�̄mDm. (5)

Then bosonic sector of the deformed Lagrangian reads as:

L� = − 1

4g2
FmnF

mn + 1

g2
DmDm̄ + 1

2g2

[
,̄

]2

− 1
2
FmnF

mn + 1
2
(∂mφ + Fmn�

n)(∂mφ − Fmn�n)

4g g
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+ 1

2g2
(i�m∂mφ̄ + i�m∂mφ)2 (6)

We can couple this theory to fundamental hypermultiplet, which consists of two scalars q , 
q̃ and two Weyl fermions ψ and ψ̃ and characterized by two masses: m and m̃, since N = 2
hypermultiplet is build from two N = 1 hypermultiplets with opposite charges. Now the bosonic 
part reads as:

Lm = − 1

4g2
FmnF

mn + 1

g2
(∂mφ + Fmn�

n)(∂mφ − Fmn�n)

+ 1

2
|Dmq|2 + 1

2
|Dmq̃|2 + 2

g2
(i∂m(�mφ̄ + �mφ) + g2(q̄q − ¯̃qq̃))2

+ 1

2
|(φ − m − i�mDm)q|2 + 1

2
|(φ − m̃ − i�mDm)q̃|2 + 2g2|q̃q|2 (7)

General �-deformation preserves only one supersymmetry [35]. It is convenient to introduce 
topological twist [32] and take SUL(2) times diagonal subgroup of SUR(2) × SUI (2) to be 
Lorentz group. Then 
I

α̇ becomes scalar η and self-dual tensor χIJ , 
I
α becomes vector ψI , and 

ψ , ψ̄ becomes θ , νm, ωmn. Supercharges have similar fate. The scalar supercharge Q = Q� stays 
unbroken.

2.2. On decoupling procedure

Decoupling of the heavy flavor in the 5d gauge theory is very delicate issue mainly due to 
the UV incompleteness of the theory. It was discussed in many studies that the naive field theory 
intuition fails and the purely stringy degrees of freedom like different D-branes emerge in the UV 
completion problem. It can be recognized in the different ways, for instance, from the viewpoint 
of the ADHM quantum mechanics which describes the UV physics from the viewpoint of the 
instanton particles. The ADHM quantum mechanics in this case involves the tiny issues at the 
threshold when the continuum spectrum opens. It was assumed that in this quantum mechanics 
the stringy degrees of freedom get manifested in the index calculations.

One more pattern of the nontrivial decoupling of the heavy degrees of freedom is provided 
by the 4d example of the decoupling of the heavy flavor [30]. The naive decoupling of the heavy 
flavor fails and one finds himself with the remnant surface operator supplemented by the operator 
acting in the flavor fugacity space. This operator was identified with the integrable Hamiltonian 
of the Calogero–Ruijsenaars type [30].

In our paper we shall meet the subtleties with the UV completion as well. We will start with 
the theory with the heavy flavor and try to decouple it. During this process we get the particular 
4-observable as the remnant which seems to be identified naturally with the domain wall in the 
�-deformed 5d SQED. This is to some extend analogous to the 4d case however the 4-observable 
emerges instead of 2-observable remnant. We shall also see how the information about the UV 
completion can be extracted from the ADHM quantum mechanics on the instanton moduli space. 
The knot invariants encodes the particular set of states near threshold.

On the quantitative level we shall get the following remnant of the heavy flavor in the follow-
ing way. Although we start with three matter hypermultiplets, actually we need only two of them 
since one has infinite mass. Now we will show that the only effect from this heavy hypermulti-
plet is an insertion of the operator O = ∫

d5x exp(−β(φ + iA5)), where φ is a vector multiplet 
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scalar, A5 is the fifth component of the gauge field and β = 2πR is the circumference of the 
compact S1:

lim
m2→∞

exp(βm2)

β

∂

∂m2
ZU(1)(m1,m2,m3) = 〈O〉U(1)

m1,m3
(8)

Note that upon reduction to four dimensions φ + iA5 becomes complex scalar Higgs field. Sup-
pose for a while that we are considering four-dimensional theory without �-deformation. Then 
integrating out heavy hypermultiplet will produce usual Coleman–Weinberg potential

1

2
(φ + m2)

2
(

log

(
φ + m2


UV

)
− 3

2

)
=

∞∫
0

dt

t3
exp(−t (φ + m2)) (9)

In order to lift this expression to a five-dimensional theory [36], we have to sum over the Kaluza–

Klein modes, that is, add 
2πin

R
+ iA5 to φ + m2 and sum over n. This will result in

Li3
(
e−2πR(φ+m2+iA5)

)
(10)

Which is for large m2 is just exp(−2πR(φ +A5 +m2)). So we have reproduced eq. (8) with the 
operator O = ∫

d5x exp (−β (φ(x) + iA5)).
When switch to the �-deformed theory, almost all supersymmetries are broken and the chiral 

ring gets deformed, since conventional Higgs scalar is not equivariantly closed:

Q�φ = �μAμ (11)

Appropriate deformation of complex Higgs field φ in four-dimensions such that

Q� = 0 (12)

was build in [35] and we claim that the exp(−β) with deformed , is exactly the operator we 
need even in the Omega-deformed theory. In the next section we will demonstrate this statement 
by a direct computation.

3. Superpolynomial of torus knots and 5d SQED

In this section we shall explore the localization formulas for the instanton Nekrasov-like par-
tition sums in the 5d SUSY QED. Therefore we look for the proper physical theory which would 
involves the knot invariants in a rational clear-cut manner. In this paper we extend the proposal 
formulated in [34], which relates q, t -Catalan numbers represented the bottom row of the super-
polynomials of Tn,n+1 torus knots.

We shall evaluate the K-theoric equivariant integral over the moduli space of the instantons. 
It is equal to equivariant Euler characteristic of the tautological line bundle V over the Hilbert 
scheme:

Cn(q, t) = χT (Hilbn(C2),
nV ) (13)

where q, t are equivariant parameters for the natural torus T action on C2. Cn(q, t) are called 
q, t -Catalan numbers.

First, recall some relevant mathematical results.
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In [37] Haiman and Garsia introduced the following generalization of Catalan numbers:

Cn(q, t) =
∑

λ:|λ|=n

t2
∑

lq2
∑

a(1 − t)(1 − q)
∏0,0

(1 − qa′
t l

′
)(

∑
qa′

t l
′
)∏

(qa − t l+1)
∏

(t l − qa+1)
(14)

where all sums and products are taken over partition λ. l and a denote leg and arm, whereas 
l′ and a′ denote coleg and coarm respectively. 

∏0,0 denote the omission of (0, 0) box. In case 

q = t = 1, Cn(1, 1) = 1

n + 1

(
2n
n

)
.

It is also useful to present the expressions for the so-called higher Catalan numbers introduced 
in [38]. They can be represented in terms of the Young diagrams as follows

Ck
n(q, t) =

∑
λ:|λ|=n

t(k+1)
∑

lq(k+1)
∑

a(1 − t)(1 − q)
∏0,0

(1 − qa′
t l

′
)(

∑
qa′

t l
′
)∏

(qa − t l+1)
∏

(t l − qa+1)
(15)

In what follows we shall identify the index k with the level of 5d Chern–Simons term. The shift 
k → k + 1 corresponds to the decoupling of one flavor in the 5d supersymmetric SQED.

In [22] it was shown that these numbers calculate Poincaré polynomial for a plain curve 
singularity corresponding to (n + 1, n) torus knot. Furthermore, in [20] the following expression 
for a superpolynomial for (nk + 1, n) torus knot was conjectured:

P(A,q, t)nk+1,n

= ∑
λ:|λ|=n

t(k+1)
∑

lq(k+1)
∑

a(1 − t)(1 − q)
∏0,0

(1 + Aq−a′
t−l′)

∏0,0
(1 − qa′

t l
′
)(

∑
qa′

t l
′
)∏

(qa − t l+1)
∏

(t l − qa+1)

(16)

In this paper we extend the proposal formulated in [34], which relates q, t -Catalan num-
bers and certain vacuum expectation value in five-dimensional U(1) gauge theory in the 
�-deformation. We claim that the above superpolynomial could be obtained via the five-
dimensional U(1) gauge theory with 2 fundamental flavors with masses mf , M , one anti-
fundamental flavor with the mass ma and Chern–Simons term with the coupling k:

P(A,q, t)n,nk+1 = t−n/2q−n/2 1

1 + A

exp(βM)

β2

∂

∂mf

∂

∂M
ZU(1)

n (mf ,ma,M)

∣∣∣∣
mf =0, M→∞

(17)

where ZU(1)
n is n-instanton contribution to the partition function.

NB: our choice of variables is different from one adopted in [20]. We will perform the identi-
fication of variables when we discuss various limits of these formulas.

One of the dimensions is compactified on a circle with the circumference β . We denote the 
�-background parameters by ε1 and ε2. Then

t = exp(−βε1) (18)

q = exp(−βε2) (19)

A = − exp(βma) (20)
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Fig. 1. O(−1) ×O(−1) → P
1 with two blow-ups corresponding to the 5D SQED with two flavors and zero CS term.

We are going to prove this relation using the refined topological vertex technique [39]. According 
to [40], the full partition function in the case of one fundamental flavor and one anti-fundamental 
flavor is given by1:

ZU(1)(mf ,ma)

=
∑
λ

(−Q)|λ|t |λ|/2q |λ|/2

× t
∑

lq
∑

a
∏∞

i=1,j=1(1 − Qf qi−1/2tλi−j+1/2)(1 − Qaq
−λt

i+j−1/2t1/2−i )∏
(t l − qa+1)(t l+1 − qa)

(21)

where Kähler parameters: Qf = exp(−βmf )/
√

qt , Qa = √
qt exp(βma), Q defines the cou-

pling constant via Q = exp(−β/g). Corresponding three-dimensional Calabi–Yau geometry is 
represented in Fig. 1. Perturbative part is given by:

ZU(1),pert(mf ,ma) =
∞∏

i=1,j=1

(1 − Qf qi−1/2t−j+1/2)(1 − Qaq
j−1/2t1/2−i ) (22)

Then n-instanton contribution is given by:

ZU(1)
n (mf ,ma) =

∑
|λ|=n

(−Q)|λ|t |λ|/2q |λ|/2

× t
∑

lq
∑

a
∏

(1 − exp(−βmf )t l
′
qa′

)(1 − exp(βma)t
−l′q−a′

)∏
(t l − qa+1)(t l+1 − qa)

(23)

Factors like∏
(1 − exp(−βmf )t l

′
qa′

) (24)

1 Note that in our notations t → 1/t
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Fig. 2. O(0) ×O(−2) → P
1 geometry corresponding to 5D SQED with the Chern–Simons coupling k = 1, but without 

any flavors.

correspond to chiral matter contribution. U(1) gauge part contributes:∑
|λ|=n

(−Q)|λ|t |λ|/2q |λ|/2 t
∑

lq
∑

a∏
(t l − qa+1)(t l+1 − qa)

(25)

Therefore, for the superpolynomial we need:

• In order to obtain the factor 
∏0,0

(1 −qa′
t l

′
) in the superpolynomial we have add a zero mass 

chiral multiplet and differentiate with respect to its mass.
• To obtain 

∑
qa′

t l
′

we take another chiral multiplet, differentiate with respect to its mass and 
after that we send the mass to infinity.

• Factor 
∏0,0

(1 + Aq−a′
t−l′) comes from the anti-fundamental multiplet.

• Finally, it is well-known that the Chern–Simons action with the coupling constant k con-
tributes tk

∑
lqk

∑
a – it can be easily seen in the above formulas if we remember that the 

Chern–Simons term emerges as a one-loop effect from k very heavy chiral multiplets. How-
ever Chern–Simons coupling affects the whole geometry. The coupling is actually given by 
the intersection number of two-cycles on the manifold [41,42]. For example, the theory with 
coupling k = 1 and without flavors is given by geometry O(0) ×O(−2) → P

1 – see Fig. 2. 
Recall, that the n-instanton contribution arises from the worldsheet instanton wrapping the 
base P1 n times. This fact suggests that the shift 1 → kn + 1 in the torus knot is actually 
an analogue of the Witten effect, since the instanton wraps around the other two-cycle kn
additional times and acquires additional charge.

Now let us return to the operator exp(−β). It is worth mentioning that these operators directly 
correspond to the higher Casimirs in the underlying integrable model [43,44]. Consider the term 
(−1)(1 − t)(1 −q) 

∑
qa′

t l
′
in the original expression for the superpolynomial. If λi is the length 

of i-th row, then

(1 − t)
∑
i=1

(qλi t i−1 − t i−1) =
∑
i=1

(qλi t i−1 − t i−1 − qλi t i + t i ) (26)

where the sum is over rows in a particular Young diagram λ. The last expression is exactly what 
we will obtain if we calculate the VEV of exp(−β) using Nekrasov formulas ([35, eq. (4.19)], 
[43,44]) – in this approach one introduces the profile function:

fλ,ε1,ε2(x)

= |x| +
∑
i=1

(|x + ε1 − ε2λi − ε1i| − |x − ε2λi − ε1i| − |x + ε1 − ε1i| + |x − ε1i|)

(27)
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Then contribution to the VEV of n is given by

1

2

+∞∫
−∞

dx xnf ′′
λ,ε1,ε2

(x) (28)

We see that even in the presence of Omega-deformation decoupling of the heavy flavor leads to 
the insertion of exp(−β).

Now we can evaluate the whole partition function by summing over the instanton contribu-
tions:

ZNek(m, ε1, ε2, β,Q) =
∑
n

(−Q)nZn(m, ε1, ε2, β) (29)

Where the whole partition function obeys some interesting equations as a function of its ar-
guments. In the NS limit when ε2 = 0 → t = 1 the summation of q-Catalan numbers can be 
performed explicitly and yields [45]:

P(q,Q) = exp(βM)

β2

∂

∂mf

∂

∂M
ZNek(mf ,M,q,Q/

√
q)

∣∣∣∣
mf =0, M→∞

= Aq(Qq2)

Aq(Qq)
(30)

where Aq(s) is the q-Airy function:

Aq(s) =
∑

k

skqk2

(q;q)k
(31)

where (z; q)k = ∏k−1
l=0 (1 − zql) is Pochhammer symbol. This implies that the condensate obeys 

the following relation:

P(q,Q) = 1 − QP(q,Q)P (q, qQ) (32)

Unfortunately, we do not know any field-theoretic explanation of this relation. We will return to 
this question when we will be discussing the stable limit k → ∞.

4. The attempt of interpretation

4.1. Point-like Abelian instantons

In this section we shall consider the physical picture behind the duality found. It implies that 
we have n point-like instantons sitting almost at the top of each other in the background pro-
vided by the nonlocal operator exp(−β). When the � deformation is switched off the operator 
becomes local therefore the physical picture we shall try to develop should respect this prop-
erty. Another suggesting argument goes as follows. Consider the limit of ε1, ε2 → 0 when the 
Nekrasov partition function is reduced to the form

ZNek ∝ exp

(
F

ε1ε2

)
(33)

Having in mind that ε1, ε2 are two angular velocities the simple argument shows that there is the 
average angular momentum 〈J 〉 
= 0 in the system [33] and one could say about the gravimagne-
tization of the ground state. Combining these arguments we could suspect that the microscopic 
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state we are dealing with is built from the regulator degree of freedom, is nonlocal, has instan-
ton charge n and some angular momentum. This is the qualitative description of the part of this 
extended object in R4 × S1.

Note that a somewhat similar situation occurs in the description of the nonperturbative effects 
in the ABJM model [46] where the membrane M2 instantons wrapping the (m, n) cycle in the 
internal space yields the corresponding contribution to the partition function at strong coupling 
regime. The brane interpretation of the nonperturbative effects at weak coupling is not completely 
clarified in that case.

We have to combine these parts into the worldvolume of some brane. First of all let us com-
ment what are natural configurations in D = 5 which obey the required property. The first 
candidate is the dyonic instanton [47] or its supergravity counterpart – supertube. The dyonic 
instanton has the instanton charge Q, F1 charge P and D2 dipole charge. It has the geometry of 
the cylinder with the distributed charge densities and its angular momentum is proportional to the 
product of two charges J ∝ PQ. In the other duality frame it is presented by the D3 brane with the 
KK momentum [48]. In this case the defect could be represented by the M5 brane supplemented 
by the instanton charges.

The second candidate is the D6–D0 state which corresponds to the rotating black hole [49]. 
This configuration can be BPS in some region of parameters [50]. From the field theory viewpoint 
it represents the domain wall configuration in D = 5 gauge theory which carries the additional 
angular momentum. In the 4d dimensional �-deformed gauge theory such closed domain wall 
does exist [45] and has the geometry of the squashed sphere S3

b where b2 = ε1
ε2

. Therefore the 

candidate defect would have the worldsheet S3
b × S1 × L in this case, with L-Lagrangian sub-

manifold in the CY.
In all cases we assume that the key contribution for the mechanism preventing the closed 

object from shrinking is the angular momentum. When the SUSY is broken in some way the ad-
ditional source come from the difference between the energies providing the stabilizing pressure. 
It is natural to expect that the nonperturbative configuration is sensitive to the � background 
and moreover we assume that the defects like strings and domain wall have the infinite tension 
being proportional to the mass of the regulator. However the naive argument could fail if the very 
heavy object is dressed by the other instanton-like configurations which yields via dimensional 
transmutation the factor


 = M exp
(
−c/g2(M)

)
(34)

and potentially could yield nonvanishing contribution.
The issue of instability which would result in expanding is more complicated. It is necessary 

to identify the presence or absence of the negative modes at the composite defect which is not a 
simple task. Is there are the odd number of negative modes at the configuration it would mean 
that this defect corresponds to the bounce describing the Schwinger-type process of the creation 
of the extended object in the graviphoton field.

4.2. From UV to IR on the defect

Recently the interesting approach for the evaluation of the superconformal indexes with the 
surface defects of has been suggested in [30,13,31]. The idea is based on the realization of the 
bootstrapping program via particular pattern of RG flow. The aim is to evaluate the index in some 
quiver-like IR theory with the defect. Instead one enlarges the theory adding the hypermultiplet 
in the bifundamental representation with respect to the say SU(N) × SU(N) and consider the 
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UV theory first. Since the initial IR theory is conformal the additional hyper brings the Landau 
pole into the problem. The FI term is added to the Lagrangian which forces the hypermultiplet 
to condense and fixes the scale in the model.

At the next step one would like to decouple additional flavor in bifundamental at the scales 
much lower then one fixed by its condensate. The decoupling could proceed in two different 
ways. If the background in UV theory is trivial the decoupling goes smoothly and we return down 
to the initial IR theory. However one can select more elaborated way and start with the nontrivial 
configuration at UV scale. In [30] one selects the nonabelian vortex configuration (see [51,47,52]
for the review). The corresponding condensate of bifundamental becomes inhomogeneous and at 
IR the theory becomes the same IR theory without additional hyper but with additional surface 
operator which now is the nonabelian string with the infinite tension.

This general picture of RG flows with the nonperturbative defects turns out to be very useful 
and provides new tool for the evaluation of indexes. It turns out that the index of the UV theory 
allows the integral representation which has the interesting pole structure. The residues of the 
particular poles in the index can be identified with the indexes of IR theory supplemented by 
the surface operators with some flux r . There are poles corresponding to the surface operators 
with the different fluxes. Moreover the index in the IR theory with the defect with flux r can 
be identified with the action of the particular difference operator Gr with respect to the flavor 
fugacities acting on the IR index without the defects

Ir = GrI0 (35)

This operator was identified with the Ruijsenaars–Schneider (RS) operator known to be inte-
grable. The trigonometric RS model is nothing but the CS theory perturbed by two Wilson loops 
in different directions [53] (see Appendix D).

Upon deriving of the superconformal index in IR theory with defect one could be interested 
in the additional algebraic structure behind. It was found in [13] that the operators Gr form a 
nontrivial algebra. The surface operators are realized by D2 branes with R2 × S1 worldsheet and 
it was demonstrated that the Wilson loop along this S1 emerges in the CS theory on S1 ×C where 
C is the curve defining the superconformal theory. The following correspondence takes place

Gr ↔ 〈Wr〉 (36)

where the Wilson loop in the representation r is evaluated. Algebra of the operators Gr gets 
mapped into the Verlinde algebra in the CS theory.

4.3. Analogy with QCD and CP(N) model

Let us comment on the related questions which can be raised in QCD and its two-dimensional 
“counterpart” which shares many features of QCD [54] – CP(N) sigma-model. Now we know 
well the origin of this correspondence – it is just the matching condition between the theory in 
the bulk and the worldsheet theory on the defect. The analogous problem in QCD would concern 
the Casher–Banks relation for the chiral condensate relating it with the spectral density of the 
Dirac operator ρ(0).

〈ψ̄ψ〉 = −πρ(o) (37)

The fermionic zero mode at the individual instanton is senseless in the QCD vacuum since we 
have strongly interacting instanton ensemble however the collective effect from the instanton 
ensemble yields the nonvanishing density at the origin.
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Now the question parallel our study would concern the response of the quark condensate on 
the “mass of the regulator M” since we are looking at the derivative of the condensate with 
respect to the mass of the heavy flavor M. Speaking differently we are trying to evaluate the 
effect of the point-like instantons at the Dirac operator spectral density. The possible arguments 
could look as follows. We can consider the well-known path integral representation for the quark 
condensate in terms of the Wilson loops (see, for instance [55])

〈ψ̄ψ〉 =
∑

paths C

[DC]〈W(C)〉 (38)

where the measure over the paths is fixed by the QCD path integral and the VEV of the Wilson 
loop involves the averaging over all configurations of the gauge field. Therefore using this repre-
sentation we could say that we are searching for the back reaction of the UV degrees of freedom 
at the VEV of the Wilson loop.

Since from our analysis we know that the key players are the point-like instantons we could 
wonder how they could affect the Wilson loop. The natural conjecture sounds as follows. It 
is known that the Wilson loop renormalization involves the specific UV contribution from the 
cusps [56]. Therefore one could imagine that the point-like instantons placed at the Wilson loop 
induces the cusps or self-intersections of the Wilson loops and therefore yield the additional UV 
renormalization of the quark condensate. If this interpretation is correct it would imply that the 
cusp anomalous dimension which on the other hand carries the information about the anomalous 
dimensions of the QCD operators with the large Lorentz spin should be related with the torus 
knot invariants.

Another way to approach the question is to use the low-energy theorems [57]. The correlator 
we are looking at in the SUSY theory is now the correlator of the bilinears of the massless and 
the regulator fields. Due to the low-energy theorems we get∫

d4x〈ψ̄ψ(0)ψ̄RψR(x)〉 ∝ 〈ψ̄ψ〉 (39)

which however knows about the “perturbative” dilatational Ward identity and one could be inter-
ested how the point-like instantons affect this relation. We shall see later that the similar result in 
the SUSY case can be reformulated in the Liouville AGT side in terms of the similar low-energy 
theorem “dressed” by the small instantons.

How similar problem could be posed in the non-SUSY CP(N) model which can appear as 
the theory on the defect [58]? The analogue of the closed domain wall considered above is the 
kink–antikink bound state which is true excitation at the large N [59]. The analogous picture 
looks as follows. We have one vacuum in the non-SUSY CP(N) model however there is the 
excited vacuum between the kink–antikink pair. Following our analysis we could conjecture that 
this excited vacuum is the analogue of the “regulator vacuum” in the SUSY case separated by 
the kinks. Naively it involves the large scale and can just decouple but the kink and antikink 
can be dressed by the point-like instantons similar to the dressing of the domain walls by the 
instantons. As a result of dressing the finite 
 scale emerges and the kink–antikink state remains 
in the spectrum.

Finally note that the chiral condensate gets generated in the QED in the external magnetic field 
[60]. Naively it can be traced from the summation over the lowest Landau level. The analogous 
question sounds as follows: is there the interplay between the fermion condensate and the high 
Landau levels which are a kind of regulators in this problem? Apparently more involved analysis 
demonstrated that the higher Landau levels matter for the condensation and there is an interplay 
between the IR and UV physics once again.
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5. Different limits

5.1. Down to HOMFLY, Jones and Alexander

In order to compare the superpolynomial with other knot invariants, let us rewrite formulas 
from the previous section in a bit different notation. It is convenient to change to the following 
variables:

1

q̃2 t̃2
= q = exp(−βε1) (40)

q̃2 = t = exp(−βε2) (41)

ã2 t̃ = A = − exp(βma) (42)

And inverse:

t̃ = − 1√
qt

= − exp(β(ε1 + ε2)/2) (43)

q̃ = √
t = exp(−βε2/2) (44)

ã =
√

−√
tqA = exp

(
β

2ma − ε1 − ε2

4

)
(45)

• t̃ = −1: The superpolynomial reduces to HOMFLY. On the field theory side we have ε1 +
ε2 = 0

• ã = q̃N corresponds to the quantization condition in NS limit when there is no vev of the 

scalar. The mass of the antifundamental gets quantized ma = (2N − 1)ε2 − ε1

2
and reduction 

to the bottom raw or Catalans corresponds to the semiclassical limit in NS quantization. What 
is more, if we take t̃ = −1 we obtain Jones polynomial for the fundamental representation 
of sl(N)

• ã = 1: we obtain Poincaré polynomial for Hegaard–Floer homologies and mass of the 

anti-fundamental multiplet reads as ma = −ε1 + ε2

2
. Further specification t̃ = −1 yields 

Alexander polynomial. Hence the sum over Alexanders corresponds to the condensate in the 
case of massless antifundamental. It has some interesting realization at the CY side summa-
rized in Appendix A.

5.2. Up to stable limit

Consider the limit k → ∞ which yields the Tn,∞ torus knot. At the gauge theory side it 
corresponds to the dominance of CS in the action.

The additional unexpected structure emerges in the stable limit [61]. It turns out that the 
superpolynomial allows two different “bosonic” and “fermionic” representations. Moreover it 
has the structure of the character of the very special representation in ˆSL(2) at level 1 introduced 
by Feigin and Stoyanovsky.

Where ˆSL(2) at level 1 could appear from? The possible conjecture sounds as follows. We 
have to recognize the knot invariants from the viewpoint of the theory on the flavor branes as 
well. We have two hypermultiplets, one in fundamental and one in antifundamental. The theory 
on their worldvolumes should enjoy SL(2) gauge group instead of SU(2) for two fundamentals. It 
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is the analogue of the Chiral Lagrangian realized as the worldvolume theory on the flavor branes. 
Similar to the QCD we have the CS term here as well and the coefficient in front of it equals to 
the number of colors. In our abelian case we immediately arrive at the level 1 as expected. The 
“Chiral Lagrangian” in our case could have Skyrmion solutions like in QCD and we conjecture 
that the Feigin–Stoyanovsky representation is just representation in terms of Skyrmions.

Another question which can be asked in the stable limit is the A-polynomial. The point is that 
superpolynomial of uncolored Tn,∞ torus knot gives superpolynomial of unknot Mn colored by 
the n-th symmetric representation:

Pn,∞(a, q, t) = Mn(a, q, t)

M1(a, q, t)
(46)

These are given by the so-called MacDonald dimensions [62]. Therefore we could investigate 
the dependence of the superpolynomial on the representation which is governed by the super-A-
polynomial [12] of the knot. For the unknot in the symmetric representation, in our normalization 
it reads as

Â(a, q, t, x̂, ŷ) = tax̂ − a−1x̂−1

x̂q − x̂−1q−1
+ √−t ŷ (47)

where operators x̂, ŷ act as

ŷMn = Mn+1, x̂Mn = (−tq)nMn (48)

and quantum A-polynomial annihilates superpolynomial:

ÂMn = 0 (49)

Note that this equation actually connects two different instanton contributions Mn and Mn+1. 
Recall that in the NS limit ε2 = 0 and k = 1, we have found a similar relation (32) which relates 
different instanton contributions too. Both these relations are similar in the spirit to the non-
perturbative Dyson–Schwinger equations introduced recently by N . Nekrasov [29]. We hope to 
discuss this issue elsewhere [63].

5.3. Nabla – shift – cut-and-join operator and the decoupling of heavy flavor

Let us make few comments concerning the role of operator providing the transformation k →
k + 1 in our picture. It has different reincarnations and different names in the several problems. 
It is known as the Nabla operator in the theory of the symmetric functions, as the shift operator 
in the rational DAHA and Calogero model and the cut-in-join operator in the context of some 
counting problems in geometry. Since we have identified this parameter as the level of 5D CS 
term we could use this knowledge and see the different interpretations of this shift.

From the physical side it can be immediately recognize as the effect of the decoupling of 
the heavy flavor since it is know for a while [64] that one-loop effect provides this shift of the 
level. It provides the shift of the Calogero coupling constant in the quantum mechanics on the 
instanton moduli space and more formally it corresponds to the multiplication of the integrand 
over the instanton moduli by the determinant bundle [65]. It can be also seen at the CY side when 
it corresponds to the change of the geometry.

The action of this operator on the Tn,nk+1 torus knots was used [62] to generate a kind of the 
discrete Hamiltonian evolution in k with the simple boundary condition for k = 0, corresponding 
to unknot. Having in mind that the dynamics of the Calogero coupling can be interpreted as the 
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realization of the RG evolution with the limit cycles [66] it would be interesting to look for the 
cyclic solutions to this discrete Hamiltonian dynamics and possible Efimov-like states in this 
framework.

To illustrate these arguments let us consider the limit ma → ∞, that is A → +∞. From 
physical viewpoint, we integrate out antifundamental multiplet, so the Chern–Simons coupling 
should reduce by one. Indeed, the following limit is well-defined:

lim
A→+∞

1

An−1
P(A,q, t)nm+1,n = P(A = 0, q, t)n(m−1)+1,n (50)

Actually, this relation is known in the knot theory and is quite general:

lim
A→+∞

1

An−1
P(A,q, t)k,n = constP(A = 0, q, t)k−n,n (51)

The cut-and-join operator was identified in [62] as the W 3
0 generator from W 3 algebra. This 

fits well with the our consideration since the CS term written in superfield looks as follows

δLCS =
∫

d5xd4θ3 (52)

It is possible to develop the matrix model of the Dijkgraaf–Vafa type for the 5D gauge theory 
[42] which can be considered as the generation function for the superpolynomials of the Tn,nK+1
torus knots. The matrix model evaluation of the particular observable in the general case of all 
nonvanishing masses looks as

Zmatr =
∫

[dM]O(m1)O(m2)O(m3) exp(t2 TrM2 + t3 TrM3) (53)

with some measure probably suggested in [10] and the coefficient t3 corresponds to the CS term. 
It is clear that in the matrix model framework it is coupled to the corresponding W 3

0 generator. 
The knot invariants presumably can be evaluated upon taking derivatives with respect to m1, m2
and the corresponding limits. The operators O(m) are conjectured to be

O(m) = det(M − m) (54)

which can be evidently related with the resolvents. The type of the knot presumably is selected 
by the corresponding term of expansion in t2 with fixed value of t3.

Therefore the shift operator can be thought of as one of the consequences from the generalized 
Konishi relation in the 5D gauge theory yielding the W-constraints in the matrix model. If one 
introduces more times more general Virasoro and W-constraints can be formulated for the torus 
knots superpolynomials (see [67] for the related discussion). Let us emphasize that the matrix 
model with the cubic potential is different from the matrix model developed for the evaluation of 
the torus knot invariants from the type B topological strings in [3,4].

6. AGT conjecture prospective

In this section we will continue our study of the five-dimensional SQED with two fundamen-
tal flavors in the � deformation. We will show in a moment that the instanton partition function 
for 5D SQED is directly related to the perturbative partition function for 5D SU(2) gauge theory. 
Therefore, according to the AGT conjecture [68], there should be a relation between three-point 
functions in Liouville theory and five-dimensional SQED. We will establish an explicit connec-
tion between 5D SQED and the three-point function in the q-deformed Liouville theory on a 
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Fig. 3. SU(2) theory with four flavors.

sphere. We argue that the three-point function is equal to the combination of four instanton parti-
tion functions. Using these results we will show that there is a relation between superpolynomials 
for unknot and Liouville three-point functions.

Let us consider D = 5, N = 1 SU(2) gauge theory with four flavors. It can be obtained as 
a theory living on a certain IIB (p, q)-brane web – see Fig. 3. Or, equivalently, as M-theory 
compactification on the toric Calabi–Yau threefold, those toric diagram is given by the same 
figure.

We can obtain two copies of 5D SQED by sending Coloumb parameter to infinity a →
+∞(Qc → 0), that is, by cutting the toric diagram by horizontal line – compare2 the result with 
Fig. 2. If we send g2 → ∞(Q → 0) then the partition function is given only by the perturbative 
contribution – we cut the toric diagram by vertical line – see Fig. 4.

Note that the SU(2) theory has a rotational symmetry (fiber-base duality) [69–71] which in-
terchanges coupling constant Q = exp(−β/g2) with Coloumb parameter Qf = exp(−βa). It is 
this symmetry which relates perturbative SU(2) theory with instanton U(1) – one has to rotate 
Fig. 4 by 90 degrees in order to obtain Fig. 2.

In the pioneer work [68] it was shown that the perturbative part of the Nekrasov partition 
function for the four-dimensional SU(2) theory with four fundamental flavors actually coincides 
with the three-point function 〈e2α1φe2α2φe2α3φ〉 in the Liouville theory on a sphere, also known 
as a DOZZ factor [72,73]:

C(α1, α2, α3)

= (πμγ (b2)b2−2b2
)(Q−α1−α2−α3)/b

× ϒ ′(0)ϒ(2α1)ϒ(2α2)ϒ(2α3)

ϒ(α1 + α2 + α3 − Qc)ϒ(α1 + α2 − α3)ϒ(α1 + α3 − α2)ϒ(α2 + α3 − α1)
(55)

2 Note that we obtain two U(1) theories with CS term ±1. This is not surprising since we have to integrate out heavy 
chiral gaugino.
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Fig. 4. Perturbative SU(2) theory with four flavors.

where we have adopted the standard notation for the Liouville theory: the central charge is given 
by c = 1 + 6Q2

c , Qc = b + 1/b. And ϒ is a combination of two Barnes’ functions:

ϒ(x) = 1

�2(x|b, b−1)�2(Q − x|b, b−1)
(56)

One can think about the Barnes’ function �2 as a regularized product:

�2(x|ε1, ε2) =
+∞∏

n,m=0

(x + mε1 + nε2)
−1 (57)

– for the case of the combination 
�2(x)�2(y)

�2(x + z)�2(y − z)
this is a precise prescription.

In [74] and later in [75,76,71] it was argued that the lift to the five-dimensional theory corre-
sponds to the q-deformation on the CFT side. Now we are going to extend the proposal of [71], 
which connects the full (including both perturbative and non-perturbative) Nekrasov partition 
function for the 5D Abelian theory with two flavors with the q-deformed DOZZ factor in the 
case c = 1. We argue that the same relation holds for the general central charge. However, in our 
approach we will need the combination of several instanton partition functions in order to obtain 
a single DOZZ factor.

First of all, let us recall the q-deformation of Barnes’ double gamma function, which is closely 
related to the MacMahon function. Again, we will not need a precise definition, since we are 
interested in rations of four such functions:

�
β

2 (x|ε1, ε2) =
∏

i,j=0

(1 − exp(−β(x + iε1 + jε2)))
−1 (58)

And correspondingly:

ϒβ(x) = 1

�
β
(x|b, b−1)�

β
(Q − x|b, b−1)

(59)

2 2
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Following [71], we define q-deformed DOZZ factor by substituting Barnes’ functions by their 
q-analogues. However, we will omit the factor (πμγ (b2)b2−2b2

)(Q−α1−α2−α3)/b since it can be 
absorbed into the definition of vertex operators:

Cβ(α1, α2, α3)

= ϒβ ′
(0)ϒβ(2α1)ϒ

β(2α2)ϒ
β(2α3)

ϒβ(α1 + α2 + α3 − Qc)ϒβ(α1 + α2 − α3)ϒβ(α1 + α3 − α2)ϒβ(α2 + α3 − α1)

(60)

Returning to the 5D partition function, it will be useful to consider a bit different representa-
tion for the partition function from the Section 3 [40]:

Zinst =
∏

i,j=0

(1 − QQa√
qt

qi+1/2tj+1/2)(1 − QQf
√

qtqi+1/2tj+1/2)

(1 − Qqi+1/2tj+1/2)(1 − QQf Qaqi+1/2tj+1/2)
(61)

where we have used an analytic continuation:∏
i,j=1

(1 − Qqi−1/2tj−1/2) =
∏

i,j=1

(1 − Qqi−1/2t1/2−j )−1 (62)

Kähler parameters for the coupling constant, fundamental and antifundamental masses read as:

Q = exp(−β/g), Qf = exp(−βmf )/
√

qt = μf /
√

qt, Qa = √
qt exp(βma) = √

qtμa

(63)

Finally, the partition function can be rewritten as:

Zinst(1/g,mf ,ma)

= �
β

2 (1/g − ma + ε1/2 + ε2/2|ε1, ε2)�
β

2 (1/g + mf + ε1/2 + ε2/2|ε1, ε2)

�
β

2 (1/g + ε1/2 + ε2/2|ε1, ε2)�
β

2 (1/g + mf − ma + ε1/2 + ε2/2|ε1, ε2)
(64)

We see that the DOZZ factor and the 5D partition function are strikingly similar. First of all, 
we can establish usual relation in AGT correspondence:

b = ε1, b
−1 = ε2,Qc = ε1 + ε2 (65)

Then, it is straightforward to obtain the following expression:

ϒβ ′
(0) = 1

β

∏
i,j=0

(1 − qitj )0,0(1 − exp(−βQc)q
itj ) (66)

where the subscript 0, 0 denotes the omission of the i = j = 0 term.
After trivial manipulations with various factors we arrive at the following identification:

Cβ(α1, α2, α3) = 1

Q
√

qt

Z3
inst

∂Z1
inst

∂mf

Z2
instZ

4
inst

(67)

where
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Z1
inst = Zinst(g

−1 = Qc

2
+ α1 − α2 − α3,mf = −g−1 − Qc

2
,ma = g−1 + Qc

2
− 2α1)

(68)

Z2
inst = Zinst(

Qc

2
− 2α1, α2 + α3 − α1 − g−1 − Qc

2
, g−1 + α1 + α2 + α3 − 3

Qc

2
) (69)

Z3
inst = Zinst(α1 + α2 − α3 − Qc

2
,2α2 − g−1 − Qc

2
, g−1 + 2α3 − Qc

2
) (70)

Z4
inst = Zinst(2α3 − Qc

2
, α3 + α1 − α2 − g−1 − Qc

2
, g−1 + α2 + α1 − α3 − Qc

2
) (71)

Equation (67) suggests that the DOZZ function is equal to the composite defect wave function, 
since the derivative with respect to mf corresponds to the insertion of this defect, whereas the 
wave function is literary equal to the partition function in the presence of the defect. Terms in the 
denominator are conjugate wave functions.

Now let us return to the torus knot superpolynomial. It is clear that the derivative with respect 
to the fundamental mass corresponds to correlators of the form 〈φe2α1φe2α2φe2α3φ〉 on the Liou-
ville side. However, the role of the operator exp(−β) is not quite clear. We will show now that 
in the absence of the CS term (k = 0), it is not necessary to consider the VEV of exp(−β), 
since this VEV and the partition function is actually proportional. This observation establishes a 
bridge between Liouville correlators and torus knots.

Let us consider the following peculiar observable [29]:

〈Y(qtz) + Q
zk(z − exp(βmaf ))(1 − z exp(−βmf ))

Y (z)
〉 (72)

where Y(z) is a generating function for chiral ring observables:

Y(z) = (z − 1) exp

( ∞∑
n=1

z−n〈exp (−βn)〉
n

)
(73)

Also, in [77,78] it was conjectured that the operator Y(z) corresponds to the insertion of 
a domain wall. For a particular instanton configuration, defined by a Young diagram λ, Y(z)

equals to

Y(z) =
∏

∂+λ(z − qa′
t l

′
)∏

∂−λ(z − qtqa′
t l

′
)

= z

∏
∂+λ(1 − qa′

t l
′
/z)∏

∂−λ(1 − qtqa′
t l

′
/z)

(74)

where ∂+λ defines cells which can be added to the Young diagram and ∂−λ are those which we 
can remove.

According to N. Nekrasov [29], (72) is a regular function as a function of “spectral parame-
ter” z. This is an analogue of Baxter TQ-equation for general Omega-deformation. In our case it 
is a polynomial of degree k + 1. If we use the identities

1 − (1 − q)(1 − t)
∑
�

qa′
t l

′ =
∑
∂+λ

qa′
t l

′ − qt
∑
∂−λ

qa′
t l

′

Y(0) = −1 (75)

Then we see that

〈Y(z)〉 = zZinst − Zinst + 〈exp(−β)〉 + O(1/z), z → ∞ (76)
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Let us concentrate on the case k = 0 which corresponds to the unknot. We can find the constant 
term in (72) by taking z = 0:

−Z − QZ exp(βmaf ) (77)

On the other hand we obtain this term by taking z → ∞. Finally, we arrive at:

〈exp(−β)〉 = QZ
e−βmf − eβma − eβma e−βmf − 1

1 + Qe−βmf
(78)

Recalling that the instanton partition function Z = 〈1〉 is equal to 1 if mf or maf equal to zero, 
we obtain:

− ∂

∂(βmf )
〈exp(−β)〉

∣∣∣
mf =0

= Q
∂Z

∂(βmf )

2eβma

1 + Q
− Q

eβma (1 − Q) − (1 + Q)

(1 + Q)2
(79)

The problem with k = 1 is that one has to consider higher-order terms in the expansion of Y(z).

7. Knot invariants from quantum mechanics on the instanton moduli space and n ↔ m

duality

There are complicated consistency conditions for the branes of different dimensions to live 
together happily and they are formulated differently in term of their worldvolume theories. All 
physical phenomena have to be equivalently described from the viewpoints of the worldvolume 
theories on the defects involved. Therefore we have to recognize the knot invariants in the corre-
sponding quantum mechanics on the instanton moduli space. In this section we consider the NS 
limit postponing the case of the general �-background for the further study. As we have men-
tioned before one could expect that the states near threshold should matter for the UV completion 
problem and we shall see that it is indeed the case.

Let us remind, following [79] how the Poincaré polynomial of the HOMFLY homologies of 
the torus knots is obtained in the Calogero model. To this aim it is useful to represent the quantum 
Calogero Hamiltonian in terms of the Dunkl operators

Hcal =
∑
n

∂2
n +

∑
i 
=n

c(c − 1)

(zi − zn)2
(80)

Hcal =
∑
n

D2
n Dn = ∂n + c

∑
i 
=n

1 − σi,n

zi − zn

(81)

where σi,n is a permutation operator. The Dunkl operators enter as generators in the rational 
DAHA algebra [80]. It is important that for the rational Calogero coupling c = n/m there is the 
finite-dimensional representation of DAHA [81]. It is this finite-dimensional representation does 
the job.

It was shown in [21] that the particular twisted character of this finite-dimensional represen-
tation coincides with the Poincaré polynomial of the HOMFLY homology of the Tn,m torus knot

Pn,m(a, q) = a(n−1)(m−1)
n−1∑
i=0

a2i tr(qρ;HomSn(

ih,Lm/n)) (82)

where the following objects are involved. The h is the (n − 1) dimensional reflection representa-
tion of Sn, C[h], C[h∗], C[Sn] generates the whole Cherednik algebra (we present its definition 
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in Appendix). The Lm/n is the finite-dimensional representation of the Cherednik algebra. The 
n ↔ m symmetry is not evident however it was proved in [79] via comparison with the arc 
spaces on the Seifert surfaces of the torus knots. The arc space is nothing but the space of open 
topological string instantons in the physical language. The element ρ belongs to the algebra and 
acts semisimply. Its eigenvalues provides the q-grading in the character representation. It can 
be thought of as the Cartan element of SL(2, R) subalgebra of the Cherednik algebra which is 
known for the Calogero model and plays the role of the spectrum generating algebra. This Cartan 
element corresponds to one of the U(1) rotations of the C2 where the instantons live.

Therefore from the Calogero viewpoint the HOMFLY invariant can be considered as a kind 
of generalization of the Witten index. The HOMFLY torus knot invariants are captured by the 
subspace of the rational complexified Calogero model Hilbert space. As we argued before the 
torus knot invariants are derived upon the integration of the determinants over the instanton 
moduli space in 5d gauge theory and the integral is localized at the centered instantons at one 
point. This fits with the relevance of the case when all Calogero particles are concentrated around 
the origin and we are considering a kind of the “falling at the center” problem. Note that the 
rational Calogero system is the conformal quantum mechanical model and we effectively impose 
the restriction on the spectrum.

Where the Calogero model with the particular coupling comes from in our instanton problem? 
The answer comes from the quantum mechanics on n-instantons moduli space. The small abelian 
instantons yield the Calogero model indeed if we think about the theory on the commutative 
space when some number of the points are blow-uped [28]. If the abelian instantons are restricted 
on the complex line one gets the Calogero model for the elongated instantons indeed as shown 
in [28].

We have to explain why the coupling constant in the Calogero model equals to n/m. The key 
point is that the CS term induces the magnetic field on the ADHM moduli space [82,83] which 
is equal to the level of CS term, in our case Beff = k. Immediately we can recognize that the 
coupling constant in the Calogero model corresponding to the Tn,nk+1 is the CS level k = nk+1

n
at least at large n as required from the DAHA representation. Therefore we could claim that it is 
CS term which generates the correct interaction of Calogero particles.

The proper framework to explain n ↔ m duality in the Calogero coupling is suggested by the 
QHE which can be approximately described by the n-body Calogero or RS models depending 
on geometry [84–86]. In the Calogero approach to QHE the Calogero coupling is equal to the 
filling factor which is related to the coefficient in front of the 3d CS term in the effective theory 
of the integer QHE. This is parallel to our case where the Calogero interaction is induced via the 
reduction of 5d CS term to 3d and the Calogero coupling is the level of CS term again. Fermions 
in the IQHE get substituted by the abelian instantons in our case. With this identification of the 
Calogero model we could expect that duality in the torus knot problem gets mapped into the 
similar duality in the integer QHE. The ν → ν−1 duality in IQHE corresponds to the substitution 
of quasiparticles by holes and vise versa.

It is in order to make some digression which can be interesting by its own. In our study we 
have started with the theory with Nf = 3 which has Landau pole. The theory with Nf = 2 has 
vanishing β-function while theory with Nf = 1 is asymptotically free. They are very different 
therefore we could look for the origin of this difference in the our framework. We know that 
one flavor is massless therefore we cannot decouple it however the limit A → 0 provides the 
decoupling of one flavor. The transition from Nf = 3 → Nf = 2 from the point-like instantons 
looks quite smooth. Starting with all massive flavors and sending one mass to infinity we see the 
clear picture of the knotting and formation of some small compact UV defect where the small 
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instantons are nested. That is transition from the theory with Landau pole to the conformal theory 
involves the formation of some small size UV defect.

We can look at this point from the slightly different angle, namely from the realization of 
the HOMFLY polynomial in terms of the finite-dimensional representation of rational DAHA. 
When A 
= 0 we have conformal regime perturbed by the particular nonlocal operator. In this 
case the parameter which we have identified with the mass of the fundamental measures the 
representation of Sn on the n-point-like instantons–Calogero particles. Since a mass is related 
to the Casimir of the translation (p2 = m2) we could claim that the symmetric group and the 
Lorentz group are related in the nontrivial way. Indeed the SL(2, R) rotations are non-trivially 
built in the rational DAHA.

However the momentum is not the generator of the DAHA therefore the mixing of the 
n-particle state under the translations occurs and the different representations of the symmetric 
group emerge. When A → 0 the counting of the symmetric group representations is a bit unusual 
since the fugacity disappears. In some sense the group of space–time translations and symmetric 
group decouple from each other. This seem to be some important property of the asymptotically 
free theories which has to be elaborated in more details.

We conclude this section with a short comment. The trigonometric Calogero Hamiltonian ap-
pearing above in the physical R4 space describes the dynamics on the instanton moduli space. It 
should not be identified with the different integrable system which governs the low-energy effec-
tive action in 5d gauge theory with matter in fundamental representation namely the anisotropic 
XXZ spin chain. However this XXZ model which lives in the CY manifold in principle can be 
related with the trigonometric Calogero model via chain of dualities. First we can use the duality 
between the XXZ chain and the rational Ruijsenaars–Schneider model while at the second step 
we can use the bispectral duality with the trigonometric Calogero model. However we shall not 
discuss this issue in this paper in details postponing it for the separate study.

8. Conclusion

In this paper we have formulated an explicit instanton-torus knot duality between the 
n-instanton contribution to the particular condensate in the 5D SQED and the superpolynomial 
of the particular torus knot. The second derivative of the Nekrasov partition function plays the 
role of the generating function for the torus knot superpolynomials. The condensate is evaluated 
in the background of the 4-observable – which can be considered as the result of the incomplete 
decoupling of the regulator degree of freedom. Hence to some extend we could say that the knot 
invariants govern the delicate UV properties of the gauge theory when the point-like instantons 
are interacting with the UV degrees of freedom.

What are the lessons we could learn from this correspondence? Some of them have been al-
ready mentioned in the Introduction. First of all the appearance of the higher q, t -Catalan number 
tells that we are dealing with the point-like instantons sitting at the top of each other instead of 
the randomly distributed on R4. This effect is due to the regulator degrees of freedom which 
yields the non-local operator in the correlator. Secondly the non-locality of the operator induced 
by the UV regulator degree of freedom implies that we have to recognize a compact nonlocal 
object. This is the candidate state for the “elementary rotator” and on the other hand it captures 
the information about the torus knots superpolynomials.

The other lesson can be formulated as follows. The example in [30] demonstrates that the 
UV degrees of freedom can penetrate the IR as the non-Abelian strings with the infinite tension 
known as the surface operators. Similar logic can be applied for the domain walls which separate 
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the region with the UV degrees of freedom and region with the IR degrees of freedom only. In the 
similar simplest case the domain wall tension becomes infinite when the mass of the regulator 
tends to be infinite and the situation is analogous to the string with the infinite tension. Such 
domain walls yield the boundary conditions only.

However one could consider a more interesting question: are there any compact defects in-
volving the UV regulator degrees of freedom with the finite action? The candidates are: closed 
string and closed domain wall. In this case we have to find arguments preventing them from 
shrinking to a point and therefore escaping from the physical spectrum. If considering the closed 
string involving the regulators the first mechanism could be an analogue of the mechanism con-
sidered by Shifman and Yung in the “instead-of-confinement” approach [87] when the quantum 
state of the monopole–antimonopole pair nested on the string prevent it from shrinking. This 
monopole–antimonopole pair transforms into an interesting state upon the Seiberg duality. An-
other way to stabilize the closed string is to add a kind of rotation due to the additional quantum 
number like for the Hopf string considered in [88]. Similar mechanisms can be applied to the 
closed domain wall as well. One can consider its stabilization via the defects of low dimension 
or by rotation induced by the additional quantum numbers. There is, for instance, the “monopole 
bag” configuration [89]. In our case we have a kind of such object which seems to be prevented 
from shrinking by the instantons inside. Moreover one could expect that the mass of the regula-
tor which enters the domain wall tension is “dressed” by the point-like instantons and transforms 
into the 
QCD-type scale via the dimensional transmutation. Thus providing the some dynamical 
mechanism behind it.

One more important physical lesson to be learned is as follows. In the conventional QCD 
there is the fermionic zero mode at the individual instanton, however the fermionic chiral con-
densate is not due to it. The chiral condensate is determined via Casher–Banks relation by the 
density of the quasi-zero modes in the instanton–anti-instanton ensemble. The details of the in-
teraction of the instantons cannot be recognized in this case and only the collective effect can 
be seen in Casher–Banks relation. In our case due to the supersymmetry we can say more on 
the microscopic structure behind the condensate. The CS term induces an attractive interaction 
of the Calogero-type between point-like instantons. Therefore the “falling at the center” prob-
lem occurs. It turns out that the accurate treatment of this phenomena is performed in terms of 
the knot invariants. In our case the torus knots are selected by the choice of the matter content. 
However, in general, we expect more complicated knots. The summation over the torus knot 
superpolynomials amounts to the nonvanishing condensate and corresponds to the summation 
over the instantons which, to some extend, yields the microscopic picture for an analogue of 
“Casher–Banks” relation.

It seems that we just have touched the tip of the iceberg and there are immediate questions to 
be formulated:

• How the matter content of the 5D has to be extended to fit with the general Tn,m torus knots 
and links? We expect that the superpotential in the 5d theory is in one-to-one correspondence 
with the type of the knot. The torus knots correspond to the simplest case when only the CS 
term is involved.

• How the instanton-knot correspondence will be modified in the non-abelian case and for a 
general quiver theory?

• We have not discussed in this study the differentials in the Khovanov homologies and we 
postpone this issue for the separate work. They should be related to the effect of surface 
operators. Indeed, it was shown in [21] that the differentials are attributed to the complex 
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lines in R4. The related question concerns the role of the Hall algebra in the 5d theory. The 
results in [90] certainly should be of some use.

• What is the meaning of the fourth grading which seems to be under the carpet for the torus 
knots [91] in the 5D gauge theory?

• What amount of this duality does survive in the 4d case?
• We have not touched in this paper the theory on the worldvolume of the flavor brane at all 

postponing this issue for the future work. This would involve the analogue of the Chiral 
Lagrangian and we will have to recognize the torus knot invariants from this perspective as 
well. It is known that the Skyrmion is represented as the instanton trapped by the domain 
wall in D = 5 gauge theory [52] realizing dynamically the Atyah–Manton picture. It seems 
that our composite defect could have a relation with a kind of Skyrmion or dyonic Skyrmion 
in the “Chiral Lagrangian”.

• It seems that our considerations have common features with the Higher dimensional [92]
QHE effect in the refined case and the conventional QHE in the unrefined case. Is it possible 
to clarify the role of the torus knots invariants in that context?

• Is it possible to have a simple interpretation of n ↔ (nk + 1) duality in terms of the topolog-
ical strings or the theory on the surface operator?

• Recently the relation between the RG cycles and the decoupling of the heavy degrees of 
freedom has been found in the �-deformed SQCD. The similar RG cycles were found in the 
Calogero model [66,93] in this context. How these RG cycles can be formulated in terms of 
knot invariants? Are there any Efimov-like states?

• There is an interesting duality between the pair of integrable systems. One classical inte-
grable system belongs to the Toda–Calogero–RS family while the second quantum integrable 
model is a kind of the spin chain. The mapping between the two sides of the correspondence 
is quite nontrivial [94–96]. In our case we see that the knot invariants are related with the 
spectrum of the quantum Calogero system. Is it possible to recognize the knot invariants at 
the spin chain side when the additional deformation is included? Some step in this direction 
was made in [45].

• Recently an additional clarification of the 2d–4d duality has been obtained. Using the rep-
resentation of the nonabelian string in terms of the resolvent [97] in N = 1 SYM theory, 
the issue of the gluino condensate has been reconsidered in [98]. It was shown, using the 
interplay between 2d and 4d generalized Konishi anomalies, that the gluino condensate in 
N = 1 theory penetrates the worldsheet theory and deforms the chiral ring and correspond-
ing Bethe ansatz equations in the worldsheet theory in the nontrivial manner. Is it possible 
to use the 5d–3d correspondence to recognize the knot invariants on the defect “inside the 
condensate”?

• How the critical behavior discussed in [34] will be generalized in our situation [63] and what 
is its proper physical interpretation?

• Is it possible to make the arguments concerning the explanations of the dimensional trans-
mutation phenomena via the composite defect precise?

• How do these composite defects interact?

We hope to discuss these issues elsewhere.
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Fig. 5. Trefoil knot (this figure courtesy of Wikipedia).
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Appendix A. Torus knots

In this Appendix we will sketch some properties of torus knots. For a comprehensive review, 
see [99]. The general definition of a knot is a continuous embedding of S1 into S3 up to a 
homotopy. The trivial example in unknot: this is just a circle lying inside S3. According to the 
Thurston theorem [100], every knot is either:

• Satellite. Such knots can be obtained by taking a non-trivial knot lying inside a solid 2-torus 
(in this situation non-trivial means that the knot neither lying in a 3-ball inside the solid torus 
nor just wrapping one of the torus cycles) and then embedding the solid torus into the S3 as 
another non-trivial knot.

• Hyperbolic. In this case the compliment of the knot S3\γ is a hyperbolic space.
• Torus. This family is very well-studied. Such knots are characterized by two numbers: n

and m. They can be obtained by wrapping the S1 n times over one cycle on a two-torus and 
m times over the other cycle without self-intersections.

Obvious property of the torus knot is Kn,m = Km,n. Actually, if n and m are not co-prime, it will 
be a link rather than a knot: link is a collection of knots which do not intersect. Also, (n, 1) and 
(1, m) represent unknot. Therefore the most simple example is (3, 2) knot, so-called trefoil knot 
(see Fig. 5).

The algebraic knot in S3 which is the main object in this section can be described by the 
intersection of S3 with some algebraic curve. If we realize the sphere as

|z1|2 + |z2|2 = 1 (83)

then the simplest (p, q) torus knots which can be obtained from the unknot by the SL(2, Z)

action corresponds to the curve

z
p

1 = z
q

2 (84)

which is called Seifert surface of the knot. The sphere is invariant under

z1 → eiθ z1 z2 → eiθ z2 (85)

while the Seifert surface under

z1 → eiqθ z1 z2 → eipθ z2 (86)
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In the CS theory the knot invariants one can evaluated from the corresponding Wilson loop 
vacuum expectation value. The useful tool is the knot operator introduced in [5]

W
n,m
R |p〉 =

∑
μ∈MR

exp[−iμ2 nm

k + N
− 2πi

m

k + N
pμ]|p + nμ〉 (87)

where MR is the set of weights corresponding to the irreducible representation R and |p〉 is the 
element of the basis of the Hilbert space of the SU(N) CS theory on the torus labeled by the 
weights p. When evaluating the VEV of Wilson loop one performs the Heegaard cut of S3 into 
two solid tori. Then the torus knot is introduced on the surface of one of the solid tori by the 
action of the knot operator on the corresponding vacuum state. In the standard framing the VEV 
of Wilson loop is given by

〈Wn,m
R 〉 = E2π 〈p|SWn,m

R |p〉
〈ρ|S|ρ〉 (88)

where S – is the operator of S-transformation from SL(2, Z).

Appendix B. Higher (q, t) Catalan numbers

In this Appendix we briefly review higher (q, t) deformed Catalan numbers Ck
n(q, t) which 

enter the expression for the Tn,nk+1 superpolynomial at A = 0. There are several definitions of 
the higher Catalan numbers related to the geometry of the Hilbert schemes of points, symmetric 
functions, representation theory and combinatorics of paths. To orient the reader we provide a 
few of them:

• Let us introduce the elementary symmetric functions en, Macdonald polynomial Hμ for 
the partition μ, the Hall product 〈. , .〉 on the symmetric functions and 
 – the ring of the 
symmetric functions. There is the so-called Nabla operator ∇ which act on the Macdonald 
basis as

∇Hμ = TμHμ, Tμ = qn(μt )tn(μ), n(μ) =
∑
�∈μ

l (89)

where μt denotes the transpose of μ. The Ck
n(q, t) in terms of the symmetric functions are 

defined as follows

Ck
n(q, t) = 〈∇k(en), en〉 (90)

• One can define the higher Catalans in terms of the so-called diagonal harmonics. To this aim 
consider the polynomial ring C(x1, y1, . . . , xn, yn). The symmetric group Sn acts diagonally 
ωxi = xω(i) ωyi = yω(i), ω ∈ Sn. Introduce the ideal generated by all the alternating polyno-
mials and let m to be the maximal ideal generated by x1, y1, . . . xn, yn. Let Mk = I k/mI k . It 
is possible to introduce the double grading is the space of polynomials according the degrees 
in x and y variables. The grading tells that the bi-degree (d1, d2) corresponds to the situ-
ation when all the monomials of the polynomial have equal bi-degree (d1, d2). The higher 
Catalans are now defined as

Ck
n(q, t) =

∑
l

∑
s

qlt sdimMk
l,s (91)

where Mk is the bihomogeneous component of Mk of bidegree (l, s).
l,s
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• The last definition which is the closest to our context is based on the Hilbert scheme 
Hilbn(C2) of n points on C2. Let us define O(k) = O(1)⊗k , where O(1) = detT and T
is the tautological rank n bundle. The double grading in this case is introduced on the set 
of global section H 0(Zn, O(k)) where Zn tells that all points are sitting at the top of each 
other. The Ck

n(q, t) are now defined as follows

Ck
n(q, t) =

∑
l

∑
s

qlt sdimH 0(Zn,O(k))l,s (92)

Let us emphasize that the key property of the higher Catalans which is important in our study 
is that they provide the description of the properties of the set of points sitting at the top of each 
other.

Appendix C. The Dunkl operators and rational DAHA

In this Appendix we briefly describe the rational double affine Hecke algebras (DAHA) Hc

and their finite-dimensional representations relevant for the invariants of the torus knots. The 
rational DAHA of type An−1 with parameter c is generated by the V = Cn−1, V ∗ and the per-
mutation group. Sn with the following relations

σxσ−1 = σ(x), σyσ−1 = σ(y) (93)

x1x2 = x2x1 y1y2 = y2y1 (94)

yx − xy = 〈y, x〉 − c
∑
s∈S

〈αs, x〉〈y,αv
s 〉s (95)

where S is the set of all transpositions, and αs, αv
s are the corresponding roots and coroots.

It is convenient to introduce the Dunkl operators

Di = ∂

∂xi

− c
∑
i 
=j

σij − 1

xi − xj

(96)

and introduce the space of polynomial functions on V, where elements of V act by the multipli-
cations and V ∗ by the Dunkl operators. This representation is denoted by Mc. It is known [81]
that for the rational c = m/n DAHA has unique finite dimensional representation Lm/n which 
was identified as the factor Lc = Mc/Ic where Ic is the ideal generated by the following set of 
the homogeneous polynomials fi of degree m

fi = Coef m[(1 − zxi)
−1

n∏
i=1

(1 − zxi)
m/n] (97)

They are annihilated by the Dunkl operators

Dk(fi) = 0 (98)

and therefore are invariants under the DAHA action. The dimension of the finite-dimensional 
representation is

dimLm/n = mn−1 (99)

There is SL(2, R) subalgebra of DAHA which involves the Hamiltonian of the rational com-
plexified Calogero model

HCal =
∑

D2
i (100)
i
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the rest of the operators from this subalgebra are

K = 1

2

∑
i

(xiDi + Dixi) J1 =
∑

i

x2
i (101)

Let us also note that there is the so-called shift operator which acts by changing c → c + 1 and 
is the counterpart of the cut-and-join operator the Nabla operator in the theory of the symmetric 
functions. It corresponds to the shift of the level of 5d CS term.

Appendix D. The Ruijsenaars–Shneyder many-body integrable model from the perturbed 
CS theory

The surface operator which survives under the flow from UV to IR [30] has an associated
action of the quantum trigonometric RS Hamiltonian which is simply described in terms of the 
perturbed 3d CS theory [53]. The phase space in this model is identified with the space of flat 
connections on the torus with the marked point and the particular monodromy around it. While 
the Hamiltonian can be described as the Wilson loop around one cycle.

Equivalently it can be obtained via the Hamiltonian reduction. To perform the Hamiltonian 
reduction replace the space of two dimensional gauge fields by the cotangent space to the loop 
group:

T ∗Ĝ = {(g(x), kx + P(x))} (102)

The relation to the two dimensional construction is the following. Choose a non-contractible 
circle S1 on the two-torus which does not pass through the marked point p. Let x, y be the 
coordinates on the torus and y = 0 is the equation of the S1. The periodicity of x is β and that of 
y is R. Then

P(x) = Ax(x,0), g(x) = P exp

R∫
0

Ay(x, y)dy. (103)

The moment map equation looks as follows:

kg−1
x g + g−1Pg − P = Jδ(x), (104)

with k = 1
Rβ

. The solution of this equation in the gauge P = diag(q1, . . . , qN) leads to the Lax 
operator A = g(0) with R, β exchanged. On the other hand, if we diagonalize g(x):

g(x) = diag
(
z1 = e

√−1Rq1, . . . , zN = e
√−1RqN

)
(105)

then a similar calculation leads to the Lax operator

B = P exp
∮

1

k
P (x)dx = diag(e

√−1θi ) exp(
√−1Rβνr) (106)

with

rij = 1

1 − e
√−1Rqji

, i 
= j ; rii = −
∑
j 
=i

rij (107)

thereby establishing the duality A ↔ B explicitly.
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