An in-depth historical and current review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, composition, electrochemistry, and formation mechanism. During initial LIB operation, the SEI layer forms on the graphite surfaces, the most common anode material. The SEI is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, rate capability, and safety. While the presence of the anode SEI is vital, it is difficult to control its formation and growth, as they depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and temperature. Thus, SEI formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the LIB development. This article covers the progression of knowledge regarding the SEI, from its discovery in 1979 to the current state of understanding, and covers differences in the chemical and structural makeup when cell materials and components are varied. It also discusses the relationship of the SEI layer to the LIB formation step, involving both electrolyte wetting and subsequent slow charge–discharge cycles to grow the SEI.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Much effort has been put into lithium-ion battery (LIB) development for electric vehicles (EVs), plug-in hybrid electrical vehicles (PHEVs), and other electrical system applications [1–11]. Some of the key studies have involved reducing cost, increasing capacity retention, and improving efficiency [2,4–7,12–16]. During the operation of LIBs, a solid electrolyte interphase (SEI) layer (also called “solid electrolyte interface” in some literature) forms on the graphite surface, the most commonly used anode material, due to side reactions with the electrolyte solvent and salt. It is accepted that the SEI layer is essential to the performance of LIBs, and it has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability and safety. While the presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, graphite morphology, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of investigation in further development of LIB technology. This article reviews the state of knowledge on the formation process of the graphite/carbon SEI layer, its chemical composition, morphology, and associated reactions with the liquid electrolyte phase, and will address several important questions:

1.) Why is it important to understand the SEI layer composition and morphology, and how does it impact LIB performance (Sections 2–3)?

2.) What is the solid/liquid surface chemistry behavior at the nanoscale of the SEI layer (Sections 3–4)?

3.) What methods have been used to form the SEI layer during initial charging and discharging (Section 5)?
4.) What methods have been used to characterize the SEI layer properties such as composition, thickness, and morphology (Section 6)?

5.) What are the effects of different types of graphites and carbons on SEI layer properties (Section 7)?

6.) What are the electrolyte, binder, and conductive additive effects on SEI layer properties (Sections 8)?

7.) How is the SEI layer formation tied to the electrolyte wetting of the electrode (during cell manufacturing) and formation protocol, capacity fade, and cell lifetime (Section 9)?

8.) Why is it important to reduce the SEI formation protocol time during cell manufacturing (Sections 9–10)?

9.) How is the most recent understanding of the anode SEI layer impacting cell design and SEI durability (Section 11)?

This paper is a comprehensive review of the science of the LIB anode SEI layer and its relationship to electrolyte wetting, formation cycling, and cell lifetime. It spans from the basic science of the SEI formation interfacial physics and reaction mechanisms to the applied science of reducing formation cycle time and increasing LIB lifetime. The time period covered is from the discovery of lithium-ion intercalation in graphite (1979) up to the present day, and it offers insights into the SEI formation mechanism, chemical and morphological properties of the SEI, and relationship to formation cycling and cell lifetime. This paper will appeal to the entire LIB research community and the broader energy storage community as a whole. Given that it deals with an intricate combination of surface chemistry, electrochemistry, and reaction mechanisms, it will also appeal to chemists and chemical scientists in other fields.

2. Background

The anode SEI layer is formed from the so-called “lithium inventory” of the cathode and electrolyte salt, which is the total amount of lithium available for building the SEI and initial charging of the cell, and there is a delicate balance between the ideal surface area the anode should have and the energy and power density of an LIB. The entirety of the anode surface must have the SEI layer present to prevent further undesired decomposition of the electrolyte, which consumes Li ions. The amount of Li ion loss from the cathode directly affects the first-cycle irreversible capacity (energy density), while losing Li ions from the electrolyte lowers liquid-phase mass transport and increases electrolyte resistance thereby decreasing power density [1,17]. During the first full cycle, 10% of the original capacity is generally consumed in irreversible SEI formation [18]. Therefore, the total surface of the anode should be minimized from an energy density or cell cost standpoint. However, the minimization comes with a performance tradeoff – low anode surface area means lower power density (capacity at high C rates) with solid-state diffusion limitations. In contrast, high anode surface area is beneficial to power density, but much greater lithium inventory is consumed when passivating the surface to form the SEI layer, thereby decreasing energy density. Section 7 includes an overview and understanding of carbon/graphite properties and related SEI formation.

There is also a secondary connection of the SEI layer to LIB safety, and it comes into play once the anode is fully passivated. To avoid lithium plating or dendrite formation at the anode during charging over the life of the cell, capacity is often kept about 10% more than that at cathode [18] (N/P ratio of 1.1 where “N” is the negative electrode, or anode during cell discharging, and “P” is the positive electrode, or cathode during cell discharging) to prevent internal electrical shorts. Therefore, this extra anode material must also undergo SEI layer passivation adding to the cell cost and diminishing the total cell energy. Optimizing the N/P ratio is important for minimizing initial lithium inventory loss and decreasing initial irreversible capacity. For long-term capacity retention and Coulombic efficiency, optimizing only the capacity ratio would be insufficient because SEI continuously grows and consumes electrolytes and lithium ions when it is not well formed [19,20].

Better understanding of the state-of-the-art graphite SEI layer composition and morphology is an important step towards growing improved SEI layers that prevent continuous decomposition of electrolyte on the graphite surfaces. The anode SEI layer is composed of precipitates from reduced decomposition of solvents, salts, lithium ions, and impurities in the electrolyte due to their instability at the anode potential operating window [1,21]. It forms mostly during the first charge, but the formation continues slowly and gradually after first cycle until the SEI layer is fully developed, adding to the complexity of modern LIB formation protocols. An optimized SEI layer is expected to have negligible electrical conductivity and high electrolyte diffusion resistance while having high lithium ion selectivity and permeability. Once it is properly formed, further decomposition reactions with salts and solvents are prevented since electrons cannot transfer to or through the layer (the increased electronic resistance increases the potential on the graphite surface and shifts the surface potential toward the LUMO of the graphite). However, in reality, the SEI layer gradually thickens during repeated charge–discharge cycles due to electron exposure to electrolyte or electrolyte diffusion to the graphite surface, although the layer thickness growth after a few charge–discharge cycles is not nearly as great as the amount during the first cycle. The gradual thickening of the layer further consumes Li ions, solvents, and salts and increases cell resistance. This continuous SEI layer growth during the formation cycling process lowers cell capacity and Coulombic efficiency.

It is worth mentioning briefly that a “SEI-like” layer forms on cathodes, as well, by oxidation reactions of electrolytes at high potentials [22,23], but its impact on cell performance is generally less. Recent studies involving lithium-manganese-rich (LMR) NMC materials (Li1−xNixMn1−yCo1−zO2) for EV applications, show high capacities when operated at high voltage [3,14,24–28]. This cathode material has an operating window of 2–4.8 V vs Li/Li+ and capacities of 200–250 mAh/g [24], but only 150 mAh/g within the typical operating voltage window (3–4.2 V) [15]. As the voltage approaches 4.7 V vs Li/Li+ (or even less), decomposition takes place on cathode surface during charge or storage by oxidation of electrolyte solvent organic carbonates (ethylene carbonate, dimethyl carbonate ethyl methyl carbonate, propylene carbonate, etc.) [21,22,29,30]. Since these carbonates have oxidation (highest occupied molecular orbital (HOMO)) and reduction potentials (lowest unoccupied molecular orbital (LUMO)) around 4.7 V and 1 V vs Li/Li+, respectively [21], they are decomposed by electro-reduction at the anode below 1 V and by electro-oxidation at the cathode above 4.7 V during charging or storage. The oxidation potentials of these carbonates are further reduced at elevated temperature (LiBs in vehicles or portable devices experience locally increased temperatures) to 4 V at 40 °C and 3.8 V at 60 °C [22,30–35]. Ethers and esters are not typically stable above 4 V [36,37]. Other species in the electrolyte, such as lithium compounds that are partially reduced at the anode and diffuse to the cathode, have even lower oxidation potentials. Wursig et al. reported SEI formation at 4.3 V vs Li/Li+ and even at 25 °C on various cathode materials [38]. Hence, at high potentials, cathodes suffer from increases in resistance from SEI-like passivation layers as well as from loss or migration of active materials such as Mn and Co. When initial charge–discharge cycles and storage time are extended, the resistance at the cathode increases even more than that of the anode [39].
Despite the importance of understanding the formation, composition, morphology, and long-term structural and chemical evolution of the anode SEI layer, these topics are not yet fully understood because of analysis and measurement difficulties. In fact, the SEI layer formation mechanism is much less understood than the resultant chemical and physical properties themselves. The SEI is quite thin, a few hundreds of angstroms, and sensitive to moisture and oxygen in the air that may convert SEI components into different forms before or during analysis [40–42]. Because of the environmental sensitivity, SEI analysis requires inert and well-controlled conditions.

Functional properties for an ideal SEI layer are high electrical resistance and high lithium selectivity and permeability. Physical ones are a thickness close to a few Å, high strength, tolerance to expansion and contraction stresses (the SEI layer must accommodate expanding and contracting sub-surfaces during charging and discharging, respectively), insolubility in the electrolyte, and stability at a wide range of operating temperatures and potentials. Actual SEI layers seem to not yet have enough of these properties because it has been found that they keep growing over repeated charge–discharge cycles. This growth is closely related to lithium loss from both the electrolyte salt and cathode lithium inventory, as well as lithium diffusion resistance at the liquid interfacial zone adjacent to the SEI layer and within the SEI itself. The lithium consumption and diffusion resistance cause an increase not only in the overall cell resistance but also in anode potential. The increase in the anode potential is attributed to a lower number of Li ions in the electrode after consumption at the SEI. This increased anode potential also induces a similar increase in cathode potential to maintain a charge cutoff potential. When the cathode potential increases and reaches a certain point, the cathode crystal structure rearranges and distorts due to oxygen loss and transition metal shifting [3,14,24,25]. The electrolyte also becomes less stable at higher cathode potentials, which leads to solvent oxidation on the cathode surface (for example LiPF$_6$ in ethylene carbonate (EC): dimethyl carbonate (DMC)) is oxidized around 4.5 V vs Li/Li$^+$ during charging [43–47]. This gradual SEI growth on the anode negatively affects cathode potential and stability. Therefore, forming a robust and stable SEI layer on the anode carbon/graphite is essential for long LIB lifetime and high capacity retention.

SEI formation generally takes days because scan rates are slow, $-\Delta C/5$ down to $-\Delta C/20$ [13,15], to form a denser SEI structure rather than a highly porous one. After the first charge–discharge cycle, formation cycles generally repeat at different scan rates and/or different temperatures to build quality SEI layers. The longer the times and the greater the number of charge–discharge cycles, the more expensive the process becomes, which also either lowers cell production rate or increases capital expense (i.e. more cycling stations required). If the electrical energy is not “recycled” (i.e. using the energy of one cell after charging it from the primary electricity source to charge another adjacent cell), the cost further increases. Reducing the time for SEI formation would provide higher production rates without needing extra space, equipment, and energy, eventually reducing battery pack and plant costs.

3. **Energetics of anode SEI formation**

In LIBs an aprotic salt solution with low-molecular-weight organic solvents are the most widely used electrolytes. These electrolytes undergo decomposition at the graphite anode, and the SEI layer is formed from these decomposition products, which then dictates initial performance of the cell and long-term capacity fade characteristics. Therefore, the question is can the electrolyte decomposition be minimized or controlled to provide predictable performance of the cell.

Fig. 1 shows the relative electron energies of the anode, electrolyte, and cathode of a thermodynamically stable redox pair in a LIB. In the figure, μ_A and μ_C are the electrochemical potentials of the anode and cathode respectively. The stability window of the electrolyte is the difference between the energy of the LUMO and HOMO. This window is shown as E_g. If μ_A is above the LUMO energy, then it will reduce the electrolyte, and, likewise, if μ_C is below the HOMO energy, it will oxidize the electrolyte. The energy separation between the anode and cathode needs to be as high as possible to increase the energy density of the redox pair. The organic electrolytes used in LIBs have oxidation potentials around 4.7 V vs Li$^+$/Li and reduction potentials close to 1.0 V vs Li$^+$/Li. The intercalation potential of Li into graphite is between 0 V and 0.25 V vs. Li$^+$/Li, which is below the reduction potential of the electrolyte. Thus, the potential of the graphite electrodes falls below the stability window of the electrolyte during charging, and it decomposes at the graphite surface forming the SEI.

4. **SEI features, morphology, and chemical composition**

If all of the decomposition reaction potentials for the SEI formation are more positive than the anode Li ion intercalation potential, the SEI would form more completely under fast kinetics before the onset of the intercalation reaction. Once it is well formed, the SEI should have high Li-ion conductivity and negligible electronic conductivity. The electronically insulating property of the SEI prevents further reduction of the electrolyte on the graphite surface, while the ion conductive nature allows permeation of lithium ions to the graphite surface and provides pathways for the desired ion intercalation. To avoid cracking of SEI layers due to stress from a volume change of graphite during intercalation and de-intercalation and to avoid further passivation reactions, the molecular force between the SEI layer and graphite surface should be strong. Physically, the SEI layer should be strong enough to be flexible to accommodate the volume change (expansion during charging and contraction during discharging) of the anode during the cycling process. Ideally, the SEI layer should be uniformly valid.
distributed over the graphite surfaces. The chemical composition of the SEI should contain stable and insoluble compact inorganic compounds such as Li$_2$CO$_3$ rather than metastable organic compounds such as ROLi and ROCO$_2$Li (where R is an low-molecular-weight alkyl group) [48,49], which is important for confining the loss of lithium inventory to the first few cycles and minimizing irreversible capacity loss. Insolubility of decomposed SEI components to an electrolyte is important for high capacity retention because loosing the components may induce new SEI formation where they dissolved out. According to MD simulations from Tasaki et al., the heat of salt dissolution in ED/DMC is in the order of [CH$_2$OCO$_2$Li]$_2$ (LiEDC, \sim22 kcal/mol) < LiOCO$_2$CH$_3$ (\sim4 kcal/mol) < LiOH < LiOCO$_2$C$_2$H$_5$ < LiOCH$_3$ < LiF < [LiCO$_2$]$_2$ < Li$_2$CO$_3$ (32 kcal/mol) < Li$_2$O (43 kcal/mol), indicating that inorganic Li$_2$O and Li$_2$CO$_3$ are endothermic and hard to dissolve in normal operation temperature while organic [CH$_2$OCO$_2$Li]$_2$ and LiOCO$_2$CH$_3$ are exothermic and the most soluble among the listed SEI components [50]. Inorganic products are hard to dissolve but can also diffuse into an electrolyte when surrounded by soluble organic products. Li$_2$CO$_3$ is generally abundant on a graphite anode than Li$_2$O because of low concentration of lithium on surface of the graphite anode [51]. The concentration of Li$_2$O can be increased on lithium metal anode.

From a historical standpoint, the SEI has been thought of as having a bilayer type structure. The layer near the interface of the electrolyte is assumed to be porous and less dense, composed of a large portion of organic components, and filled with electrolyte. This outer, organic layer may undergo further reduction, so its morphology may change in subsequent cycling. The inner layer adjacent to the graphite is presumed to consist mostly of inorganic compounds that protect the anode surface and prevent reduction.
Thus, it is assumed to have a denser morphology with lower porosity. In recent studies, the SEI structure shows a bilayer structure in general, but in reality is more complicated [51–54]. For example, according to the results of Takenaka’s hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction simulation, inorganic salts such as Li2CO3 are abundant near the anode surface and distributed within the whole SEI film, becoming Li2CO3 junctions for the organic lithium carbonates and stabilizing the SEI film [54]. Other recent computational studies have also shown detailed and complicated structures, even though they were based on many simplifying assumptions. Considering real-world LIB systems involving side reactions, impurities, and uneven current distribution, it is likely that SEI structures are even more complicated than those depicted by fundamental simulations.

Recently Lu et al. studied the morphological evolution of the SEI during the formation process [55,56]. Fig. 2 shows SEM micrographs at two different magnifications of the graphite anode surface from their study at different degrees of polarization during the first charge. The SEI thickness increased as the formation cycle proceeded (i.e. as the potential of the anode moved towards the intercalation potential). According to their model, the SEI at the beginning of the formation process contained mainly loosely held organic polymer compounds. As the potential was lowered, the SEI layer transformed into a more compact structure of inorganic salts. Figs. 2 and 3 captures this morphological evolution [55,57].

The SEI layer formed at the graphite basal plane differs in morphology and chemical composition from that formed at the edge plane. The SEI formed at the basal plane does not need to have ionic conductivity, but it does need to be electronically insulating and impermeable to other electrolyte components. Since lithium ions cannot intercalate into graphene layers across the basal planes, these planes are ionic insulators and do not contribute to reversible capacity. Hence, SEI formation at these locations should be minimized to avoid unnecessary loss of lithium inventory. Due to the different behavior of the SEI layer formed at basal and edge planes, the true SEI formation potentials are not captured by conventional electrochemical measurements.

The chemical composition and morphology of the SEI are affected not only by the electrolyte, but also by the chemical compositions and morphologies of carbon/graphite surfaces. In the case of the 1 M LiPF6 in EC:DMC electrolyte and highly ordered compositions and morphologies of carbon/graphite surfaces. In the affected not only by the electrolyte, but also by the chemical electrochemical measurements.

Verma et al. provides a thorough list of the most agreed upon morphological, structure, and formation. The reasons for the uncertainty and inconsistency among different studies arise from analysis difficulty, different electrolyte compositions, different types of carbon/graphite, various SEI formation processes, and other physical and environmental conditions (i.e. temperature). Table 1 from Verma et al. provides a thorough list of the most agreed upon compounds found in the SEI on graphite anodes [48].

5. Formation mechanism of SEI layer

There are various reduction processes that compete with each other on the carbon/graphite surface during charging. The reactants are solvents, salts, additives, and trace air impurities (such as water). Electrochemical reaction rates differ depending on their intrinsic properties such as reductive potential, reduction activation energy, and exchange current density. They also depend on reaction sites (basal or edge), pre-decomposed precipitate sites, and many other different anode surface conditions [58,93–96].

Temperature, concentration of electrolyte salt, and reduction current rate significantly affect SEI formation as well [97]. When all of these variable conditions are mixed, it is difficult to analyze the SEI formation mechanism. However, it is generally accepted that LiPF6 precipitates in the form of LiF or Li2PF6 after reduction. Carbonates from the electrolyte solvent precipitate with lithium ions in form of Li2CO3, lithium alkyl carbonate (ROCO2Li) or other organic compounds. While LiF, Li2O, Li2CO3 and other insoluble products remain on the graphite surfaces as components of SEI layers, some soluble products from solvent decomposition may diffuse back into the electrolyte. Most reduction processes take place between 0.8 V and 0.2 V vs Li/Li⁺ on highly ordered graphite. When the SEI is not fully developed, reduction continues below 0.2 V while lithium ions and solvent co-intercalate into the graphene planes. If this co-intercalation is excessive, the SEI layer may not fully develop because of continuous exfoliation. Fig. 4 illustrates these processes graphically.

In general it has been accepted that the SEI formation is a two-step process. During the first step when the graphite electrode is polarized, the components in the organic electrolyte undergo reductive decomposition to form new chemical species. In the
second step, these decomposition products undergo a precipitation process and begin forming the SEI layer until all the sites on the graphite surface are covered. Even though several studies have been conducted to understand the formation mechanism of the SEI, it has been a major topic of debate, which centers on the reduction pathways, especially of the solvent molecules. There are typically four different reactions possible during the first cathodic polarization of the graphite electrode. The pathways of the four reactions are shown schematically in Fig. 5.

The ionic radius of a Li ion (0.59 Å) [99] is much smaller than the corresponding anionic counter ion in the salt. Due to this size difference, Li ions are strongly solvated in the electrolyte solution, which also contains weakly solvated anions (such as PF6−) and isolated solvent molecules [100]. The solvated Li ions diffuse towards the surface of the graphite electrode due to the concentration polarization in the liquid phase. At the graphite surface, these solvated ions can undertake different pathways leading to different reductive decomposition products.

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Present</th>
<th>Not present</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH2OCO2Li)2</td>
<td>[66–69]</td>
<td></td>
<td>Being a two electron reduction product of EC; it is found mostly in the SEI formed in EC based electrolytes.</td>
</tr>
<tr>
<td>ROCO2Li</td>
<td>[66,67,70,71]</td>
<td></td>
<td>They are present in the outer layer of the SEI. They occur in most PC containing electrolytes, especially when the concentration of PC in the electrolyte is high.</td>
</tr>
<tr>
<td>Li2CO3</td>
<td>[67,68,71,72]</td>
<td>[70,73–75]</td>
<td>It may also appear as a reaction product of semicarbonates with HF, water, or CO2.</td>
</tr>
<tr>
<td>ROLi</td>
<td>[73,75–78]</td>
<td></td>
<td>Most commonly found in the SEI formed in ether electrolytes like tetrahydrofuran (THF), but may also appear as DMC or ethyl methyl carbonate (EMC) reduction product [72]. It is soluble and may undergo further reactions [79].</td>
</tr>
<tr>
<td>LiF</td>
<td>[72,74,80]</td>
<td></td>
<td>Mostly found in electrolytes comprising of fluorinated salts like LiAsF6, LiPF6, LiBF4. It is a major salt reduction product. HF contaminant also reacts with semicarbonates to give LiF byproduct. Amount of LiF increases during storage [74].</td>
</tr>
<tr>
<td>Li2O</td>
<td>[74,81,82]</td>
<td>[80,83–85]</td>
<td>It may be a degradation product of Li2CO3 during Ar+ sputtering in the XPS experiment.</td>
</tr>
<tr>
<td>Poly carbonate</td>
<td>[80,86]</td>
<td></td>
<td>Present in the outermost layer of the SEI, close to the electrolyte phase. This part imparts flexibility to the SEI.</td>
</tr>
<tr>
<td>LiOH</td>
<td>[69,87,88]</td>
<td>[80,81]</td>
<td>It is mainly formed due to water contamination [89,90]. It may also result from reaction of Li2O with water or with aging [75].</td>
</tr>
<tr>
<td>Li2C2O4</td>
<td>[75,78]</td>
<td></td>
<td>It is found to be present in 18,650 cells assembled in Argonne National Laboratory containing 1.2 M LiPF6 in EC:EMC (3:7) electrolyte. Li carboxylate and Li methoxide were also found in their SEI [75].</td>
</tr>
<tr>
<td>HF</td>
<td>[91,92]</td>
<td></td>
<td>It is formed from decomposition LiF, and the water in the solvents. It is highly toxic and can attack components of the cell.</td>
</tr>
</tbody>
</table>

Fig. 4. Schematic of the anode SEI formation process showing (a) graphene layers surrounded by electrolyte salts and solvents above 1.4 V vs. Li/Li+; (b) propylene-carbonate (PC) intercalation with lithium ions into graphene layers resulting exfoliations below 0.9 V vs. Li/Li+ and (c) stable SEI formation in ethylene-carbonate (EC)-based electrolyte below 0.9 V vs. Li/Li+; plane side with thinner SEI and edge side with thicker SEI. (A colour version of this figure can be viewed online.)
i. Intercalation of Li ion without the solvation shell into the graphene layers.

ii. Heterogeneous transfer of electrons from the solid phase graphite electrode to the solvent molecules.

iii. Co-intercalation of the solvent molecules with the solvated Li ions into the graphene layers.

iv. Heterogeneous transfer of electrons from the solid phase graphite electrode to the salt anions.

These possible pathways are based on electron transfer to salts/solvents in electrolyte solutions caused by the cathodic polarization of the electrode, thermodynamic simulations using molecular
orbital calculations, and ionic sizes. Among these possibilities, re-
action (i) is the desired reaction and leads to the faradaic current
within the cell. This reaction occurs at a potential more negative
than the potential of the other reactions, so during cathodic po-
larization, other reactions are preferred until the potential drops
close to the intercalation potential. Reactions (ii) and (iii), which
address the reduction of the solvent molecules, are the major
source of debate in the literature. According to Dahn and Aurbach,
the reduction of a solvent molecule (for example [EC⁻]) is a
one-electron reaction occurring at the surface of the graphite. There-
fore, according to this hypothesis, reaction (ii) proceeds with the
solvent molecule being reduced to form an intermediate radical anion. This radical anion undergoes further decomposition according
to one of the pathways shown at Path 1 or 2 in Fig. 6, and
finally solid lithium ethylene dicarbonate (LiEDC) precipitates as
shown below the Path 2. Aurbach [49, 79] also argued that LiEDC is
extremely reactive with traces of water in the electrolyte and forms
Li₂CO₃ upon reacting.

According to the second theory proposed by Dey et al. [101],
Besenhard et al. [102] and Chung et al. [103], reaction (iii) is a more
preferred reaction and [EC⁻] undergoes a two-electron reduction
reaction. The solvated Li ions are co-intercalated into the graphene
layers [68,77] by van der Waals forces and form intercalated ternary
graphite intercalated compounds (GIC) such as Li[SO₃]₆C₂O₄.
The ternary GICs are subsequently reduced to form the SEI. Since
the literature supports both hypotheses, the proposed mechanisms
are still debated. Reaction (ii) and reaction (iii) may even compete
against each other and both might occur in parallel during the SEI
formation process. Reaction (iv) is the heterogeneous transfer of
electrons directly to the salt anions to form inorganic SEI products.

6. Methods of analyzing and characterizing the SEI layer

SEI layers easily react with ambient CO₂ and H₂O to form inor-
ganic lithium-containing compounds such as Li₂CO₃ and Li₂O
[42, 89, 104]. Hence, washing the electrode in electrolyte solvents for
analysis can easily introduce artifacts in the morphology and
chemical composition of the SEI layer. For example, ROCO₂Li and
ROLi react with CO₂ to form Li₂CO₃ [105]. The lithium in the SEI will
also react spontaneously with atmospheric oxygen to form various
lithium oxides (Li₂O, Li₂O₂ and LiO₂) [36]. These oxides are strong
nucleophiles and react further with organic solvents and semi-
carbonates to form carbonates and alkoxides [106]. Thus, special-
ized sample chambers are necessary when transferring SEI speci-
mens from the inert atmosphere of a glove box to an analytical
instrument to avoid chemical contamination and physical damage.

A variety of tools and techniques have been used to analyze the
SEI, including traditional electrochemical methods such as electro-
chemical impedance spectroscopy (EIS) and Cyclic Voltammetry
(CV). EIS is a nondestructive analysis tool, which provides useful
information from a complex electrochemical system having a
diffusion layer, electrolyte resistance, electrode kinetics, and
double-layer capacitance [55, 64, 107–114]. To diagnose EIS spectra
properly, a good equivalent circuit model is required. CV, which
measures current in the anodic (oxidation) and cathodic (reduc-
tion) directions, has also been successfully implemented to un-
derstand the SEI [112, 114–119]. Traditional tools of scanning
electron microscopy (SEM) [38, 55, 64, 116, 120–122], trans-
mision electron microscopy (TEM) [65, 118, 121, 124, 125], scanning
tunneling microscopy (STM) [119, 126], atomic force microscopy
(AFM) [64, 85, 126], and Ellipsometry [115] have been implemented
to image the surface features of the SEI. TEM can also show surface
 crystallinity, in-situ interface formation, and
lithiation/delithiation in operando [127–129]. AFM is a useful tool
for studying SEI morphology and thickness because it can measure
differences in depth at Angstrom resolution. Ellipsometry is a non-
destructive optical tool that measures thickness and roughness of
thin films by using reflectance ratios, but its weakness is that the
measured signal depends not only on thickness, but also material
properties.

Because the anode SEI is a thin layer on graphite, surface analy-
sis tools such as X-ray photoelectron spectroscopy (XPS)
[16, 55, 62, 64, 65, 91, 110, 112, 116, 118, 121, 123, 124] and
Fourier transform infrared spectroscopy (FTIR) [64, 118, 125, 126] have been
used for characterization because of their surface sensitivity and chem-
ical identification ability. Raman spectroscopy [16, 64, 121], X-
ray diffraction (XRD) [16, 121], Secondary Ion Mass Spectrometry
(SIMS) [55, 65], nuclear magnetic resonance (NMR) [92, 109, 110, 118],
neutron reflectometry (NR) [130], small-angle neutron scattering
(SANS) [131], and temperature-programmed desorption mass spec-
trometry (TPD-MS) [120] have also been successfully applied to
identify SEI surface species.

7. Effects of carbon/graphite properties on SEI formation

Carbons are widely used as LIB anodes because of their stability
and low working potential. Graphite is a crystallite and the most
stable allotrope of carbon. It has perfect stacking of graphene layers
in AB form and in some cases ABC form. In general, aggregates of
perfectly stacked graphite crystallites exist with different orienta-
tions in an electrode. Graphite has a redox potential very close to Li/
Li⁺, is safe, is the most stable form of carbon, is environmentally
benign, and has low (pre-processed) cost. A lithium atom is inter-
calated between the graphite layers to form an intercalation com-
pound (i.e. LiC₆) during LIB operation [19, 20]. The intercalation
reaction prevents the deposition of metallic lithium on the graphite
surface and avoids dendritic growth making these types of LIBs
safe. The lithium-ion charge is also maintained, essentially elimin-
ating the activation energy associated with the formation of a
chemical bond. The carbon is reduced to maintain charge balance.

Fig. 7 shows an aggregate graphite particle and the graphite
layers within that particle. In a crystallite of graphite, the two
characteristic surfaces are referred to as basal and edge planes. The
surfaces parallel to the graphene layers are called basal planes, and
the surfaces normal to the graphene layers are edge planes. Lithium
predominantly intercalates into the graphene layers through the
edge planes in the direction parallel to the basal plane. The SEI
formation process also differs at these two planes. Thus the ratio of
basal plane to edge planes determines electrochemical perfor-
mance of graphite electrodes. Different types of graphite such as
highly oriented pyrolytic graphite (HOPG) and natural graphite
have been used as anodes. Since the basal plane to edge plane ratios
differ in different forms of graphite, the SEI formation process
will be different, as well as the chemical and physical properties of
the SEI layer. In turn, these property differences will affect electrode
performance during early life and the shape of the long-term ca-
pacity fade curve.

The SEI layer forms differently depending on composition and
structure of carbon/graphite surface. The key factors for SEI for-
mation are particle size, basal-to-edge-plane ratio, pore size, de-
gree of crystallinity, and surface chemical composition (adsorbed
species) [132, 133]. The surface area of small particles is greater than
that of large ones for the same weight. Smaller particle size
genearly causes more edge sites, as well as more SEI formation
surface area. The decomposition on basal planes and edges differs
because edge sites provide better reactivity than basal ones. Hence,
electrolyte decomposition occurs at edge sites first. The edge sites
are also the access points for lithium intercalation to graphene
layers. Lithium ions diffuse along with solvent molecules and salts.
At a potential lower than 0.2 V vs. Li/Li⁺, lithium intercalation into
the graphene layers via edge sites begins. This intercalation generates concentration differences inducing solvent and salt reactants to move towards the edge sites and decompose there if the edge sites are not fully occupied by the SEI layer. This process also results in a thicker SEI on edge sites than on basal planes.

Few studies have been reported on the effect of the graphite particle size distribution, porosity, surface roughness, surface chemistry and crystallinity [120,132,134–137]. Graphite with low specific surface area tends to exfoliate more. As the surface area is decreased by heat treatment, the number of surface defects increases and the exfoliation tendency of the graphite further increases. Above a critical specific surface area of 0.2 m²/g, the exfoliation tendency is suppressed in the absence of surface defects [120]. Graphite particle sizes with surface areas of 1–5 m²/g may mitigate exfoliation without introducing excessive irreversible capacity loss. The degree of graphite crystallinity is also an important factor in SEI formation, and highly ordered graphite is preferred for high-energy LIB anodes. When the particle size is small, irreversible capacity loss increases due to larger surface area for lithium inventory loss during SEI formation (a side benefit, though, is that the power density increases with smaller anode particle size). Increasing graphite size is one way for lower irreversible capacity loss. The degree of graphite crystallinity is also an important factor in SEI formation, and highly ordered graphite is preferred for high-energy LIB anodes. When the particle size is small, irreversible capacity loss increases due to larger surface area for lithium inventory loss during SEI formation (a side benefit, though, is that the power density increases with smaller anode particle size). Increasing graphite size is one way for lower irreversible capacity loss. The degree of graphite crystallinity is also an important factor in SEI formation, and highly ordered graphite is preferred for high-energy LIB anodes. When the particle size is small, irreversible capacity loss increases due to larger surface area for lithium inventory loss during SEI formation (a side benefit, though, is that the power density increases with smaller anode particle size). Increasing graphite size is one way for lower irreversible capacity loss.

Chemical composition on carbon/graphite surfaces may also affect the exchange current density and potential for SEI formation, as well as wettability of electrolyte, chemical adhesion between carbon and the SEI layer after decomposition, and between carbon and electrolyte before decomposition. [64,93,138–144]. The presence of oxygen species on graphite surfaces increases the reduction potential vs Li/Li⁺ and helps early SEI formation before lithium intercalation. The presence of these species has been shown to be vital in SEI formation by serving as nucleation sites for electrolyte decomposition, and a lack of them can hinder the decomposition reactions and increase the exfoliation of the graphene layers [145].

Oxygen species on graphite surfaces can be attached by heat treatment in various environments. Natural graphite usually has oxygen-containing species on its surface, although the degree of crystallinity may not be that high. To increase it, calculation in air produces more crystallites and increases the adsorbed oxygen-containing species.

8. Effects of electrolyte composition on SEI formation

LIB liquid electrolytes are commonly composed of a combination of low-molecular-weight organic solvents like ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), or propylene carbonate (PC) and lithium salts like LiPF₆ or LiBF₄. Because of the high oxidation potential (4.7 V vs. Li/Li⁺) of these organic carbonates, SEI formation is prevented on the cathode surface during charging. PC had historically been a widely used solvent because it is a liquid at cell operating temperatures and has a high dielectric constant (ε = 64) [146]. The dielectric constant is an important indicator that predicts degree of salt dissolution. The drawback of using PC is severe solvent co-intercalation with lithium ions into graphite that exfoliates the graphene sheets, forming decomposition products within the sheets and releasing gases like propylene. Instead, EC is widely used because of its high dielectric constant (ε = 89) and stable SEI formation, although its high viscosity and melting point of 36 °C require thinning solvents such as DMC, DEC, and EMC. For example, 1–1.2 M LiPF₆ in 1:1 wt ratio of EC/DEC is a common electrolyte composition. In mixtures of EC/DEC or EC/DMSO, LiPF₆ dissolves well and yields ionic conductivities of up to ~10⁻³ S/cm⁻¹, a high reduction potential of 1.3 V vs Li/Li⁺, and an oxidation potential of above 4.5 V vs Li/Li⁺. This combination results in excellent electrolyte properties, but it is highly flammable.

LiClO₄ has high ionic conductivity (5.6 mS/cm in PC, 8.4 mS/cm in EC/DMC) and may form less resistive SEI layers than LiPF₆ and LiBF₄ due to no LiF decomposition. The drawback is thermal
instability that the salt reacts with solvents at elevated temperature and it is explosive. LiBF₄ shows better thermal stability and less sensitivity to moisture than LiPF₆. But it was not commonly adopted in industry because of low ion conductivity (3.4 mS/cm in PC, 4.9 mS/cm in EC/DMC): about 40% lower than LiPF₆ (5.8 mS/cm in PC, 10.7 mS/cm in EC/DMC) and high resistance of SEI from LiBF₄ electrolyte [147]. Lithium Bis(trifluoromethanesulfonyl) imide (LiTFSI) is highly ion-conductive (5.1 mS/cm in PC, 9.0 mS/cm in EC/DMC) and thermally stable: no decomposition until 360 °C. But it has a serious Al corrosion issue. LiAsF₆ is not adopted in industries because of concerns about the toxicity of As(V) although it has high ion conductivity. LiPF₆ is a well-known salt that is currently used in industries. It may not be the best in all requirements for an electrolyte but well balanced. In terms of safety, an inorganic electrolyte of LiBF₄ in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF₄) is one alternative due to its higher boiling point than LiPF₆ in EC/DEC and non-flammability. EMI-BF₄ also has a higher oxidation potential, but its ionic conductivity is lower due to the high solvent viscosity. Lithium bis(oxalato)borate (LiBOB) also has less thermal reactivity. It is used as a salt by itself or an additive in an electrolyte. LiBOB stabilizes the graphite structure effectively even in pure propylene carbonate (PC) and facilitates SEI formation on lithium metal or carbon materials. On the other hand, its solubility and conductivity in other common solvents such as EC and PC are inferior. However, these limitations are improved by using a more appropriate solvent such as dimethyl sulﬁte (DMS) with γ-butyrolactone (γBL) [148,149].

In order to enhance early and stable SEI formation on the graphite anode surface and to prevent exfoliation during the lithium intercalation, liquid additives are often used in organic electrolytes. The most commonly used additive is vinylene carbonate (VC), and it has lower reductive activation energy (13 kcal/mol) and higher reduction potential (1.05–1.4 V Li/Li⁺) than EC (24.9 kcal/mol and 0.65–0.9 V Li/Li⁺, respectively) and PC (26.4 kcal/mol and 0.5–0.75 V Li/Li⁺) [36,150,151]. VC added to PC promotes reductive decomposition at potentials around 1.3 V. About 3 wt% of VC is usually incorporated and improves cycle life and Coulombic efficiency by creating a more stable SEI layer. During the first charging step, VC in EC or PC increases the reduction potential by around 0.2 V, so the solvent mixture decomposes earlier in the formation process than without VC, which starts building a stable SEI layer before lithium intercalation begins. When VC is used in EC, it is possible to have large portions of polymer species in SEI [152].

Tasaki et al. investigated the reduction activation energy of various additives in the presence of a lithium anode [150]. This study showed that reduction activation energy (energy difference between the reactant and its transition state) of VC is 13 kcal/mol, which is lower than that of EC (24.9 kcal/mol) and PC (26.4 kcal/mol) and indicates the tendency of VC to reduce easier than EC or PC. Regarding reduction potential, Yoon et al. [153] reported reduction potentials of various additives including VC and N-substituted caprolactam (CL) derivatives. The reductions of CL, VC, and EC take place at 1.10 V, 1.05 V, and 0.65 V vs. Li/Li⁺, respectively. Jung et al. [154] also obtained similar results via DFT calculations and experiment and showed that EC (0.6 V vs Li/Li⁺, −55.9 kJ/mol Gibbs free energy of reduction) has lower reduction potential than VC (0.75 V vs Li/Li⁺, −160.0 kJ/mol Gibbs free energy of reduction), which agrees with the calculations of Tasaki et al. On the other hand, Wang et al. [155,156] found different results from a polarized continuum model in calculating reduction activation energy of LiPF₆ (VC), n = 1–3. Ring-opening barriers of EC (8.8–11.1 kcal/mol) were found to be lower than that of VC (20.1–21.1 kcal/mol) for reduction reactions, and a major conclusion was that EC decomposes more readily than VC because VC acts as a stable anion intermediate and assists nearby EC reduction. Although the calculations from Wang et al. [156] yielded slightly different results, agreement was found that VC increases solvent reduction reaction rates. Considering reduction potential, reaction enthalpy and activation energy, VC is reduced before EC and PC do during a reduction cycle (charge) although the reduction products of VC may not be as stable as those of EC and PC [153]. In industry, many different proprietary additives are used in even more combinations together with variations on the formation protocol, and the resulting SEI structures are closely guarded.

9. Relationship between electrolyte decomposition reactions and LIB formation protocol

In 1979, Peled first used the term solid electrolyte interphase (SEI) for the LIB anode passivation layer [140], and, in 1990, Dahn et al. discovered the advantage of using EC in the electrolyte for forming the SEI [157]. Before the use of EC was commonplace, PC was the most widely used LIB electrolyte solvent, which was highly compatible with lithium metal anodes. Early LIBs implemented lithium anodes, but dendrite growth was a problem in terms of safety and long-term performance [158–161]. Once the discovery of graphite as a safe, high-performance anode intercalation material was made, its major drawback was also quickly discovered. PC easily co-intercalates with lithium ions and exfoliates the graphene layers during electrolyte decomposition, while also releasing propylene gas. Attention shifted to using amorphous carbons having little crystallinity because they tended to exfoliate much less in PC based electrolyte solutions and showed good reversible capacity. The problem with these materials, though, was high initial capacity loss due to thick SEI layer formation. When Dahn et al. found that EC reduced the first-cycle capacity loss (due to a much thinner SEI layer formation) and increased the stability of the SEI by mitigating exfoliation of graphite, solvent mixtures high in EC concentration were mainly used. As the appreciation of having a stable, durable SEI has grown since the early 1990s, much effort has been dedicated to: 1) improving its formation by using additives that result in better SEI-layer architectures; 2) modifying the anode surface for improving exchange current density and charge–discharge reaction kinetics; 3) implementing charge–discharge cycles that enhance layer formation; and 4) developing alternative electrolytes that result in less lithium inventory loss during formation.

Current densities, cut-off voltages, and temperatures used during formation cycling have all been shown to have a profound effect on the chemical and microstructural properties of the SEI layer. It starts to form around 0.8 V vs Li/Li⁺, and the thickness gradually increases until around 0.3 V vs Li/Li⁺. At higher charging anode potentials vs Li/Li⁺, the SEI is composed of loosely aggregated organic components with lower ionic conductivity. As the anode potential drops, the SEI becomes more compact and begins to contain inorganic components with higher conductivity. The kinetics of the different SEI forming reactions can be exploited by varying the current densities and temperature. At higher current densities, the formed SEI has a more porous nature with high electronic and ionic conductivity. At lower current densities, the formed SEI is denser with lower electronic conductivity and higher ionic conductivity, which is the main reason formation protocols have historically required extremely low first-charge and even low second and third charge rates [121,162,163]. Elevated temperature also enables formation of a stable SEI.

Few studies have been reported on electrolyte wetting of electrodes, although it is an important factor for reducing SEI formation time and manufacturing resources that directly affect LIB pack cost. In fact, wetting takes the majority of cell production time and involves many of the latter manufacturing steps such as addition of
insulators, seals, and safety devices [7]. It takes many hours for electrolyte to completely wet the separator and reach the smallest pores of the electrodes [15], and studying wetting transport phenomena without a complete cell assembly facility is difficult.

Wetting electrodes (at low vacuum pressures during electrolyte filling and subsequently at elevated temperature after cell sealing) with electrolyte and forming SEI layers requires ~0.5–2 weeks for the entire process [7,15]. Wood et al. reported costs for a general wetting and formation process, which showed the SEI formation can contribute up to $32–33/kWh of usable energy for the battery pack cost (out of a total cost of ~$500/kWh) [15]. Anode and cathode electrodes need to be fully wetted with electrolyte during the initial portion of formation cycling, which is the process of the first 1–2 successive, slow and shallow charge–discharge cycles of a cell’s life where the anode SEI layer is first formed. The initial wetting process is slow because the electrolyte has to permeate into all pores of the separator and electrodes in a nearly fully assembled cell. Evacuating gases out of the pores under high vacuum during cell assembly can accelerate infiltration of the electrolyte and enable uniform distribution, although it requires more equipment and processing expense. Even under an evacuated condition, the smallest pores of the electrodes and separator may not fully wet unless they have a higher surface energy than the electrolyte. This situation is due to the competition between hydrodynamic forces at low pressure and non-wetting surface forces (the smaller the pore size, the lower the vacuum pressure needed to make a non-wetting liquid enter a pore). To avoid costly and time-consuming vacuum pumping, both electrodes (and the separator) should have high wettability of the electrolyte for full active material utilization during the formation cycling process. The formation process cannot commence until full wetting of all component porous volume is achieved. Wettability of the electrolyte into the electrode pores can be enhanced by lowering surface tension of electrolyte with an additive(s) or by increasing the composite surface energy of the electrode. Stable SEI formation also requires proper charge–discharge protocols that involve significant time due to slow charge rates between C/5 and C/20 [15]. Simply increasing charge rates for fast SEI formation results in incomplete, non-uniform, inactive surface area, and/or premature cell performance degradation.

Electrolyte wetting and charge rate, particularly first-charge rate, are highly interlinked by a symbiotic electrochemical and mass transport relationship. In order to reduce formation time without losing cell performance, it is pertinent to fully review the current understanding of the SEI formation process, composition, morphology, structure, and their combined effects on both short-term (irreversible capacity loss) and long-term performance (capacity fade).

During SEI formation, lithium ions react at extremely electro-reducing potentials (close to 0 V vs. Li/Li+) with electrolyte solvents and salts and anode electrons via electro-reduction reactions during charging. The reduced reactants precipitate and form the passive anode SEI layers, and reported reactions are enumerated in Table 2. SEI formation takes place mainly during first charging due to abundant electron availability to the electrolyte constituents because of negligible electrical resistance on the anode active material surface.

The reduction processes for EC and PC on a charging graphite anode are very similar, yielding similar SEI chemical compositions, but the layers behave differently during subsequent charge–discharge cycles (i.e. irreversible capacity loss and capacity fade) due to different bulk properties (i.e. thickness, porosity, tortuosity, etc.) of the reduction species [140,174,175].

An electrolyte system with LiPF6 dissolved in an EC:DMC mixture is mostly stable above 1 V vs. Li/Li+ [55,65,154], and no significant decomposition occurs. At potentials below 1 V vs. Li/Li+, minor decomposition of the electrolyte species may occur, depending on the surface chemistry and morphology of graphite and the nature of electrolyte additives. Temperature and charge rate below this potential threshold also affect the decomposition reaction rates and products [113,114,125]. Disordered carbonaceous structures have a broader range of decomposition potentials than highly oriented ones because of differing reaction site energetics [64]. Graphite surface coatings or modifications can also alter the decomposition potential range. In some cases, minor amounts of highly resistive LiF precipitates can form in the SEI above 1 V vs. Li/Li+ due to the stability of PF6 in a compact polar solvent such as EC [92]. This LiF is sometimes detected during the early stages of electrolyte decomposition in nanometer-sized crystallites [55]. PF6 is known as a strong Lewis acid that can also react with traces of water to produce HF, eliminate alkyl carbonate from lithium alkyl

Table 2

SEI formation and electrolyte decomposition reaction categories corresponding to reaction paths in Figs. 8–11.

<table>
<thead>
<tr>
<th>Reaction group</th>
<th>Reaction index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene carbonate (EC)</td>
<td>E1 [58,79,109,113,164], E2 [145,155], E3 [145,155], E4 [145,155], E5 [155], E6 [58,79,109,113], E7 [109], E8 [109]</td>
</tr>
<tr>
<td></td>
<td>E9 [155,165,166], E10 [58,62,66,79,109,150,155,165–167], E11 [55,145,155], E12 [55,60,62,79,91,125,155]</td>
</tr>
<tr>
<td></td>
<td>E13 [145,168], E14 [145], E15 [145,167,168], E16 [145,167], E17 [145], E18 [145,167,168], E19 [165,166,168], E20 [125,166,169], E21 [62,166,170], E22 [17,145]</td>
</tr>
<tr>
<td>Propylene carbonate (PC)</td>
<td>P1 [37,58,126,164], P2 [109,126], P3 [37,126], P4 [37,42], P5 [58,109,126], P6 [109], P7 [109]</td>
</tr>
<tr>
<td></td>
<td>P8 [17,58], P9 [58,79,126], P10 [17,168]</td>
</tr>
<tr>
<td>Linear carbonate (LC)</td>
<td>L1 [166,167], L2 [164]</td>
</tr>
<tr>
<td></td>
<td>L3 [62,91], L4 [62,91]</td>
</tr>
<tr>
<td>Salt</td>
<td>S1 [17,91,92,145,165–170], S2 [17,55,165–167], S3 [17,60,145,165–169], S4 [165–168], S5 [17,91,92], S6 [91], S7 [91], S8 [17,42,60,104,165,168], S9 [17,42,104,165,168], S10 [17,42,104], S11 [165,166]</td>
</tr>
</tbody>
</table>
carbonate, and react with solvent carbonyl groups to produce insoluble ether-containing species [179,124,145]. At higher anode potentials, decomposition products like LiF are usually generated on graphite edge plane sites, which are preferable for nucleation due to a lower energy requirement than on basal plane sites. Fortunately LiF generation is kinetically slow and the amount of decomposition is small above 1 V vs. Li/Li⁺.

It is well accepted that most of the SEI layer formation takes place within the potential range of 0.2–1.0 V vs. Li/Li⁺. However, the formation mechanism(s) is highly debated. There have been two different concepts on the SEI formation process hypothesized, although their final structures are mostly alike. One concept follows a one-electron transfer to the electrolyte at high potential and a multi-electron transfer at low potential [55,145]. In other words, “bulk” lithium compounds (precipitates) are first partially reduced at high potential by a one-electron process due to insufficient electrons with low electron transfer resistance from electrode to electrolyte for complete reduction. At low potential, “compact” lithium compounds are generated from further reduction of pre-existing bulk lithium-containing precipitates on the anode surface, or directly by complete reduction of lithium compounds in electrolyte driven by high energy at low potential. The second concept supposes little or no precipitates preoccupying the anode graphite surface at high potential. Hence, electrons can transfer to electrolyte constituents without interference from resistive interfacial compounds. This high electron transfer rate induces compact lithium compound formation at higher potentials, and, as the potential is lowered and the decomposition layer thickens, electrolyte solvent molecules are gradually reduced. Subsequently, partially reduced bulk lithium compounds precipitate on top of the resistive compact layer to a greater extent as the potential reaches ~0.2 V vs. Li/Li⁺.

Proponents of both hypotheses agree that major SEI formation begins around 0.8 V vs. Li/Li⁺, but it can be higher for certain highly porous carbonate active materials [131]. In an ideal situation, the SEI formation will occur prior to lithium intercalation, which prevents co-intercalation of electrolyte constituents. For highly oriented graphite, lithium intercalation occurs at 0.2 V vs. Li/Li⁺ or less, but it can start at slightly higher potentials in disordered or porous carbons [64,116,131]. Within the potential range of 0.6–0.8 V vs. Li/Li⁺, electrons at the graphite surface transfer to the liquid electrolyte containing solvated lithium ions. These cations diffuse towards the graphite particles with an average of four strongly coordinated solvent molecules and an uncoordinated PF₆⁻ anion [118]. Uncoordinated solvent molecules are less likely to accept an electron because they are more stable than those associated with lithium ions. Most decomposition products from electro-reduction precipitate on the anode surfaces, while minor amounts diffuse back into the liquid phase and eventually re-precipitate elsewhere. Decomposition reactions prefer graphite edges because these sites usually include defects that are unstable and tend to be highly reactive. As the reaction rate on edge sites slows due to an increase in the coverage of precipitates, decomposition takes place on basal planes as well. These electrolyte decomposition reaction depositions are irreversible and result in loss of lithium ions (cathode lithium inventory), solvent molecules, and salt anions (see Table 2 and Figs. 8–11) [145].

Below 0.6 V vs. Li/Li⁺, a much greater extent of electrolyte decomposition takes place [55]. Dense inorganic lithium compound formation (i.e. LiO₂, Li₂CO₃, and LiF) is highly favorable at edge sites because of low electronic resistance to reducing solvent-coordinated lithium ions. Some less dense inorganic species such as lithium alkali carbonates and other organic species generally decompose on basal planes where reactions are less favorable. Since electronic resistance increases when a dense inorganic film is present on the graphite surfaces, subsequent decomposition onto the inorganic compounds will involve only partial reduction resulting in precipitation of loosely aggregated compounds such as lithium alkyl carbonates, or polymers. A portion of the lithium alkyl carbonate can be further reduced to form LiO₂ or Li₂CO₂ and release ethylene (from EC), propylene (from PC), or CO₂ gases [131]. The release of these gases may cause cracks in the existing SEI layer or even expose new anode graphite surface to electrolyte for further SEI decomposition reactions (further consuming lithium inventory).

A second or even third formation charging is usually needed to completely form a stable SEI layer for long LIB lifetimes. These subsequent charging half-cycles are often at progressively faster C rates.

10. Prospects for improving SEI properties and reducing formation time

Reducing LIB formation protocol time is necessary to lower production cost of cells (and ultimately packs) and manufacturing capital costs. The process currently lasts from about 4–5 days up to ~2 weeks depending on the cell chemistry, and it consumes a great deal of process energy (low-grade heat and electricity). In addition, it is also a substantial process bottleneck unless an inordinate amount of formation cyclers are used. SEI formation time can be reduced four ways: 1) by mixing additives into the electrolyte to form the SEI compounds more quickly and/or alter the overall composition of the SEI layer; 2) by modifying the anode graphite surface chemistry or substitution of the inactive binder and conductive additive materials with those having better wettability; 3) by charging and discharging the cells at higher rates within certain portions of the operating voltage window; and 4) by increasing the cell temperature during wetting and SEI formation.

Besides the popular vinyl carbonate (VC) additive, fluoroethylene carbonate, diphenyloctyl phosphate, acetyl caprolactam, 3-fluoro-1,3-propane sulfone, prop-1-ene-1,3-sultone, and others have been proposed recently [112,123,153,154]. These chemicals show different advantages over VC with respect to SEI composition and stability and cell lifetime, yet they have not been shown to save time during the formation cycling process. Developing or discovering an additive with an even higher reduction potential and high reactivity could result in reduced SEI formation time.

Anode active material surface coatings and chemical modifications can also improve SEI layer properties [144,176]. The volume change of carbonaceous materials during lithium intercalation is much lower when compared to other anode materials such as Al, Si, Sn, and Sb [43]. It has been found that an increase in disordered carbon anode surface oxygen resulted in lower graphite exfoliation and stable SEI formation [135,143,177,178]. Using this property, a thin carbon coating on graphite can be implemented for improving capacity retention. Non-graphitic carbons do not undergo exfoliation to a great extent, but their first-cycle irreversible capacity loss is much higher due to greater surface area. When graphite is used without a carbon coating, reversible capacity is lower; however, once coated by a high-surface-area disordered carbon, reversible capacity increases because the majority of the SEI layer forms within the thin coating. This surface modification tends to prevent extensive graphite exfoliation [96,136,179].

It is plausible that SEI compounds differ not only depending on the reaction sites, such as edges vs. basal planes, but also depending on the initial surface elemental composition.

Initial precipitates on the non-oxidized graphite surfaces are likely different from those on oxidized surfaces, which could affect subsequent precipitation. Other surface modifications of various types of anode graphite have shown significant effects on SEI
Fig. 8. Ethylene carbonate (EC) reduction process (reference groups in parentheses; details are shown in Table 2).
Fig. 9. Propylene carbonate (PC) reduction process (reference groups in parentheses; details are shown in Table 2).
Generally, a high charging rate during the first cycle results in a porous and highly resistive SEI layer, while a low charging rate results in the opposite SEI characteristics. It has been found that for a 0.5C charging rate during SEI formation, capacity retention at room temperature operation was negatively affected \[113\]. Also, when the cell temperature was held above 40 °C, capacity retention was even more negatively affected for a 0.5C SEI formation charging rate \[114\]. Hence, a first charging rate between 0.05C and 0.2C is preferred for stable SEI formation. In some cases, though, high charging rate can be beneficial to SEI formation. For example, when TIMREX® SFG44 graphite was heat-treated in an inert gas at 3000 °C, a high charge current of 320 mA/g (~1C), showed better reversible capacity in 1 M LiPF₆ EC/DMC than a much lower charge current of 10 mA/g (~0.03C) \[122\]. In this case, high current decomposed the electrolyte faster than solvents could intercalate into graphene sheets and cause exfoliation. Low charging rates may be beneficial for SEI formation, but they slow cell production rates and increase production cost and plant capital expense. Building a stable SEI with a charging rate greater than 0.5C may require a great deal of further effort on developing proper additives, optimizing cell temperature, and modifying the anode surface chemistry.

At higher temperatures, SEI formation may also be accelerated. SEI layers formed at temperatures around 40 °C tend to have more compact lithium precipitates, such as Li₂CO₃ and Li₂O, rather than softer, organic precipitates like ROCO₂Li. However, high temperature may induce LiF precipitation from fluorine containing salts.

11. Recent progress in SEI layer studies and prospects for future understanding

11.1. Computational studies

11.1.1. Overview of molecular dynamics (MD) and density functional theory (DFT) studies

Molecular dynamics (MD) and density functional theory (DFT) simulation methods have been used to understand the intricate relationship between the SEI layer and electrolyte. The MD approach uses atomic force calculations through solving Newton’s equations of motion and investigates dynamic movements and equilibrium of atoms and molecules primarily with potentials from semi-empirical relationships. While MD has provided detailed information on classical many-body problems, ab-initio molecular dynamics (AIMD) has extended MD capability by combining the

Fig. 10. Linear carbonate (LC) reduction process (reference groups in parentheses; details are shown in Table 2).

formation [93,94,136–138,179–181].
Schrödinger wave equation with Newton’s equations. Certain interfacial reduction and oxidation reactions have been described in the literature using AIMD [182–188]. APPLE&P (Atomistic Polarizable Potential for Liquids, Electrolytes, & Polymers) is another many-body polarizable force field for MD simulations that can capture electrostatic interactions in polarizable environments. Binding energies between lithium ions and solvent molecules may vary with different theory levels of APPLE&P force fields. For example, M05-2X and B3LYP are common levels, which are thought to have overestimated lithium-ion/MECO$_3^-$ binding energy in lithium alkyl carbonate electrolytes. The M06-L, MP2, and G4MP2 levels, on the other hand, have shown similar, and more reasonable, binding energies [189–191].

Density functional theory (DFT) is more rigorous than MD, and the former is another computational approach in quantum mechanics that solves Schrödinger equation. It estimates the electronic structures in atomic and molecular systems, but it is limited to smaller simulation sizes than MD because of the associated computational intensity. One of the issues in using DFT is weak van-der-Waals-like forces of graphene layers, which can affect calculations for lithium-ion/solvent-molecule co-intercalation into graphite. Computed graphene interlayer binding energy significantly varies depending on DFT functionals [192]. Local-density approximation (LDA), a well-known and simple functional, underestimates the binding energy of graphite interlayer as shown in Fig. 12. The binding energies from experiments were 31–52 meV/atom [193–195]. Another issue in using quantum simulations is that the simulations are typically not suitable for estimating competing reactions.

DFT and MD mainly deal with Angstrom and nanometer length scales, respectively. Because of the small length scales and heavy
calculation load, it is extremely difficult to fully combine electrode, SEI layer, electrolyte, and all of their interactions together into a single model. Hence, the computational literature on SEI formation and physical chemistry is comprised of reactions and molecular coordination of lithium ions with one or two types of molecules. In this section, some of the SEI-related calculations are discussed.

11.1.2. Correlation of SEI with graphite

Jorn et al. performed ab initio molecular dynamics simulations with graphite in LiPF6/EC electrolytes, while considering graphite basal and edge planes [196]. In this study, the SEI layer was composed of Li2EDC (lithium ethylene dicarbonate) only or Li2EDC with different amounts of LiF. They found that edge planes could accommodate more Li ions than basal planes due to the broad range of EC orientations, which might cause different SEI formation processes and structures at the two types of reaction sites. Thicker SEI layers or higher HF contents in the electrolyte resulted in a higher lithium ion concentration in the vicinity of the SEI surface, promoting higher probability of lithium ion transport from solvent to SEI. DFT calculations also showed that irreversible capacity loss (ICL) on graphite surfaces, generally on edges, having dangling bonds is higher than that on graphite surfaces having H-terminated edges [197]. This finding, perhaps, implies greater SEI formation thickness due to unstable graphite edges. Surface properties of graphite may also affect adhesion of the SEI to the graphite surfaces. DFT-MD simulations were carried out with probable SEI film components from EC-based electrolyte (Li2EDC) to see their adhesion to graphite having H-terminations [198]. It was found that the adhesion to the H-terminated graphite was unstable in EC. Dissolution energies of Li2EDC in EC were +12.2 kcal/mol.

There have been other computational approaches to understanding SEI formation and lithium-ion/solvent co-intercalation into graphite layers. DFT and MD simulations showed that half-distances between C–C (graphene) interlayers were 0.59 nm for Li+(EC)C2, 0.69 nm for Li+(EC)2, 0.70 nm for Li+(PC)C2, and 0.85 nm for Li+(PC)2 when no ring openings of EC or PC were assumed [199]. Half-distances between C–C interlayers were 0.325–0.335 nm with no lithium ions or solvent molecules and 0.356–0.376 nm for LiC6 [199–202]. If there were ring openings of EC or PC, the difference between the associated EC and PC C–C distances would be little because the PC methyl group would have free rotation after the ring opening. For the case where the PC and EC molecules would not undergo ring opening during co-intercalation, Li+(PC)n and Li+(EC)n could cause graphite disintegration by widening the C–C layers (which experience only weak van der Waals forces), and since Li+(PC)n is more massive than Li+(EC)n, the probability of this disintegration process could be higher for Li+(PC)n than Li+(EC)n.

11.1.3. Reduction reactions

Most reduction processes take place between 0.9 V and 0.2 V vs Li/Li0 on highly ordered graphite, but salt products may decompose at higher voltages according to one DFT study. LiF formation, deposition, and radical recombination were found to occur near 2 V vs Li/Li0 before the main solvent reduction reactions below 0.9 V vs Li/Li0 for FEC or below 0.6 V vs Li/Li0 for EC [203]. In the case of EC and PC based electrolytes, reduction energies of Li+(EC)4 were 8 kcal/mol lower than Li+(PC)4 [199], which implies that Li+(EC)n is more prone to reduction than Li+(PC)n. Statistical and surface analyses also showed that smaller molecular-weight compounds and salt decomposed on the anode surfaces in the presence of electrolyte, followed by long-chain oligomer compounds [204–206].

For the case of 1 M LiPF6 with different binary solvents such as EC:EMC, EC:DMC, or EC:DEC (1:2 volume ratio), in-situ experiments showed the released gases were in the following order of amount: C2H4 > CO > CH4 > C2H6 > CO2 [207]. Contrary to these experimental findings of greater CO than CO2, a particular DFT study showed different results [208]. Calculations using the hybrid-functionals B3LYP with basis set 6–311++G(d,p) showed that EC strongly coordinated with the PF6 anion and was prone to oxidation to the EC radical cation on cathode via 1-electron transfer. The EC radical cation was subsequently reduced on the anode and produced CO2, aldehyde, and oligomers of alkyl carbonates. CO2 was generated to a greater extent than CO due to the high activation energy for CO.

Regarding the common VC additive, DFT based MD simulations from Ushirogata et al. showed that VC reacted with an EC anion radical causing a one-electron reduction of EC [182], which implies that VC assists the EC reduction process. Although exactly how VC decomposes is not yet clear, experimental and computational agreement has been found that VC increases solvent reduction reaction rates.

11.1.4. SEI layer composition and ion diffusion

A molecular dynamics study from Kim et al. showed that Li2CO3 and Li2O were the main SEI components on anodes when EC and DMC were used as the electrolyte solvents [51]. SEI layers were found to form at about 1 V vs. Li/Li0, and they were composed primarily of inorganic components close to the anode surface and primarily of organic ones close to the liquid electrolyte. In these simulations, however, lithium metal was considered as the anode instead of graphite. It should also be noted that the presence of electrolyte salts were not considered, and reaction gas products from the inner portion of the SEI were not allowed to diffuse outward into the liquid phase (these gases would be removed under real-world formation conditions). Hence, actual SEI layers are composed of somewhat different compounds than these particular calculated ones.

Lithium ion transport in Li2EDC, a common component of SEI layers, was studied by EIS experiments and MD simulations with APPLE&P force field and G4MP2 and MP2 levels [189]. The conductivity of Li2EDC at room temperature was found to be 10−5 S/cm from EIS analysis and 2 × 10−10–10−8 S/cm from MD simulation. The calculated activation energy ranged from 64 to 84 kJ/mol at 393 K, indicating that lithium ion transport exhibited a hopping mechanism at high temperature.

11.2. SEI on anode metalloid or metal oxide

Metalloid or metal oxides, especially SiOx and SnOx, are regarded as prime candidate materials for high-energy batteries due to high theoretical capacity and earth abundance [209–211], despite Si and Sn having higher operating potentials than graphite (around 0.4 V and 0.6 V vs Li/Li0, respectively). One of main problems, however, is that these two materials suffer from extreme volume changes during lithium intercalation and deintercalation, leading to: 1) extensive, unstable, and thick SEI formation; 2) poor long-term mechanical properties; and 3) severe capacity fade. In order to build stable SEI layers on these materials, research has concentrated on a combined materials approach such as Si alloys [52,209,210,212], Sn alloys [213–216], Si–C or Sn–C composites [213, 217–230], Sn or Si composited with carbon nanomaterials [231–239], Mo–C or Ni–C [240–244], or mixing with graphene [245–247]. For these solutions, volumetric capacities drop to half of those of pure Si or Sn, but the reductions in capacity still result in anodes with much higher specific capacities than graphite. Volume changes on these composited and blended materials also become smaller, making the formed SEI layers more chemically stable and longer lasting. Coating Al2O3 on these materials also mitigates volume changes [248,249].
Lithium metal is also being reconsidered as a possible anode candidate because it has the highest specific capacity, but it suffers from significant safety concerns related to lithium dendrite growth into and through the separator (electrical shorting). One reason this degradation and potential failure mechanism occurs is because the SEI layer is not uniform and tough enough to prevent dendrite growth. Some of the proposed ways to prevent lithium dendrite growth are hollow carbon nanospheres covering surface of lithium anode, adopting an alternative salt, and electrolyte additives [250–252].

11.3. Additives

Some additives having fluorine can also improve SEI formation on metal anode materials. For example, FEC has moved to the forefront as an attractive additive since it improves SEI layer properties and cell cycle life of metal anode systems [253,254]. It is especially effective when the when the metal particles are nano-scale [255]. Studies on understanding FEC’s effect on metal anode formation mechanisms are currently ongoing [183,256,257].

In general, most additive research focuses on forming stable and robust SEI layers. Zhu et al., on the other hand, used polyfluoroalkyl compounds as an additive to build a micelle-like SEI layer on an anode electrode. The heads of the additive decompose on the electrode surfaces and solvophobic tails point outwards towards the electrolyte [258]. They found 4-((perfluorooctyl)-1,3-dioxolan-2-one improved capacity retention and lowered impedance in high voltage lithium titanium batteries. These pre-formed SEI layers were found to protect the cathode from electrolyte decomposition as well as the anode. They also tested lithium difluorooxalatoborate, triphenylamine, and 1,4-benzodiozane-6,7-diol as a combined additive and obtained improved capacity retention and lowered impedance for a Li1.3Ni0.15Mn0.55Co0.12O2 (TODA HE5050)/graphite cell [259].

PC as an electrolyte solvent has excellent properties with the exception of exfoliating the graphite during unstable SEI formation. Wagner et al. improved anode SEI formation by using methyl vinyl sulfone (MVS) and ethyl vinyl sulfone (EVS) additives in PC [260]. These additives decomposed on graphite and built protective SEI layers before PC could intercalate and react because MVS and EVS have 1.3 eV and 1.2 eV lower LUMO energies, respectively, than PC. Unlike these “active” additives that decompose on the anode, there are other additives that prevent decomposition during cycling. For example, Chretien et al. mixed both LiF and glyme additives (CH3O [CH2CH2O]nCH3) in the electrolyte to inhibit side reactions [261]. Glymes and lithium salt compounds are more electrochemically stable than ethers and have high oxidation potentials close to 4.7 V, allowing high-voltage operation with NMC.

11.4. Prospects for future understanding

LIBs for high energy or high power demands like vehicle application require high capacity, high capacity retention, high voltage operation, low cost, low weight and volume, etc. All of these requirements are deeply related to SEI layers. Regarding capacity and capacity retention during the first few charge cycles, batteries lose approximately 10–15% of their capacity due to initial anode SEI formation. Afterword, irreversible capacity loss continues due to gradual SEI deposition during long-term cycling, although it is far less than the loss during initial SEI formation. The capacity loss percentage and initial SEI properties vary depending on formation conditions such as anode material surface area, surface properties of the material, anode-to-cathode capacity ratio, temperature, charge rate, charge depth, surface properties of the anode materials, salt/solvent properties, additives, and impurities. Detailed information about the effects of these properties and conditions can be found in previous sections of this paper.

High-voltage operation of LIBs does not significantly affect anode SEI formation directly, but it does have indirect effects. Cathode materials designed for operation at high cell potential (i.e. overcharged NMC or LMR-NMC) release cathode constituents (mostly Mn, some Ni, and a minor amount of Co) into the electrolyte that diffuse through the separator to the anode side, and in turn, induce more SEI formation by increasing the electron conductivity of SEI layer. High-voltage operation of cells also causes electrolyte instability (oxidation) on the cathode surfaces, and a SEI-like layer forms at the cathode that is chemically less stable than its anode counterpart. Hence, under these cell operating conditions, cell impedance increases due to both changes in the anode SEI layer and excessive growth of the cathode SEI layer.

12. Summary

This paper comprehensively reviews the science of SEI layer formation on carbon/graphite anode surfaces in the LIBs, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and formation cycling. In order to develop shorter, more robust LIB formation protocols, which are needed to reduce cell manufacturing cost and battery plant capital investment, a thorough understanding of the relationship between state-of-the-art SEI layer compositions and capacity fade are still needed. Furthermore, new formation protocols which develop ideal SEI layers (those that consume minimal lithium inventory during formation and reduce capacity fade during long-term cell operation) in shorter time periods will require an understanding of SEI layer evolution over the LIB life, a subject which is currently not well understood.

It is understood and accepted, however, that the SEI is formed by the decomposition products of the electrolyte solvent molecules and lithium salt, and it critically affects the short-term and long-term performance of the cell. The importance of the SEI layer was given in terms of first-cycle efficiency, capacity retention, and cell cost, as well as the state of understanding of the SEI formation mechanism and methods of analysis and characterization. Various factors that affect SEI formation were also discussed such as anode materials, surface properties, formation current density, electrolyte additives, and cell temperature.

The anode SEI layer covers the graphite surfaces and shields lithium ions from the electrolyte solution, which prevents further electrolyte decomposition. This shielding property enables reversible capacity during extended charge–discharge cycling. However, the SEI formation process consumes lithium ions and electrolyte when generated, resulting in first-cycle irreversible capacity and lithium inventory losses. This irreversible capacity loss may continue if the SEI is not well formed by hindering electrolyte diffusion or allowing unwanted electron transfer from the graphite to the liquid phase.

SEI compositions and morphologies are complicated and differ depending on graphite surface properties, electrolyte, and formation conditions. Several modeling and experimental efforts are underway to address the correct pathways of these electro-reduction reactions and elucidate the debate within the LIB research community. SEI analysis is a challenging task due to its thickness being only ~3–100 nm and its delicate nature. A variety of traditional experimental techniques have been used for the electrochemical, morphological, and chemical analysis of the SEI layer. The morphology and chemical makeup of an SEI is unique to the specific graphite surface and electrolyte solution pair, but it can generally be thought of as consisting of three layers: an outer porous, less-compact layer formed from the organic compounds
References

[10] S. Kostecki, F. McLarnon, Degradation of LiNi0.8Co0.2O2 lithium ion battery cathode: insight into the crystal structure, Magnetic susceptibility studies on a high-voltage Li1.2Mn0.5Ni0.15-Co0.10O2 lithium ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies, J. Mater. Chem. A 1 (20) (2013) 6249, http://dx.doi.org/10.1039/c3ta03940g.

[14] D. Mohanty, A.S. Sefat, J. Li, S. Kostecki, et al., Investigating phase transformation in the Li1.2Mn0.5Ni0.15Co0.10O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies, J. Mater. Chem. A 1 (20) (2013) 6249, http://dx.doi.org/10.1039/c3ta03940g.
passivation films via oxidation of lithium bis(oxalato)borate on high voltage spinel (LiNi0.5Mn0.5O4), J. Phys. Chem. C 118 (2014) 7363–7368, http://dx.doi.org/10.1021/jp4107909.

3210–3215, http://dx.doi.org/10.1021/cm900702d.

[235] F. Nobili, I. Meschini, M. Mancini, R. Tossici, et al., High-performance Sn®
carbon nanocomposite anode for lithium-ion batteries: lithium storage
processes characterization and low-temperature behavior, Electrochim. Acta

selective leaching for highly reversible lithium storage, Energy Environ. Sci. 7

[237] Q. Tian, Z. Zhang, L. Yang, S.-i. Hirano, Three-dimensional wire-in-tube hy-
brids of tin dioxide and nitrogen-doped carbon for lithium-ion battery applica-
carbon.2015.06.010.

[238] L. Sun, X. Wang, R.A. Susantyoko, Q. Zhang, High performance binder-free Sn
dx.doi.org/10.1016/j.carbon.2014.10.072.

[239] F. Yao, B. Li, K. So, J. Chang, et al., A strategy to overcome the limits of carbon-
based materials as lithium-ion battery anodes, Carbon 79 (2014) 563–571,
http://dx.doi.org/10.1016/j.carbon.2014.08.017.

materials for lithium-ion batteries, Carbon 96 (2015) 1207, http://dx.doi.org/
10.1016/j.carbon.2015.10.076.

clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes

nitrogen-doped carbon shell nanoparticles for high performance lithium-ion
carbon.2014.12.032.

nickel oxide–carbon composite anode for lithium-ion batteries, Thin Solid

on vertically-aligned multiwall carbon nanotube arrays for lithium-ion
carbon.2013.11.041.

[245] C. Kang, R. Baskaran, J. Hwang, B.-C. Ku, et al., Large scale patternable 3-
dimensional carbon nanotube–graphene structure for flexible Li-ion battery,
carbon.2013.11.026.

[246] B. Rangasamy, J.Y. Hwang, W. Choi, Multi layered Si–CuO quantum dots
wrapped by graphene for high-performance anode material in lithium-ion
carbon.2014.06.022.

carbon nanotube composites for use in Li-ion battery anodes, Carbon 74

[248] D. Wang, J. Yang, J. Liu, X. Li, et al., Atomic layer deposited coatings to
significantly stabilize anodes for Li-ion batteries: effects of coating thickness and
the size of anode particles, J. Mater. Chem. A 2 (7) (2014) 2306–2312,
http://dx.doi.org/10.1039/c3ta3677a.

[249] M. Yu, A. Wang, Y. Wang, C. Li, et al., An alumina stabilized ZnO-graphite
anode for lithium-ion batteries via atomic layer deposition, Nanoscale 6

nanospheres for stable lithium metal anodes, Nat. Nanotechnol. 9 (8) (2014)
618–623, http://dx.doi.org/10.1038/nnano.2014.152.

572–573, http://dx.doi.org/10.1038/nnano.2014.165.