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SUMMARY

Follicular helper T cells (Tfh cells) are the major pro-
ducers of interleukin-4 (IL-4) in secondary lymphoid
organs where humoral immune responses develop.
Il4 regulation in Tfh cells appears distinct from the
classical T helper 2 (Th2) cell pathway, but the under-
lying molecular mechanisms remain largely un-
known. We found that hypersensitivity site V (HS V;
also known as CNS2), a 30 enhancer in the Il4 locus,
is essential for IL-4 production by Tfh cells. Mice
lacking HS V display marked defects in type 2
humoral immune responses, as evidenced by abro-
gated IgE and sharply reduced IgG1 production
in vivo. In contrast, effector Th2 cells that are in-
volved in tissue responses were far less dependent
on HS V. HS V facilitated removal of repressive chro-
matin marks during Th2 and Tfh cell differentiation
and increased accessibility of the Il4 promoter.
Thus, Tfh and Th2 cells utilize distinct but overlap-
ping molecular mechanisms to regulate Il4, a find-
ing with important implications for understanding
the molecular basis of allergic diseases.

INTRODUCTION

Type 2 immune responses entail a humoral response character-

ized by interleukin-4 (IL-4)-dependent IgE and IgG1 production,

and cellular responses in peripheral tissues that are coordinated

by T helper 2 (Th2) cells and innate immune cells that produce

the signature Th2 cell-type cytokines IL-4, IL-5, and IL-13 (Voeh-

ringer et al., 2004). Type 2 immune responses have an important
role in protective immunity against parasitic infections (Else

et al., 1994), but when inappropriately exaggerated and misdir-

ected to harmless antigens, cause allergic diseases such as

asthma (Kay, 2001a, 2001b; Kim et al., 2010). Finding biological

modifiers of the Th2 cell-type cytokines has emerged as a

rational approach in developing new treatments for asthma (Lev-

ine andWenzel, 2010). A completemechanistic understanding of

the molecular details of Th2 cell-type cytokine gene regulation

may facilitate the development of novel approaches for thera-

peutic gene silencing in allergic diseases.

Elegant studies with cytokine gene reporter mice identified

T cell subsets and innate immune cells that produce Th2 cell-

type cytokines during type 2 immune responses in vivo (King

and Mohrs, 2009; Neill et al., 2010; Price et al., 2010; Reese

et al., 2007; Reinhardt et al., 2009; Saenz et al., 2010; Voehringer

et al., 2004, 2006; Zaretsky et al., 2009). Follicular helper T (Tfh)

cells have emerged as the major class of IL-4-producing T cells

in the lymph node, and the IL-4 produced by these cells is criti-

cally required for shaping type 2 humoral immunity (King and

Mohrs, 2009; Reinhardt et al., 2009; Zaretsky et al., 2009). The

trans-acting factors required for IL-4 production by Tfh cells

are distinctly different (GATA3- and STAT6-independent) from

conventional Th2 cells, and the cis-regulatory requirements re-

main unknown (Reinhardt et al., 2009).

Gene expression in eukaryotes is tightly regulated by the

chromatin structure of the underlying gene locus, which in turn

influences the accessibility of trans-acting factors and the core

transcriptional machinery to their binding sites in proximal

gene promoters as well as distal cis-regulatory DNA elements

(Berger, 2007; Li et al., 2007). Under physiological conditions,

cell type specificity of gene expression is primarily conferred

by distal cis-regulatory elements (Heintzman et al., 2009; Visel

et al., 2009a, 2009b). A number of such elements were identified

in the extended (�200 kb) murine Th2 cell-type cytokine locus

spanning the Il4, Il5, and Il13 genes and the constitutively
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Figure 1. cis-Regulatory Regions in the Mouse Th2 Cell Locus and Chromatin Analysis of HS V-Deficient T Cells

(A) Diagram represents the murine Th2 cell-type cytokine locus showing locations of the DNase I hypersensitivity sites (HS) and conserved noncoding sequences

(red arrows), locus control region (LCR, black arrows), Il13 and Il4 promoter (blue arrows), and species conservation tracks.

(B) DNase I HS analysis of unstimulated wild-type (WT) and DV (DV) Th2 cells either left unstimulated or stimulated for 6 hr with PMA and ionomycin (+6h stim) to

induce HS VA. Southern blot with a 50 IL-4 probe revealed the indicated HS sites. Double arrow shows parent BamHI fragment. Note the HS V deletion decreases

the size of this band, but not HS fragments in DV T cells. HS V and HS VA fragments are indicated by the * and ** symbols, respectively. See also Figure S1.

(C) Schematic representation of the two Il4 alleles in KN2-KN2, KN2-WT, and KN2-V allelic reporter mice.
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expressed gene Rad50 (Figure 1A; Agarwal and Rao, 1998; An-

sel et al., 2006; Wilson et al., 2009). Targeted deletion of selected

cis-regulatory elements in mice demonstrated their nonredun-

dant functions in regulating Th2 cell-type cytokine gene expres-

sion (Ansel et al., 2004; Koh et al., 2010; Lee et al., 2003; Loots

et al., 2000; Mohrs et al., 2001; Solymar et al., 2002; Tanaka

et al., 2006, 2011; Yagi et al., 2007).

We previously identified two putative distal enhancers located

30 of the Il4 gene, marked by cell type-specific DNase I hypersen-

sitivity (hypersensitivity site V: HS V and HS VA) (Figure 1A; Fig-

ure S1A available online). HS V is not accessible in naive

T cells or differentiated Th1 cells, but becomes constitutively

accessible in resting Th2 cells; it overlaps a highly conserved

noncoding sequence (CNS2) in the Il4 locus (Ansel et al.,

2006). HS VA becomes accessible only upon activation of Th2

cells, and the corresponding sequence binds GATA3, STAT6,

and NFAT (Agarwal et al., 2000). Combined deletion of a 3.7 kb

region spanning both HS V and HS VA resulted in impaired IL-4

and IL-13 production in both Th2 cells and mast cells (Solymar

et al., 2002). Confirming these findings, a similar strain of

CNS2-deficient mice (Yagi et al., 2007), which bear a smaller

deletion that disrupts HS V but also deletes about half of the se-

quence corresponding to HS VA (Figure S1A), including NFAT

and GATA3 binding sequences (Agarwal et al., 2000), also

showed impaired IL-4 production in NK T cells and T-CD4

T cells (Sofi et al., 2011; Yagi et al., 2007). Unfortunately, the

functional impairment in cytokine production observed in HS V

and VA-deficient and in CNS2-deficient mice could not be unam-

biguously attributed to one or the other region, because the

integrity of both putative regulatory regions was compromised.

There are compelling reasons toexamine the functionof theHS

V (CNS2) region in isolation. The interesting features of this region

include (1) constitutive accessibility in Th2 cells (Agarwal and
176 Immunity 36, 175–187, February 24, 2012 ª2012 Elsevier Inc.
Rao, 1998); (2) DNA hypomethylation in naive T cells (Lee et al.,

2002); (3)maintainedDNAhypomethylation during Th2 cell differ-

entiation but increased DNAmethylation during Th1 cell differen-

tiation (Lee et al., 2002); and (4) binding of a number of important

transcriptional regulators—including STAT6, STAT5, GATA3,

Notch, RBP-Jk, ATP-dependent chromatin remodeler BRG-1,

chromatin looping factor SATB1, and histone methyl transferase

MLL—to the HS V region in a Th2 cell-preferential manner (Cai

et al., 2006; Liao et al., 2008; Tanaka et al., 2006, 2011; Wei

et al., 2010; Wurster and Pazin, 2008; Yamashita et al., 2006).

To address these issues, we generatedmice bearing a precise

deletion of the HS V (CNS2) region. An unexpected finding in

the HS V-deficient (DV) mice was the complete abrogation of

IgE production despite only mild reduction in type 2 cellular

responses in affected tissues. To determine whether this dichot-

omous response was due to the differential requirement for HS V

by the cell types that produce IL-4, we made use of allelic IL-4

reporter mice, which allowed us to track IL-4-producing cells

in vivo. We show that Tfh cells critically depend on HS V for IL-

4 production. In contrast, effector Th2 cells, basophils, and

eosinophils were far less dependent on HS V.

RESULTS

Deletion of HS V Impairs Il4 Transcription
To examine the function of HS V in regulation of Th2 cell-type

cytokine genes, we generated mice with a specific deletion of

HS V that did not disrupt the adjacent enhancer, HS VA (Figures

1A and S1). DNase I hypersensitivity analysis of in-vitro-polar-

ized HS V-deficient (DV) Th2 cells confirmed selective loss of

HS V; importantly, other hypersensitivity sites that mark cis-

regulatory elements remained intact, including the activation-

inducible site HS VA (Figure 1B). Unlike Th2 cells from mice
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Figure 2. Cytokine Gene Expression Profile of HS

V-Deficient CD4+ T Cells

(A) Hprt1-normalized cytokine mRNA abundance in CD4+

T cells differentiated in vitro under Th2 and Th1 cell

polarizing conditions for 1 week and stimulated with PMA

and ionomycin for 4 hr. Bars display average and error

bars indicate standard error of mean.

(B) Histograms show intracellular cytokine staining of cells

described in (A).

(C) Contour plots show IL-4 and huCD2 staining in Th2

cells generated in vitro (A).

(D and E) CD4+ T cells from the indicated mice were

differentiated in vitro under submaximal Th2 cell polarizing

conditions. Graphs show the percentage huCD2+ cells in

relation to the concentration of exogenous IL-4 added to

the culture. See also Figure S2A.

(F) Contour plot shows intracellular cytokine staining of

restimulated CD4+ T cells from KN2-WT and KN2-V mice

cultured with 11 U/ml of IL-4. See also Figure S2B.

n.s., no statistically significant difference (p > 0.05), **p <

0.01, ***p < 0.001 with Student’s t test. See also Table S2.
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with the combined HS V and VA deletion, which show diminished

transcription of all the linked Th2 cell-type cytokine genes (Il4,

Il13, and Il5) (Solymar et al., 2002), restimulated DV Th2 cells

showed a nearly 50% reduction in the expression of Il4 and

Il13 mRNA, but no significant change (p > 0.05) in Il5 and Il10

(Figure 2A). Compared to wild-type (WT) Th2 cells, the frequency

of restimulatedDV Th2 cells producing IL-4 (mean ± SEM, 55%±

1.3% versus 32% ± 1.3%) and IL-13 (mean ± SEM, 34% ± 1.2%

versus 27%± 1.5%) protein was also reduced by 40% and 20%,

respectively, (Figure 2B). As expected, the cytokine profile of DV

Th1 cells was similar to that of WT Th1 cells (Figures 2A and 2B).

As a major product of Th2 cells that is also a potent inducer of

Th2 cell differentiation, IL-4 is the key element of a positive-feed-

back mechanism that polarizes Th2 cell responses both in vitro

and in vivo. To assess the requirement for HS V under conditions

where this positive feedback was minimal, we generated hetero-

zygous allelic reporter mice in which one Il4 allele derives from
Immunity 36, 175
KN2 reporter mice (Mohrs et al., 2005) and the

second is wild-type or bears the HS V deletion

(designated KN2-WT and KN2-V respectively;

Figure1C). In theKN2allele, aCD2genecassette

replaces the first two exons of Il4; thus, IL-4

protein is not produced but Il4 transcription is

faithfully reported as surface expression of

human CD2 (huCD2) (Mohrs et al., 2005). Th2

cell cultures from both allelic reporter mice con-

tained equal numbers of huCD2+ cells, indicating

comparable Th2 cell polarization; among these

huCD2+ IL4-competent cells, however, the fre-

quency of IL-4 production was reduced in

KN2-V T cells compared to KN2-WT cells, con-

firming a direct cis-regulatory role for HS V in

the control of Il4 activity in Th2 cells (Figure 2C).

To assess themagnitude of positive feedback

through IL-4, we compared huCD2 expression

in KN2-WT and KN2-KN2 T cells, which do

and do not produce IL-4, respectively. As ex-

pected, endogenous IL-4 produced from the
functional IL-4 allele in KN2-WT T cells strongly potentiated

Th2 cell polarization when the cells were differentiated under

suboptimal Th2 cell conditions, with limiting amounts of exoge-

nous IL-4 provided in culture (Figures 2D and S2A). Similarly,

a 2- to 3-fold lower dose of exogenous IL-4 was necessary to

induce huCD2 expression in KN2-WT T cells (which produce

their own endogenous IL-4), compared to KN2-V T cells (which

lack HS V in the functional IL-4 allele) (Figures 2E and S2A). At

a low concentration of exogenous IL-4 (11 U/ml), the cytokine

profile indicated a very strong dependence for HS V in Th2 cell

polarization (Figures 2F and S2B). These results suggested

that the deletion of HS V was likely to have pronounced effects

on in vivo responses in which IL-4 feedback is important.

In Vivo Type 2 Responses in HS V-Deficient Mice
To determine the consequences of HS V deficiency in vivo,

we used a mouse model of allergic airway disease. Airway
–187, February 24, 2012 ª2012 Elsevier Inc. 177
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Figure 3. In Vivo Type 2 Responses in HS V-Defi-

cient Mice

Cohorts of wild-type (WT) and HS V-deficient (DV) BALB/c

mice were subjected to the ovalbumin (OVA) model of

allergic airway disease.

(A) Airway hyperresponsiveness after saline (n = 10) and

OVA challenge (n = 12) was measured as increasing

pulmonary resistance in response to acetylcholine (ach).

Data are shown as mean ± standard error mean (SEM).

(B) Total number and cellular composition of the leuko-

cytes in bronchoalveolar lavage fluid (mean ± SEM);

macrophages (Macro), eosinophils (Eos), lymphocytes

(Lympho), and polymorphonuclear neutrophils (PMN).

(C) Serum OVA-specific IgE abundance measured by

ELISA (n = 12). Average (bars) of data from individual mice

(filled circles) are shown; error bars are SEM.

(D) Overlay of dot plots showing IgE and CD131 staining of

live, singlet-gated, CD45+ cells infiltrating the lungs of

OVA-challenged KN2-WT and KN2-V mice. Graph at right

showsmean fluorescence intensity (MFI) of IgE staining on

basophils.

(E–G) Cohorts of four wild-type C57BL/6 (B6), wild-type

BALB/c (WT), and HS V-deficient BALB/c (DV) mice were

infected with Leishmania major promastigotes in the hind

footpad.

(E) Footpad swelling over the course of infection.

(F) Footpad parasite burden (log titer) 64 days after

infection.

(G) ELISAmeasurement of total serum IgE and Leishmania

freeze-thaw antigen-specific IgG1 and IgG2b.

n.s., no statistically significant difference (p > 0.05), *p <

0.05, **p < 0.01, ***p < 0.001 with Student’s t test.
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hyperresponsiveness (AHR) was reduced in OVA-challenged DV

mice compared to WT controls (Figure 3A). Peribronchial and

perivascular inflammatory infiltrates and mucus hypersecretion

typical of allergic inflammation were preserved in DV mice

(data not shown), but reduced numbers of eosinophils and

lymphocytes were found in the bronchoalveolar lavage fluid

(Figure 3B). Overall, therefore, the pathological type 2 cellular

response in the lungs was partially diminished in DV mice.
178 Immunity 36, 175–187, February 24, 2012 ª2012 Elsevier Inc.
Immunoglobulin (Ig) isotype switching to IgE,

a hallmark of type 2 humoral immunity,

is known to be critically dependent on IL-4

production (Finkelman et al., 1988; Reinhardt

et al., 2009). Strikingly, the IgE response was

completely abolished in DV mice (Figure 3C).

Flow cytometric measurement of IgE bound to

lung-infiltrating basophils confirmed an almost

log-scale reduction in the amount of IgE present

in DV mice (Figure 3D). Because basophil IgE

staining in KN2-V mice was very similar to that

seen in IL-4-deficientKN2-KN2mice (Figure 3D),

we conclude that HS V is critically required for

IL-4 production by the cells that direct IgE

responses in vivo.

To corroborate our findings on the effects of

HS V deficiency in the asthma model in vivo,

we utilized Leishmania infection. The magnitude

of type 2 responses in this model inversely

correlates with the capacity to clear parasites
and resolve tissue inflammation (Mohrs et al., 2001). Thus,

control C57BL/6 mice that primarily mount a type 1 response

with abundant IFN-g-producing Th1 cells effectively cleared

the parasite. BALB/c mice, which mount a sustained type 2

response, showed a significant increase in the size of footpad

lesions and parasite burden up to 10 weeks after infection

(Figures 3E and 3F). We observed no difference between DV

and WT BALB/c mice, suggesting that in this experimental
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system, there was no diminution in type 2 tissue responses in

the absence of HS V (Figures 3E and 3F). Nevertheless, the

type 2 humoral response was again significantly affected in the

DV mice as reflected by the complete absence of IgE and

a reduction of Leishmania-specific IgG1, which is also partly

dependent on IL-4 (Kopf et al., 1993); Leishmania-specific

IgG2b production, which is IL-4 independent, was unaffected

(Figure 3G).

Together these results support an important role for HS V in

type 2 humoral immunity in vivo. However, the dichotomous

effects of HS V deficiency on the different arms of type 2 immune

responses, namely the complete absence of the IL-4-dependent

humoral responsewith at most a partial reduction in type 2 tissue

responses, indicated that the cell types driving these responses

were differentially affected by HS V deficiency.

HS V-Deficient Tfh Cells Develop Normally but Fail
to Produce IL-4
Previous studies with KN2 mice showed that the vast majority of

huCD2+ IL-4-competent cells in the lymph nodes are CXCR5+

PD-1hi Tfh cells that reside in germinal centers and the follicular

mantle zone (King and Mohrs, 2009; Reinhardt et al., 2009;

Zaretsky et al., 2009). These Tfh cells, or their precursors gener-

ated early in immune responses, are the source of IL-4 and other

signals that act on B cells to induce IgE and IgG1 production

(King and Mohrs, 2009; Reinhardt et al., 2009; Zaretsky et al.,

2009). The KN2 allele does not encode IL-4 protein but marks

cells that are competent to make IL-4. Therefore, the allelic

reporter mice allowed us to ask whether Tfh cells and other in-

vivo-generated huCD2+ IL-4-competent cells require the HS V

cis-regulatory region for IL-4 production from the other allele.

In the asthma model, we observed a significant induction

(3%–4%) of huCD2+ T cells in the draining parathymic lymph

nodes, but not in the nondraining inguinal nodes (0.1%–0.3%),

25 days after OVA immunization (Figure 4A, compare top and

second panels). Consistent with previous reports (King and

Mohrs, 2009; Reinhardt et al., 2009), equal numbers of huCD2+

IL-4-competent cells and CXCR5+PD-1hi Tfh cells were ob-

served in the parathymic lymph nodes of KN2-WT, KN2-V, and

KN2-KN2 mice (Figure 4A, second and third panels; quantified

in the bar graphs to the right), indicating that IL-4 (lacking in

KN2-KN2 mice) and the enhancer activity of HS V (lacking in

KN2-V compared to KN2-WT mice) are both dispensable for

the generation of Tfh cells in vivo. CXCR5+PD-1hi Tfh cells

were predominantly huCD2+ (Figure 4A, third panel, inset histo-

grams), implying that the majority of Tfh cells transcribed the

KN2 reporter allele in vivo. Conversely, essentially all huCD2+

cells in the draining lymph nodes also expressed CXCR5 and

PD-1 (Figure 4A, bottom panel), confirming that the vast majority

of IL-4-competent T cells in this location are indeed Tfh cells

under these experimental conditions.

The ability of these huCD2+ cells to produce cytokines from

the wild-type or HS V-deficient Il4 allele was assessed ex vivo

by intracellular staining and flow cytometric analysis of IL-4

production after stimulation with PMA and ionomycin for 4 hr.

We prevented surface expression of any new huCD2 by inhibit-

ing protein transport with brefeldin A during the entire time of

in vitro stimulation, allowing us to focus on cells that were already

expressing huCD2 in vivo. As expected of Tfh cells (Reinhardt
et al., 2009), the huCD2+CD4+ cells from KN2-WTmice predom-

inantly made IL-4 and not IL-13; strikingly, however, huCD2+

CD4+ cells from KN2-V mice almost completely failed to make

any IL-4 even under these supraphysiological stimulation condi-

tions (Figure 4B, top panel). As expected, similar results were

observed when we restricted our analysis to CXCR5+PD-1hi

Tfh cells (Figure 4B, bottom panel). Thus, in Tfh cells exhibiting

normal expression of huCD2 from the KN2 Il4 reporter allele,

the HS V-deficient allele is completely unable to support IL-4

production, again indicating a critical cis-acting requirement

for HS V for Il4 expression in Tfh cells.

These findings were confirmed in Leishmania infection. When

CD4+ T cells taken from the draining popliteal lymph nodes

10 weeks after infection were restimulated in vitro, we observed

a significant reduction in the number of IL-4-producing cells in

DVmice compared toWT BALB/c mice (Figure 4C). IL-4 produc-

tion was also affected in vivo, as evidenced by the near absence

of Il4 mRNA in freshly isolated lymph node cells from DV mice

(Figure 4D).

We next utilized an acute LCMV (lymphocytic choriomeningitis

virus) infectionmodel that allowed us to generate relatively larger

numbers of IL-4-producing Tfh cells for undertaking detailed

mRNA and chromatin analyses (Yusuf et al., 2010). Consistent

with our findings in the OVA model, comparable numbers of

CXCR5+PD-1hi Tfh cells and germinal center B cells were ob-

served in the lymph nodes and spleen of both WT and DV mice

(Figures 4E and 4F). Expression of Bcl6, Blimp1, ICOS, SLAM-

associated protein (SAP, encoded by Sh2d1a), and Il21 mRNA

in FACS-sorted CXCR5+PD-1hi Tfh cells freshly isolated from

lymph nodes and spleen were not significantly different between

WT and DV mice (Figure 4G), further confirming that the en-

hancer activity of HS V is dispensable for the generation of Tfh

cells in vivo. However, IL-4 production was significantly reduced

in vivo, as evidenced by the near absence of Il4 mRNA in the

FACS-sorted CXCR5+PD-1hi Tfh cells from DV mice (Figure 4H).

We conclude that DV Tfh cells are phenotypically normal but

have an isolated defect in Il4 transcription.

Early IL-4 Production by Lymph Node T Cells
Is Dependent on HS V
Because IgE is produced at early times after sensitization with

OVA, we measured OVA-specific IgE, IgG1, and IgG2b at days

9 and 14 after primary immunization with OVA (Figure 5A).

Comparison of KN2-WT and KN2-KN2 mice (which produce

and lack IL-4, respectively) emphasized the requirement for

IL-4 in IgE and IgG1 responses (Figure 5A, left and middle

panels). KN2-Vmice resembled KN2-KN2mice in that they failed

to generate an IgE response and produced markedly reduced

quantities of OVA-specific IgG1 (Figure 5A, left and middle

panels). The IL-4-independent IgG2b response was comparable

in the three groups of mice (Figure 5A, right panel).

We also assessed cytokine production by huCD2+CD4+ Tfh

cells after ex vivo stimulation on days 4 and 7 after intraperitoneal

OVA-alum immunization. As before (Figure 4B), huCD2+ IL-4-

competent parathymic lymph node T cells from KN2-V mice

failed to produce IL-4 (Figure 5B). We obtained similar results

when T cells in the lung-draining mediastinal nodes were

analyzed after inhaled OVA challenge in the asthma model (Fig-

ure 5C). Together, these findings support a key cis-regulatory
Immunity 36, 175–187, February 24, 2012 ª2012 Elsevier Inc. 179
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Figure 4. HS V-Deficient Tfh Cells Fail to Produce IL-4

(A) Cohorts of KN2-KN2, KN2-WT, and KN2-V BALB/c mice were subjected to the ovalbumin (OVA) model of allergic airway disease. Contour plots for CD4 and

huCD2 show all live and singlet-gated lymph node cells. Numbers indicate percentage of cells that are huCD2+CD4+. Contour plots for CXCR5 and PD-1 show all

CD4+CD8�B220� cells (third row) or only huCD2+CD4+CD8�B220� cells (fourth row). Numbers indicate percentage of CXCR5+PD-1+ cells; inset histograms

show huCD2 staining of these cells. Bars represent the average and filled circles represent data from individual mice; error bars are standard error mean (SEM).

(B) Contour plots show intracellular staining of cytokines in restimulated huCD2+CD4+ (top) and CXCR5+PD-1+ (bottom) lymph node cells described in (A).

(C) Cohorts of wild-type C57BL/6 (B6), wild-type BALB/c (WT), and HS V-deficient BALB/c mice (DV) were infected with L. major. Ten weeks later, restimulated

T cells in the draining popliteal lymph nodes were analyzed by flow cytometry. Contour plots show intracellular staining of cytokines in size-gated CD4+

CD8�B220� cells. Data are summarized in graphs shown below.

(D) Hprt1-normalized Ifng, Il4, and Il13 mRNA abundance in unstimulated popliteal lymph node cells from L. major-infected mice.

(E and F) Cohorts of WT and HS V-deficient C57BL/6 mice (n = 4–10 per experiment) were infected with LCMV. Two weeks later, CD4+ T cells and B cells isolated

from lymph nodes and spleen were analyzed by flow cytometry.
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Figure 5. HS V-Deficient Lymph Node T Cells Fail to Produce IL-4 Early in the Primary Immune Response

Cohorts of KN2-KN2, KN2-WT, and KN2-V BALB/c mice were sensitized to ovalbumin by intraperitoneal immunization.

(A) ELISA measurement of ovalbumin-specific IgE, IgG1, and IgG2b levels in serum. Bars represent the average; error bars are SEM; circles represent data from

each mouse.

(B) On days 4 and 7, the draining parathymic lymph node cells were stimulated in vitro with PMA, ionomycin, and brefeldin A for 4 hr and analyzed by flow

cytometry. Contour plots show intracellular staining of cytokines in size-gated huCD2+CD4+CD8�B220� cells. Data are summarized in the bar graphs to the right.

(C) Three weeks after sensitization, mice were intranasally challenged with ovalbumin for 3 consecutive days, and T cells in the lung-draining mediastinal lymph

nodes were analyzed as described in (B).
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function for HS V in T cells producing IL-4 very early in the

immune response and suggest that Tfh cells and their early

precursors share similar requirements for Il4 regulation.

Type 2 Tissue Responses in the Lungs of
HS V-Deficient Mice
Given that tissue inflammation and AHR were less severely

affected than humoral immune responses in DV mice, we

hypothesized that the cell types and cytokines that drive

type 2 tissue responses are less dependent than Tfh cells on

HS V. To test this hypothesis, we again employed Il4 allelic

reporter mice, in this case focusing on CD4+ T cells, basophils,

and eosinophils as the three major IL-4-producing cell types in

allergic lung inflammation (Mohrs et al., 2005; Voehringer et al.,

2006).

In contrast to Tfh cells, lung-infiltrating Th2 cells produced

IL-13 when restimulated ex vivo (Figure 6A, top left panel).

Comparing KN2-KN2, KN2-WT, and KN2-V mice, a similar

proportion of CD4+ T cells expressed huCD2 from the Il4 KN2
(E) Contour plots for CXCR5 and PD-1 show size-gated CD4+CD44hiCD62L�CD
(F) Contour plots for IgD and FAS show size-gated CD19+CD4�CD8� cells. N

independent experiments are shown in graphs at right.

(G and H) Hprt1-normalized Bcl6, Blimp1, ICOS, SLAM-associated protein (SAP,

of CXCR5+PD-1hi Tfh cells, freshly isolated from lymph node cells and spleen of

n.s., no statistically significant difference (p > 0.05), *p < 0.05, **p < 0.01, ***p <
reporter allele, which has an intact HS V (Figure 6A, right top

panel). Thus IL-4, which is absent in KN2-KN2 mice, is dispens-

able for the generation of CD4+ Th2 cells in this experimental

system. However, the fraction of T cells able to express IL-4

protein from the other allele upon restimulation was reduced in

KN2-V mice compared to KN2-WT mice (Figure 6A, top panels).

This effect could not be explained by feedback from reduced

IL-4 production in vivo, because it was apparent even when

we restricted our analysis to huCD2+ T cells or to cells that

produced IL-13 upon restimulation (Figure 6B, top panel).

Thus, HS V enhances Il4 expression in cis in Th2 cells in vivo,

consistent with our in vitro findings.

In contrast to Th2 cells, lung-infiltrating basophils produced

IL-4 in an entirely HS V-independent fashion upon in vitro stimu-

lationwith PMAand ionomycin (Figure 6A, bottompanels). More-

over, in vitro, all huCD2+ basophils produced IL-4 and IL-13,

confirming that HS V is not essential for IL-4 production by baso-

phils (Figure 6B, bottom panel). We were unable to measure IL-4

protein production by eosinophils, but FACS-sorted eosinophils
8�B220� cells. Numbers indicate percentage of CXCR5+PD-1+ cells.

umbers indicate percentage of IgDloFAS+ cells. Summary of data from four

encoded by Sh2d1a), Il21, Il4, and Il13mRNA in FACS-sorted pure populations

mice described in (E).

0.001 with Student’s t test.
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Figure 6. HS V Function in IL-4-Producing Cells

Infiltrating the Lungs in a Murine Model of Asthma

Cohorts of KN2-KN2, KN2-WT, and KN2-V BALB/c mice

were sensitized and challenged with ovalbumin to induce

allergic airway inflammation. Lung-infiltrating cells were

analyzed by flow cytometry after in vitro stimulation with

PMA and ionomycin. See also Table S1.

(A) Contour plots show intracellular staining of cytokines in

CD4+CD3+CD8�B220� cells (T cells) and CD45+IgE+

CD49b+CD3�MHCII� cells (basophils). See also Fig-

ure S4. Graphs at right show compiled data for IL-4, IL-13,

and huCD2 expression. Bars represent the average; error

bars are SEM; filled circles represent data from each

mouse.

(B) Histograms of IL-4 and IL-13 staining in huCD2+ T cells

and basophils, and IL-4 staining in IL-13+ cells as

indicated.

(C)Hprt1-normalized cytokinemRNA abundance in FACS-

sorted CD45+CD3�CD11b+MHCII�CD11c�Siglec F+ cells

(eosinophils). See also Figure S4.

n.s., no statistically significant difference (p > 0.05),

*p < 0.05, **p < 0.01, ***p < 0.001 with Student’s t test.
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from the lungs of OVA-challengedWT andDVmice expressed Il4

mRNA at comparable levels (Figure 6C).

Notably, the proportion of basophils expressing huCD2 in vivo

was reduced in KN2-KN2 mice compared with KN2-WT mice

(Figure 6A, bottom right panel), indicating that IL-4 is important

for basophil expression of Il4 in vivo. A similar reduction in

huCD2+ basophils was also observed in KN2-V mice (Figure 6A,

bottom right panel), suggesting that the source of IL-4 that affects

basophil numbers in vivo is strongly HS V dependent. We spec-

ulate that because Tfh cells in KN2-KN2 and KN2-V mice cannot

produce IL-4 (Figure 4B), the consequent drastic decrease in IgE

(Figures 3 and 5) deprives basophils of their ability to use antigen-

specific IgE to respond to OVA challenge in vivo.

In summary, unlike the Tfh cells that direct type 2 humoral

responses and are strongly dependent on HS V, the cells

and cytokines involved in type 2 tissue responses are less

dependent, or only indirectly dependent, on HS V for IL-4

production.

HS V Affects Chromatin Accessibility and NFAT Binding
to the Il4 Promoter
To investigate themechanism by which HS V deficiency affected

Il4 transcription in T cells, we first tested whether loss of HS V

affected early transcription of the Il4 gene by naive T cells.

Remarkably, naive T cells lacking the HS V (CNS2) region were

completely unable to produce Il4 transcripts after ex vivo stimu-

lation (Figure 7A). These findings are reminiscent of our observa-

tions in Tfh cells and their early precursors (Figures 4B, 4F, 5B,

and 5C) and suggest that all of these cells share similar cis-regu-

latory requirements for Il4 transcription. In a similar time course

assay, in-vitro-differentiated Th2 cells showed only a 50%

reduction in Il4 transcription (Figure 7B).
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Il4 transcription by naive T cells is strongly

dependent on the NFAT-calcineurin pathway,

as judged by sensitivity to the calcineurin inhib-

itor cyclosporin A (CsA) (Ansel et al., 2004) and

by the binding of NFAT proteins to the Il4
promoter (Ansel et al., 2004). Chromatin immunoprecipitation

(ChIP) assays performed after brief (45 min) stimulation showed

that binding of the transcription factor NFAT1, the predominant

NFAT family member in naive T cells (Macián et al., 2002), was

severely reduced in DV naive T cells as well as polarized Th2

cell populations (Figures 7B, S3A, and S3B). Together, these

results suggest an important role for a distal cis-regulatory

region, HS V (CNS2), in facilitating NFAT1 binding to the Il4

promoter upon T cell activation.

The diminished binding of NFAT1 to the Il4 promoter in DV

T cells prompted us to examine the effect of HS V deficiency

on chromatin structure in the Il4 locus in naive T cells and differ-

entiated Th2 cells (Figures 7C and 7D). Because Il4 transcription

was selectively affected in T cells, with minimal or no effect on

Il13 and Il5 expression, respectively, we focused on known cis-

regulatory elements near the Il4 gene: the Il4 promoter; the

30 Il4 silencer, HS IV (Ansel et al., 2004); HS VA (Agarwal et al.,

2000; Agarwal andRao, 1998); andHSV (CNS2) itself.We limited

our analysis to two histonemodifications whose association with

gene expression has been thoroughly documented: histone-3

lysine-4 dimethylation (H3K4me2), a ‘‘permissive’’ modification

found at enhancers and promoters whose presence correlates

with increased chromatin accessibility to trans-factors (Birney

et al., 2007); and H3K27me3, a ‘‘repressive’’ mark (Bernstein

et al., 2006; Wei et al., 2009).

Of the four regions tested, HS V (CNS2) displayed by far the

highest enrichment for H3K4me2 in naive T cells and Tfh cells

(Figure 7C, black bars; Baguet and Bix, 2004). H3K4me2 was

retained at HS V during Th2 cell differentiation and increased

at the Il4 promoter and HS VA (Figure 7C, black bars). HS V defi-

ciency did not influence H3K4me2 levels in naive T cells and Tfh

cells (Figure 7C, compare black and gray bars). In differentiated
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Figure 7. Chromatin Accessibility and NFAT Binding in the Th2 Cell Locus of HS V-Deficient T Cells

(A) Hprt1-normalized Il4mRNA abundance in wild-type (WT) and HS V-deficient (DV) naive T cells and Th2 cells (derived in vitro) stimulated with CD3 and CD28

antibodies and PMA and ionomycin, respectively, for the indicated times. Dots display average and error bars indicate standard error of mean (SEM).

(B) ChIP-PCR analysis: real-time PCR quantification of Il4 promoter (IL-4p), HS VA, and Ifng promoter (IFNgp) sequences after ChIP with antibody to NFAT in WT

andDV Th2 cells and naive T cells, either left unstimulated or stimulated for 45min with PMA and ionomycin. Data are expressed as the normalized percentage of

input DNA recovered and represent mean and SEM of at least three independent ChIP experiments. Data were normalized to the mean ChIP recovery of all

experiments. Raw data from independent experiments are shown in Figures S3A and S3B.

(C and D) Real-time PCR quantification of Il4 promoter (IL-4p), HS IV, HS VA, and HS V sequences after anti-H3K4me2 (C) and anti-H3K27me3 (D) ChIP of

chromatin extracts obtained from resting CD4+ naive T cells, Th2 cells derived in vitro, and Tfh cells derived in vivo from wild-type (WT) and HS V-deficient (DV)

mice. Data are expressed as the percentage of input DNA recovered and represent mean and SEM of at least three independent ChIP experiments. Data from

anti-H3K27me3 ChIP of Tfh cells were normalized and raw data from independent experiments are shown in Figure S3C. Real-time PCR quantification of control

sequences is shown in Figure S3E. See also Figure S3D and Table S2.
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DV Th2 cells, H3K4me2 levels remained lower than WT at HS VA

(Figure 7C).

In naive T cells, the Il4 promoter and cis-regulatory regions

were also substantially enriched for H3K27me3 (Figure 7D, top

panel). Notably, however, Th2 cell differentiation led to a striking

loss of the ‘‘repressive’’ H3K27me3modification at all four tested

regions of the Il4 gene (Koyanagi et al., 2005) (Figure 7D, com-

pare black bars in top and middle panels), and Th2 cells from

DV mice incompletely erased the repressive H3K27me3 mark,

especially at HS VA (Figure 7D, middle panel, compare black

and gray bars). Defective erasure of repressive H3K27me3

marks was also observed in DV Tfh cells, especially at the Il4
promoter (Figure 7D, bottom panel and Figure S3C). Together,

these data indicate that HS V (CNS2) is an important player

in the chromatin-remodeling events that normally establish an

accessible conformation across the Il4 locus in Th2 cells and

Tfh cells.

DISCUSSION

We have performed a detailed analysis of mice bearing a precise

deletion of HS V (CNS2). Our results show unambiguously

that this conserved cis-regulatory element has an important

and nonredundant function in enhancing Il4 transcription. In
Immunity 36, 175–187, February 24, 2012 ª2012 Elsevier Inc. 183
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two in vivo models, HS V-deficient mice exhibited cell type-

specific defects in Il4 expression that manifested in surprisingly

dichotomous effects on type 2 immune responses in vivo—a

profound reduction of type 2 humoral immunity with total abro-

gation of IgE production, in the face of only mildly attenuated

or unaffected type 2 tissue inflammatory responses.

We used allelic IL-4 reporter mice to uncover differential

requirements for HS V among the cell types that drive these

responses. We show that Tfh cells, lymph node T cells that

make IL-4 early in the primary immune response, and even naive

T cells stimulated ex vivo are strikingly dependent on HS V for Il4

expression. These findings suggest that similar signals and tran-

scription factors are responsible for Il4 expression in all of these

lymph node-resident T cells and probably explain the total abro-

gation of IgE production and sharply reduced IgG1 responses

observed in HS V-deficient mice.

In contrast, Th2 cells derived in vivo or in vitro were only

partially dependent on HS V for Il4 expression. IL-4 signaling

induces nuclear translocation of STAT6, which is a direct trans-

activator of both Il4 and Gata3. GATA3, in turn, binds to its own

promoter and several cis-regulatory sites in the Th2 cell-type

cytokine locus, forming a feedforward positive-feedback loop

that drives Th2 cell differentiation and the production of IL-13

and IL-5 (Zhu et al., 2010). Notably, HS V deficiency had minimal

or no effect on IL-13 or IL-5 production by Th2 cells in vitro or

in vivo. Thus, Th2 cells access an HS V-independent IL-4-driven

positive-feedback loop to drive powerful inflammatory re-

sponses in tissues. HS V continues to function as a local en-

hancer of Il4 in these cells but has only modest effects on their

ability to marshal inflammatory responses.

Allergic inflammation in peripheral tissues also involves innate

immune cells. A previous study detected HS V reporter trans-

genic activity in mast cells and basophils but found reduced

IL-4 expression only in mast cells from mice lacking HS V and

part of HS VA (Yagi et al., 2007). Our findings indicate that HS

V affects basophil production of IL-4 in vivo but probably through

an indirect mechanism. Given the importance of IgE receptor

signaling in basophil activation, it is quite likely that their

reduced IL-4 production in HS V-deficient mice reflects the

lack of allergen-specific IgE. This effect may also contribute

to the mild reduction in lung inflammation and AHR in HS

V-deficient mice.

Notch intracellular domain and its binding partner RBP-Jk

bind to HS V and influence transcription of Il4 in transgenic

reporter assays (Amsen et al., 2004; Fang et al., 2007; Tanaka

et al., 2006). Disruption of the Notch signaling pathway in mice

leads to impaired humoral responses, as evidenced by sharply

reduced IgE and IgG1 production and a significant reduction in

IL-4 production by T cells in the draining lymph nodes and

spleen, which presumably were Tfh cells (Amsen et al., 2007;

Tanaka et al., 2006; Tu et al., 2005). The similarity of these find-

ings with our observations in DV mice suggest that Notch may

mediate its effects on Il4 expression by Tfh cells more directly

through HS V and implicates the Notch pathway as a critical

regulator of Tfh cell function and humoral immunity. Further

research is needed to determine the relative contribution of

Notch and other trans-acting factors in HS V-dependent Il4

expression in Tfh cells and how these factors mediate their

effects on Il4 locus chromatin structure and gene transcription.
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To address the molecular mechanism by which HS V selec-

tively affects Il4 gene transcription, we examined the chromatin

structure and remodeling events in the Il4 locus during dif-

ferentiation of naive cells into Th1, Th2 (in vitro), and Tfh (in vivo)

cells. In naive T cells and Tfh cells, HS V displayed by far the high-

est enrichment for H3K4me2, suggesting increased chromatin

accessibility at this site compared with other cis-regulatory

elements in the locus (Baguet and Bix, 2004). HS V is also the

only site of DNA demethylation between the Il4 promoter and

the distal Kif3a gene in naive T cells, suggesting a high degree

of accessibility to trans-acting factors during early stages of

T cell differentiation when other cis-elements in the locus may

be relatively inaccessible (Lee et al., 2002). This feature, and

the ability of the HS V (CNS2) region to enhance Il4 transcription

in a GATA3- and STAT6-independent manner, likely make HS V

particularly critical for Il4 transcription in naive T cells, Tfh cells,

as well as in T cells that produce IL-4 early in the in vivo immune

response.

H3K27me3, a repressive chromatin modification extensively

present in the Th2 cell-type cytokine locus of naive T cells, is

removed during Th2 cell differentiation, but maintained during

Th1 cell differentiation (Figures 7D and S3A; Koyanagi et al.,

2005). In DV Th2 cells, erasure of the H3K27me3 mark was

incomplete across the locus, especially at HS VA, where the

mark was not erased at all. The failure to erase these marks

was particularly pronounced in DV Tfh cells, correlating with

the stringent requirement for HS V for Il4 transcription in these

cells. Further investigation is needed to determine whether HS

V recruits histone demethylases to the locus and to probe the

connection between removal of H3K27me3 marks and Il4

promoter and enhancer accessibility for NFAT and other tran-

scription factors that mediate Il4 transcription.

In summary, our experiments have revealed a critical role for

the distal Il4 enhancer HS V in Tfh cell function and consequently

type 2 humoral immunity. Mechanistically, HS V (CNS2) has an

important role in shaping chromatin structure in differentiating

T cells, as well as facilitating access of trans-acting factors

such as NFAT to the Il4 locus. Our data imply that Tfh cells and

Th2 cells utilize distinct but overlapping molecular mechanisms

to support Il4 locus activity and may provide insight for more

targeted strategies to block pathology in allergic diseases.

EXPERIMENTAL PROCEDURES

Mice

Micewere used in accordancewith protocols approved by the animal care and

use committees of the CBR Institute for Biomedical Research, Harvard

Medical School, UCSF, and LIAI. DV mice were generated with standard

gene-targeting techniques (details in Supplemental Information).

TCell Differentiation, FACS Analysis, and Quantification of Cytokine

Messenger RNA Expression

Purification of CD4+ T cells from spleen and lymph nodes, in vitro induction of

Th1 and Th2 cell differentiation, and restimulation for flow cytometric analysis

of intracellular cytokine staining and messenger RNA expression levels were

performed as described previously (Ansel et al., 2004) (details in Supplemental

Information). In brief, purified CD4+ T cells were stimulated with hamster anti-

mouse CD3 (clone 2C11, 0.25 mg/ml) and hamster anti-mouse CD28 (clone

37.51, 1 mg/ml) on plates coated with goat anti-hamster IgG (MP Biomedicals)

for 48–60 hr under Th1 (IL-12 and anti-IL-4) and Th2 (IL-4, anti-IFN-g, and

anti-IL-12) cell or nonpolarizing conditions. After 2–3 days, cells were removed
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from the plates and expanded in media with 20 U/ml of recombinant human

IL-2 (National Cancer Institute) and analyzed on day 6. For short-term stimula-

tion, 5 3 106 naive T cells were resuspended in media containing 0.5 mg/ml

anti-CD3 and 1 mg/ml anti-CD28 and mixed with 2.5 3 107 latex beads

(5 mm diameter; Interfacial Dynamics Corporation) coated with goat anti-

hamster IgG. Unstimulated controls were cultured with beads but without

anti-CD3 and anti-CD28 and were similar to cells held on ice.

Experimental Allergic Lung Disease Model and Antibody Production

Mice were immunized on days 1, 7, and 14 by intraperitoneal (i.p.) injection of

50 mg OVA (Grade V; Sigma Aldrich)/1 mg alum (Thermo Scientific) emulsion,

followed by intranasal challenge with saline (control) or 100 mgOVA on days 21,

22, and 23 as described (Kuperman et al., 2002). On day 24, measurement of

airway resistance and BAL fluid total and differential cell counts were per-

formed as described (Kuperman et al., 2002). Primary immune response

was induced by a single i.p. injection of 50 mg OVA/1 mg alum emulsion,

and serum samples were obtained at different time points for measuring

OVA-specific IgE, IgG1, and IgG2b antibodies by ELISA. Isolation and flow

cytometric analysis of immune cells present in lungs and lymph nodes are

described in the Supplemental Information.

Leishmania Infection Model

Amastigotes were serially passaged in the footpads of BALB/c mice to main-

tain Leishmania major LV39. Fourmice per groupwere infected in the right hind

footpad with 1 3 106 stationary-phase promastigotes. Lesion size was mea-

suredwith a dial-gaugemicrometer (Mitutoyo) biweekly beginning 1week after

infection. To evaluate footpad swelling, we determined the difference in

measurement between the right hind footpad and the uninfected left hind

footpad. Parasite burdens were counted by limiting dilution assays in which

parasites were extracted from ground footpad tissue collected from individual

mice. Serum was obtained 9 weeks after infection and total IgE and Leish-

mania freeze/thaw antigen-specific IgG1 and IgG2b levels were measured

by ELISA. Cytokine mRNA from unstimulated popliteal lymph node cells

(1 3 106) was measured by real-time quantitative PCR.

LCMV Infection Model

LCMV stocks were prepared and quantified as described (McCausland et al.,

2007). All infections were done by i.p. injection of 1–2 3 105 PFU LCMV Arm-

strong per mouse. Two weeks after infection, CD4+ T cells were isolated from

lymph nodes and spleen with a CD4-positive isolation kit (Dynal). Staining for

flow cytometry was performed with fluorophore-conjugated antibodies

against B220, CD8, PD-1, CD-44, CD62L, and CD4 (Ebioscience). CXCR5

staining was performed as described in the earlier section. CXCR5+PD-1hi

CD4+CD44hiCD62L�CD8�B220� cells were sorted with a FACS Aria (Becton

Dickinson). Three-quarters of the sorted Tfh cells were fixed (as described

below) for chromatin analysis and one-quarter stored in Trizol for mRNA

quantification by real-time PCR. For flow cytometric analysis of germinal

center B cells, lymph node and spleen cells were stained with antibodies

against CD19, CD4, CD8, PNA, FAS, GL7, and IgD and analyzed on a FACS

Canto (Becton Dickinson).

Chromatin Immunoprecipitation

The detailed protocol is described in the Supplemental Information.

Statistical Analysis

A two-tailed Student’s t test was used for statistical analysis. Differences with

a p value of less than 0.05 were considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and two tables and can be found with this article online at

doi:10.1016/j.immuni.2011.12.014.
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