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the graphite surfaces, the most common anode material. The SEI is essential to the long-term perfor-
mance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, rate
capability, and safety. While the presence of the anode SEI is vital, it is difficult to control its formation
and growth, as they depend on several factors. These factors include the type of graphite, electrolyte
composition, electrochemical conditions, and temperature. Thus, SEI formation and electrochemical
stability over long-term operation should be a primary topic of future investigation in the LIB devel-
opment. This article covers the progression of knowledge regarding the SEI, from its discovery in 1979 to
the current state of understanding, and covers differences in the chemical and structural makeup when
cell materials and components are varied. It also discusses the relationship of the SEI layer to the LIB
formation step, involving both electrolyte wetting and subsequent slow charge—discharge cycles to grow

the SEIL
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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List of abbreviations

AFM Atomic Force Microscopy
CL caprolactam

v Cyclic Voltammetry

DEC diethyl carbonate

DFT Density functional theory

DMC dimethyl carbonate

DMS dimethyl sulfite

EC ethylene carbonate

EDC ethylene dicarbonate

EIS Electrochemical Impedance Spectroscopy

EMC ethyl methyl carbonate
EMI 1-ethyl-3-methylimidazolium

EV electric vehicle

EVS ethyl vinyl sulfone

FTIR Fourier Transform Infrared Spectroscopy
GIC graphite intercalated compound

HOMO highest occupied molecular orbital
HOPG  highly oriented pyrolytic graphite

LC Linear carbonate

Li lithium

LIB lithium-ion battery

LiBETI  Lithium bis(perfluoroethanesulfonyl)imide
LiBOB  Lithium bis(oxalato)borate

LITFSI  Lithium bis(trifluoromethane sulfonyl) imide
LMR lithium-manganese-rich

LUMO lowest unoccupied molecular orbital

MC Monte Carlo

MD Molecular dynamic

MVS metal vinyl sulfone

N/P ratio negative electrode/positive electrode ratio

NMC Li1+xNiyMnzCo1-x-y-zO2 or Nickel Manganese
Cobalt oxide

NMR Nuclear Magnetic Resonance

NR Neutron Reflectometry

PC propylene carbonate

PHEV  plug-in hybrid electrical vehicle

R- alkyl group

SANS Small-Angle Neutron Scattering

SEI solid electrolyte interphase

SEM Scanning Electron Microscopy

SIMS Secondary lon Mass Spectrometry

Sol solvent

TEM Transmission Electron Microscopy

TPD-MS Temperature-Programed Desorption Mass
Spectrometry

VC vinylene carbonate

XPS X-ray Photoelectron Spectroscopy
XRD X-ray Diffraction

1. Introduction

Much effort has been put into lithium-ion battery (LIB) devel-
opment for electric vehicles (EVs), plug-in hybrid electrical vehicles
(PHEVs), and other electrical system applications [1—11]. Some of
the key studies have involved reducing cost, increasing capacity
retention, and improving efficiency [2,4—7,12—16]. During the
operation of LIBs, a solid electrolyte interphase (SEI) layer (also
called “solid electrolyte interface” in some literature) forms on the
graphite surface, the most commonly used anode material, due to
side reactions with the electrolyte solvent and salt. It is accepted
that the SEI layer is essential to the performance of LIBs, and it has
an impact on its initial capacity loss, self-discharge characteristics,
cycle life, rate capability and safety. While the presence of the
anode SEI layer is vital, it is difficult to control its formation and
growth, as the chemical composition, morphology, and stability
depend on several factors. These factors include the type of

graphite, graphite morphology, electrolyte composition, electro-
chemical conditions, and cell temperature. Thus, SEI layer forma-
tion and electrochemical stability over long-term operation should
be a primary topic of investigation in further development of LIB
technology. This article reviews the state of knowledge on the
formation process of the graphite/carbon SEI layer, its chemical
composition, morphology, and associated reactions with the liquid
electrolyte phase, and will address several important questions:

1.) Why is it important to understand the SEI layer composition
and morphology, and how does it impact LIB performance
(Sections 2—3)?

2.) What is the solid/liquid surface chemistry behavior at the
nanoscale of the SEI layer (Sections 3—4)?

3.) What methods have been used to form the SEI layer during
initial charging and discharging (Section 5)?
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4.) What methods have been used to characterize the SEI layer
properties such as composition, thickness, and morphology
(Section 6)?

5.) What are the effects of different types of graphites and car-
bons on SEI layer properties (Section 7)?

6.) What are the electrolyte, binder, and conductive additive
effects on SEI layer properties (Sections 8)?

7.) How is the SEI layer formation tied to the electrolyte wetting
of the electrode (during cell manufacturing) and formation
protocol, capacity fade, and cell lifetime (Section 9)?

8.) Why isitimportant to reduce the SEI formation protocol time
during cell manufacturing (Sections 9—10)?

9.) How is the most recent understanding of the anode SEI layer
impacting cell design and SEI durability (Section 11)?

This paper is a comprehensive review of the science of the LIB
anode SEI layer and its relationship to electrolyte wetting, forma-
tion cycling, and cell lifetime. It spans from the basic science of the
SEI formation interfacial physics and reaction mechanisms to the
applied science of reducing formation cycle time and increasing LIB
lifetime. The time period covered is from the discovery of lithium-
ion intercalation in graphite (1979) up to the present day, and it
offers insights into the SEI formation mechanism, chemical and
morphological properties of the SEI, and relationship to formation
cycling and cell lifetime. This paper will appeal to the entire LIB
research community and the broader energy storage community as
awhole. Given that it deals with an intricate combination of surface
chemistry, electrochemistry, and reaction mechanisms, it will also
appeal to chemists and chemical scientists in other fields.

2. Background

The anode SEI layer is formed from the so-called “lithium in-
ventory” of the cathode and electrolyte salt, which is the total
amount of lithium available for building the SEI and initial charging
of the cell, and there is a delicate balance between the ideal surface
area the anode should have and the energy and power density of an
LIB. The entirety of the anode surface must have the SEI layer
present to prevent further undesired decomposition of the elec-
trolyte, which consumes Li ions. The amount of Li ion loss from the
cathode directly affects the first-cycle irreversible capacity (energy
density), while losing Li ions from the electrolyte lowers liquid-
phase mass transport and increases electrolyte resistance thereby
decreasing power density [1,17]. During the first full cycle, 10% of
the original capacity is generally consumed in irreversible SEI for-
mation [18]. Therefore, the total surface of the anode should be
minimized from an energy density or cell cost standpoint. However,
the minimization comes with a performance tradeoff — low anode
surface area means lower power density (capacity at high C rates)
with solid-state diffusion limitations. In contrast, high anode sur-
face area is beneficial to power density, but much greater lithium
inventory is consumed when passivating the surface to form the SEI
layer, thereby decreasing energy density. Section 7 includes an
overview and understanding of carbon/graphite properties and
related SEI formation.

There is also a secondary connection of the SEI layer to LIB
safety, and it comes into play once the anode is fully passivated. To
avoid lithium plating or dendrite formation at the anode during
charging over the life of the cell, capacity is often kept about 10%
more than that at cathode [18] (N/P ratio of 1.1 where “N” is the
negative electrode, or anode during cell discharging, and “P” is the
positive electrode, or cathode during cell discharging) to prevent
internal electrical shorts. Therefore, this extra anode material must
also undergo SEI layer passivation adding to the cell cost and
diminishing the total cell energy. Optimizing the N/P ratio is

important for minimizing initial lithium inventory loss and
decreasing initial irreversible capacity. For long-term capacity
retention and Coulombic efficiency, optimizing only the capacity
ratio would be insufficient because SEI continuously grows and
consumes electrolytes and lithium ions when it is not well formed
[19,20].

Better understanding of the state-of-the-art graphite SEI layer
composition and morphology is an important step towards
growing improved SEI layers that prevent continuous decomposi-
tion of electrolyte on the graphite surfaces. The anode SEI layer is
composed of precipitates from reduced decomposition of solvents,
salts, lithium ions, and impurities in the electrolyte due to their
instability at the anode potential operating window [1,21]. It forms
mostly during the first charge, but the formation continues slowly
and gradually after first cycle until the SEI layer is fully developed,
adding to the complexity of modern LIB formation protocols. An
optimized SEI layer is expected to have negligible electrical con-
ductivity and high electrolyte diffusion resistance while having
high lithium ion selectivity and permeability. Once it is properly
formed, further decomposition reactions with salts and solvents are
prevented since electrons cannot transfer to or through the layer
(the increased electronic resistance increases the potential on the
graphite surface and shifts the surface potential to within the sta-
bility window of the electrolyte). However, in reality, the SEI layer
gradually thickens during repeated charge—discharge cycles due to
electron exposure to electrolyte or electrolyte diffusion to the
graphite surface, although the layer thickness growth after a few
charge—discharge cycles is not nearly as great as the amount during
the first cycle. The gradual thickening of the layer further consumes
Li ions, solvents, and salts and increases cell resistance. This
continuous SEI layer growth during the formation cycling process
lowers cell capacity and Coulombic efficiency.

It is worth mentioning briefly that a “SEI-like” layer forms on
cathodes, as well, by oxidation reactions of electrolytes at high
potentials [22,23], but its impact on cell performance is generally
less. Recent studies involving lithium-manganese-rich (LMR) NMC
materials (Lij;xNiyMn,Coq.x.y;07) for EV applications, show high
capacities when operated at high voltage [3,14,24—28]. This cath-
ode material has an operating window of 2—4.8 V vs Li/Li* and
capacities of 200—250 mAh/g [24], but only 150 mAh/g within the
typical operating voltage window (3—4.2 V) [15]. As the voltage
approaches 4.7 V vs Li/Li* (or even less), decomposition takes place
on cathode surface during charge or storage by oxidation of elec-
trolyte solvent organic carbonates (ethylene carbonate, dimethyl
carbonate ethyl methyl carbonate, propylene carbonate, etc.)
[21,22,29,30]. Since these carbonates have oxidation (highest
occupied molecular orbital (HOMO)) and reduction potentials
(lowest unoccupied molecular orbital (LUMO)) around 4.7 V and
1 V vs Li/Lit, respectively [21], they are decomposed by electro-
reduction at the anode below 1 V and by electro-oxidation at the
cathode above 4.7 V during charging or storage. The oxidation
potentials of these carbonates are further reduced at elevated
temperature (LIBs in vehicles or portable devices experience locally
increased temperatures) to 4 V at 40 °C and 3.8 V at 60 °C
[22,30—35]. Ethers and esters are not typically stable above 4 V
[36,37]. Other species in the electrolyte, such as lithium compounds
that are partially reduced at the anode and diffuse to the cathode,
have even lower oxidation potentials. Wursig et al. reported SEI
formation at 4.3 V vs Li/Li* and even at 25 °C on various cathode
materials [38]. Hence, at high potentials, cathodes suffer from in-
creases in resistance from SEI-like passivation layers as well as from
loss or migration of active materials such as Mn and Co. When
initial charge—discharge cycles and storage time are extended, the
resistance at the cathode increases even more than that of the
anode [39].
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Despite the importance of understanding the formation,
composition, morphology, and long-term structural and chemical
evolution of the anode SEI layer, these topics are not yet fully un-
derstood because of analysis and measurement difficulties. In fact,
the SEI layer formation mechanism is much less understood than
the resultant chemical and physical properties themselves. The SEI
is quite thin, a few hundreds of angstroms, and sensitive to mois-
ture and oxygen in the air that may convert SEI components into
different forms before or during analysis [40—42]. Because of the
environmental sensitivity, SEI analysis requires inert and well-
controlled conditions.

Functional properties for an ideal SEI layer are high electrical
resistance and high lithium selectivity and permeability. Physical
ones are a thickness close to a few A, high strength, tolerance to
expansion and contraction stresses (the SEI layer must accommo-
date expanding and contracting sub-surfaces during charging and
discharging, respectively), insolubility in the electrolyte, and sta-
bility at a wide range of operating temperatures and potentials.
Actual SEI layers seem to not yet have enough of these properties
because it has been found that they keep growing over repeated
charge—discharge cycles. This growth is closely related to lithium
loss from both the electrolyte salt and cathode lithium inventory, as
well as lithium diffusion resistance at the liquid interfacial zone
adjacent to the SEI layer and within the SEI itself. The lithium
consumption and diffusion resistance cause an increase not only in
the overall cell resistance but also in anode potential. The increase
in the anode potential is attributed to a lower number of Li ions in
the electrode after consumption at the SEI This increased anode
potential also induces a similar increase in cathode potential to
maintain a charge cutoff potential. When the cathode potential
increases and reaches a certain point, the cathode crystal structure
rearranges and distorts due to oxygen loss and transition metal
shifting [3,14,24,25]. The electrolyte also becomes less stable at
higher cathode potentials, which leads to solvent oxidation on the
cathode surface (for example LiPFg in ethylene carbonate (EC):
dimethyl carbonate (DMC)) is oxidized around 4.5 V vs Li/Li* during
charging [43—47]. This gradual SEI growth on the anode negatively
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Fig. 1. Energetics of the formation of the anode and cathode SEI layers under electro-
reduction and electro-oxidation conditions [21]. “Reprinted (adapted) with permission
from (Goodenough, . B.; Kim, Y. Chemistry of Materials 2010, 22, 587). Copyright (2010)
American Chemical Society.” (A colour version of this figure can be viewed online.)

affects cathode potential and stability. Therefore, forming a robust
and stable SEI layer on the anode carbon/graphite is essential for
long LIB lifetime and high capacity retention.

SEI formation generally takes days because scan rates are slow,
~+C/5 down to ~+C/20 [13,15], to form a denser SEI structure rather
than a highly porous one. After the first charge—discharge cycle,
formation cycles generally repeat at different scan rates and/or
different temperatures to build quality SEI layers. The longer the
times and greater the number of charge—discharge cycles, the more
expensive the process becomes, which also either lowers cell pro-
duction rate or increases capital expense (i.e. more cycling stations
required). If the electrical energy is not “recycled” (i.e. using the
energy of one cell after charging it from the primary electricity
source to charge another adjacent cell), the cost further increases.
Reducing the time for SEI formation would provide higher pro-
duction rates without needing extra space, equipment, and energy,
eventually reducing battery pack and plant costs.

3. Energetics of anode SEI formation

In LIBs an aprotic salt solution with low-molecular-weight
organic solvents are the most widely used electrolytes. These
electrolytes undergo decomposition at the graphite anode, and the
SEl layer is formed from these decomposition products, which then
dictates initial performance of the cell and long-term capacity fade
characteristics. Therefore, the question is can the electrolyte
decomposition be minimized or controlled to provide predictable
performance of the cell.

Fig. 1 shows the relative electron energies of the anode, elec-
trolyte, and cathode of a thermodynamically stable redox pair in a
LIB. In the figure, s and pic are the electrochemical potentials of the
anode and cathode respectively. The stability window of the elec-
trolyte is the difference between the energy of the LUMO and
HOMO. This window is shown as Eg. If 14 is above the LUMO energy,
then it will reduce the electrolyte, and, likewise, if ¢ is below the
HOMO energy, it will oxidize the electrolyte. The energy separation
between the anode and cathode needs to be as high as possible to
increase the energy density of the redox pair. The organic electro-
lytes used in LIBs have oxidation potentials around 4.7 V vs. Li/Li
and reduction potentials close to 1.0 V vs. Li*/Li. The intercalation
potential of Li into graphite is between 0 V and 0.25 V vs. Li*/Li,
which is below the reduction potential of the electrolyte. Thus, the
potential of the graphite electrodes falls below the stability window
of the electrolyte during charging, and it decomposes at the
graphite surface forming the SEL

4. SEI features, morphology, and chemical composition

If all of the decomposition reaction potentials for the SEI for-
mation are more positive than the anode Li ion intercalation po-
tential, the SEI would form more completely under fast kinetics
before the onset of the intercalation reaction. Once it is well
formed, the SEI should have high Li-ion conductivity and negligible
electronic conductivity. The electronically insulating property of
the SEI prevents further reduction of the electrolyte on the graphite
surface, while the ion conductive nature allows permeation of
lithium ions to the graphite surface and provides pathways for the
desired ion intercalation. To avoid cracking of SEI layers due to
stress from a volume change of graphite during intercalation and
de-intercalation and to avoid further passivation reactions, the
molecular force between the SEI layer and graphite surface should
be strong. Physically, the SEI layer should be strong or flexible
enough to accommodate the volume change (expansion during
charging and contraction during discharging) of the anode during
the cycling process. Ideally, the SEI layer should be uniformly
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distributed over the graphite surfaces. The chemical composition of
the SEI should contain stable and insoluble compact inorganic
compounds such as Li;CO3 rather than metastable organic com-
pounds such as ROLi and ROCO,Li (where R is an low-molecular-
weight alkyl group) [48,49], which is important for confining the
loss of lithium inventory to the first few cycles and minimizing
irreversible capacity loss. Insolubility of decomposed SEI compo-
nents to an electrolyte is important for high capacity retention
because loosing the components may induce new SEI formation
where they dissolved out. According to MD simulations from Tasaki
et al,, the heat of salt dissolution in ED/DMC is in the order of
[CH,0CO,Li], (LIEDC, —22 kcal/mol) < LiOCO,CHs; (—4 kcal/
mol) < LiOH < LiOCO,C;Hs < LiOCH3 < LiF < [LiCOy]; < LioCOs
(32 kcal/mol) < LiO (43 kcal/mol), indicating that inorganic Li;O
and LipCO3 are endothermic and hard to dissolve in normal oper-
ation temperature while organic [CH,0CO,Li], and LiOCO,CH3 are
exothermic and the most soluble among the listed SEI components
[50]. Inorganic products are hard to dissolve but can also diffuse
into an electrolyte when surrounded by soluble organic products.
Li»COs is generally abundant on a graphite anode than LiO; because
of low concentration of lithium on surface of the graphite anode
[51]. The concentration of LiO; can be increased on lithium metal
anode.

&*300 nm

300 nm

c)

Tum
d)

Tum

Fig. 2. SEI morphology at various formation potentials reported by Lu et al., (a) 0.7 V,
(b) 0.5V, (c) 0.3 Vand (d)0.0025 V. The right column images are higher magnification
(100,000x) of the images in left column (30,000x) [56]. “Reprinted (adapted) with
permission from (Harris, S. J.; Lu, P. J. Phys. Chem. C 2013, 117, 6481). Copyright (2013)
American Chemical Society.”

Fig. 3. TEM images of fresh graphite and SEI on graphite anodes cycled to four cutoff
voltages in 1.2 M LiPFg/EC during first charge reported by Lie et al., (A and B) Fresh
graphite electrode, (C) 1.3, (E) 0.6, (G) 0.1, and (I) 0.05 V. The insets of (D), (F), (H), and
(J) show element composition detected by EDX. The arrows indicate the SEI layer and
the edge of graphite, and the red spots indicate locations probed by EDX [57].
“Reprinted with permission from (Mengyun Nie et al. J. Phys. Chem. C, 2013, 117 (3),
1257). Copyright (2013) American Chemical Society.” (A colour version of this figure
can be viewed online.)

From a historical standpoint, the SEI has been thought of as
having a bilayer type structure. The layer near the interface of the
electrolyte is assumed to be porous and less dense, composed of a
large portion of organic components, and filled with electrolyte.
This outer, organic layer may undergo further reduction, so its
morphology may change in subsequent cycling. The inner layer
adjacent to the graphite is presumed to consist mostly of inorganic
compounds that protect the anode surface and prevent reduction.
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Thus, it is assumed to have a denser morphology with lower
porosity. In recent studies, the SEI structure shows a bilayer
structure in general, but in reality is more complicated [51—54]. For
example, according to the results of Takenaka's hybrid Monte Carlo
(MC)/molecular dynamics (MD) reaction simulation, inorganic salts
such as Li,CO3 are abundant near the anode surface and distributed
within the whole SEI film, becoming Li;COs3; junctions for the
organic lithium carbonates and stabilizing the SEI film [54]. Other
recent computational studies have also shown detailed and
complicated structures, even though they were based on many
simplifying assumptions. Considering real-world LIB systems
involving side reactions, impurities, and uneven current distribu-
tion, it is likely that SEI structures are even more complicated than
those depicted by fundamental simulations.

Recently Lu et al. studied the morphological evolution of the SEI
during the formation process [55,56]. Fig. 2 shows SEM micro-
graphs at two different magnifications of the graphite anode sur-
face from their study at different degrees of polarization during the
first charge. The SEI thickness increased as the formation cycle
proceeded (i.e. as the potential of the anode moved towards the
intercalation potential). According to their model, the SEI at the
beginning of the formation process contained mainly loosely held
organic polymer compounds. As the potential was lowered, the SEI
layer transformed into a more compact structure of inorganic salts.
Figs. 2 and 3 captures this morphological evolution [55,57].

The SEI layer formed at the graphite basal plane differs in
morphology and chemical composition from that formed at the
edge plane. The SEI formed at the basal plane does not need to have
ionic conductivity, but it does need to be electronically insulating
and impermeable to other electrolyte components. Since lithium
ions cannot intercalate into graphene layers across the basal planes,
these planes are ionic insulators and do not contribute to reversible
capacity. Hence, SEI formation at these locations should be mini-
mized to avoid unnecessary loss of lithium inventory. Due to the
different behavior of the SEI layer formed at basal and edge planes,
the true SEI formation potentials are not captured by conventional
electrochemical measurements.

The chemical composition and morphology of the SEI are
affected not only by the electrolyte, but also by the chemical
compositions and morphologies of carbon/graphite surfaces. In the
case of the 1 M LiPFg in EC:DMC electrolyte and highly ordered
graphite, the SEI at the edge plane is thought to be several times
thicker (several nm) than that at basal plane. A thicker layer on the
edge plane is consistent with the observation of higher reaction
current at the edge plane than the basal plane [58]. On the edge
sites for this particular case, the SEI is mainly composed of loosely
packed inorganic lithium carbonates, organic lithium alkali car-
bonates and polymeric compounds on the electrolyte side. On the
graphite side of the edge sites, the SEI is mainly composed of
densely packed LiF, Li;O, and Li;COs. In between these two phases,
there is an intermixed zone forming a trilayer structure. Overall, LiF
and Li;CO3 make up more than half of the SEI layer [59,60]. On the
basal sites, the SEI is composed of lithium carbonates more than LiF
on the electrolyte side.

On the graphite side of the basal sites, the SEI is composed of
similar portions of Li;O, LiF, and lithium carbonates with small
portions of polymeric compounds. LiF in the SEl is typically found in
fluorine system electrolytes such as LiAsFg, LiPFs, and LiBFa4.
Depending on LIB operating, anode sampling, and analysis condi-
tions, the compositions of the SEI may vary even with the same
electrolytes and electrodes used in a cell. LiPFg salts are unstable in
elevated temperature and may precipitate into LiF during storage or
operation. Lithium carbonates can be also decompose and form LiF
after reacting with HF. Hence, LiF may be found in the SEI more
frequently when there are other reactions before or during the

surface analysis. HF formation, particularly observed in the case of
LiPFg based electrolytes, is considered to dramatically affect the
performance of LIBs by attacking the SEI layer. HF production
during the SEI formation process is due to the reaction between
decomposition products of the LiPFg salt and traces of water in the
liquid electrolyte phase and/or adsorbed on the graphite surfaces.
In recent studies, the amount of LiF found in the SEI still varies
considerably from one study to the next. In particular, computa-
tional simulations rarely show LiF formation because they generally
do not consider impurities like water causing HF production or self-
decomposition from a salt, a poor assumption.

For the case of soft carbon in the same electrolyte, polymer and
solvent reduction products are more prevalent than salt reduction
products [61]. For other salts such as LiBF4, LiTFSI, or LiBETI, the
percentage of LiF is small and other carbonated species comprise
most of the SEI layer [62]. In general, SEI layers are composed of
densely packed inorganic compounds such as Li,O, Li,COs and LiF
on the graphite side and loosely packed inorganic and organic
species like Li;COs, lithium alkyl carbonate (ROCO,Li) and polymer
on the electrolyte side [63]. There are also other studies that argue
large portions of inorganic Li compounds such as LiF are also found
on electrolyte side [64—66]. These components, formed by solvent,
lithium salt, and electrolyte additive decomposition, are neither
uniformly distributed nor well-ordered within the SEI layer. These
semi-quantitative concepts about SEI compositions are much less
debated than those hypotheses with respect to exact composition,
morphology, structure, and formation. The reasons for the uncer-
tainty and inconsistency among different studies arise from anal-
ysis difficulty, different electrolyte compositions, different types of
carbon/graphite, various SEI formation processes, and other phys-
ical and environmental conditions (i.e. temperature). Table 1 from
Verma et al. provides a thorough list of the most agreed upon
compounds found in the SEI on graphite anodes [48].

5. Formation mechanism of SEI layer

There are various reduction processes that compete with each
other on the carbon/graphite surface during charging. The reactants
are solvents, salts, additives, and trace air impurities (such as wa-
ter). Electrochemical reaction rates differ depending on their
intrinsic properties such as reductive potential, reduction activa-
tion energy, and exchange current density. They also depend on
reaction sites (basal or edge), pre-decomposed precipitate sites,
and many other different anode surface conditions [58,93—96].

Temperature, concentration of electrolyte salt, and reduction
current rate significantly affect SEI formation as well [97]. When all
of these variable conditions are mixed, it is difficult to analyze the
SEI formation mechanism. However, it is generally accepted that
LiPFg precipitates in the form of LiF or LixPFy after reduction. Car-
bonates from the electrolyte solvent precipitate with lithium ions
in form of Li,COs, lithium alkyl carbonate (ROCO,Li), or other
organic compounds. While LiF, LiyO, Li;CO3 and other insoluble
products remain on the graphite surfaces as components of SEI
layers, some soluble products from solvent decomposition may
diffuse back into the electrolyte. Most reduction processes take
place between 0.8 V and 0.2 V vs Li/Li* on highly ordered graphite.
When the SEI is not fully developed, reduction continues below
0.2 V while lithium ions and solvent co-intercalate into the gra-
phene planes. If this co-intercalation is excessive, the SEI layer may
not fully develop because of continuous exfoliation. Fig. 4 illustrates
these processes graphically.

In general it has been accepted that the SEI formation is a two-
step process. During the first step when the graphite electrode is
polarized, the components in the organic electrolyte undergo
reductive decomposition to form new chemical species. In the
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Table 1

List of known chemical compounds formed on the surface of carbon/graphite SEI layers (“Present” denotes that the compound was identified in the references given, and “Not
Present” denotes that the compound was not identified) [48]. “Reprinted from Electrochimica Acta, 55, Verma P, Maire P, Novak, A review of the features and analysis of the solid
electrolyte interphase in Li-ion batteries, 6332, Copyright (2010), with permission from Elsevier.”

Present Not Notes

present

Component

(CH,0C0,Li); [66—69]

Being a two electron reduction product of EC; it is found mostly in the SEI formed in EC based electrolytes.
They are present in the outer layer of the SEI They occur in most PC containing electrolytes, especially when the concentration of

It may also appear as a reaction product of semicarbonates with HF, water, or CO>.

Most commonly found in the SEI formed in ether electrolytes like tetrahydrofuran (THF), but may also appear as DMC or ethyl

methyl carbonate (EMC) reduction product [72]. It is soluble and may undergo further reactions [79].

Mostly found in electrolytes comprising of fluorinated salts like LiAsFg, LiPFg, LiBF4. It is a major salt reduction product. HF

contaminant also reacts with semicarbonates to give LiF byproduct. Amount of LiF increases during storage [74].

It may be a degradation product of Li,CO3 during Ar+ sputtering in the XPS experiment.

Present in the outermost layer of the SEI, close to the electrolyte phase. This part imparts flexibility to the SEI
It is mainly formed due to water contamination [89,90]. It may also result from reaction of Li20 with water or with aging [75].
It is found to be present in 18,650 cells assembled in Argonne National Laboratory containing 1.2 M LiPFg in EC:EMC (3:7)

electrolyte. Li carboxylate and Li methoxide were also found in their SEI [75].

ROCO,Li [66,67,70,71]
PC in the electrolyte is high.
Li,CO3 [67,68,71,72] [70,73
—75]
ROLi [73,75—78]
LiF [72,74,80]
Li,0 [74,81,82]  [80,83
—85]
Polycarbonate [80,86]
LiOH [69,87,88]  [80,81]
LiC,04 [75,78]
HF [91,92]

It is formed from decomposition LiPFs and the water in the solvents. It is highly toxic and can attack components of the cell.

Examples of elements
on graphite

Potential vs. Li/Li*

< 1;'4'V
SEl formation
from additive
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Lithium intercalation
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Fig. 4. Schematic of the anode SEI formation process showing (a) graphene layers surrounded by electrolyte salts and solvents above 1.4 V vs. Li/Li*, (b) propylene-carbonate (PC)
intercalation with lithium ions into graphene layers resulting exfoliations below 0.9 V vs. Li/Li* and (c) stable SEI formation in ethylene-carbonate (EC)-based electrolyte below 0.9 V
vs. Li/Li*; plane side with thinner SEI and edge side with thicker SEIL (A colour version of this figure can be viewed online.)

second step, these decomposition products undergo a precipitation
process and begin forming the SEI layer until all the sites on the
graphite surface are covered. Even though several studies have
been conducted to understand the formation mechanism of the SEI,
it has been a major topic of debate, which centers on the reduction
pathways, especially of the solvent molecules. There are typically
four different reactions possible during the first cathodic polari-
zation of the graphite electrode. The pathways of the four reactions
are shown schematically in Fig. 5.

The ionic radius of a Li ion (0.59 A) [99] is much smaller than the
corresponding anionic counter ion in the salt. Due to this size dif-
ference, Li ions are strongly solvated in the electrolyte solution,
which also contains weakly solvated anions (such as PFg) and
isolated solvent molecules [100]. The solvated Li ions diffuse to-
wards the surface of the graphite electrode due to the concentra-
tion polarization in the liquid phase. At the graphite surface, these
solvated ions can undertake different pathways leading to different
reductive decomposition products.
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Fig. 6. Decomposition and precipitation pathways of ethylene carbonate anion.

i. Intercalation of Li ion without the solvation shell into the

graphene layers.

ii. Heterogeneous transfer of electrons from the solid phase
graphite electrode to the solvent molecules.

iii. Co-intercalation of the solvent molecules with the solvated Li

ions into the graphene layers.

iv. Heterogeneous transfer of electrons from the solid phase
graphite electrode to the salt anions.

These possible pathways are based on electron transfer to salts/
solvents in electrolyte solutions caused by the cathodic polarization
of the electrode, thermodynamic simulations using molecular
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orbital calculations, and ionic sizes. Among these possibilities, re-
action (i) is the desired reaction and leads to the faradaic current
within the cell. This reaction occurs at a potential more negative
than the potential of the other reactions, so during cathodic po-
larization, other reactions are preferred until the potential drops
close to the intercalation potential. Reactions (ii) and (iii), which
address the reduction of the solvent molecules, are the major
source of debate in the literature. According to Dahn and Aurbach,
the reduction of a solvent molecule (for example [EC]-) is a one-
electron reaction occurring at the surface of the graphite. There-
fore, according to this hypothesis, reaction (ii) proceeds with the
solvent molecule being reduced to form an intermediate radical
anion. This radical anion undergoes further decomposition ac-
cording to one of the pathways shown at Path 1 or 2 in Fig. 6, and
finally solid lithium ethylene dicarbonate (LIEDC) precipitates as
shown below the Path 2. Aurbach [49,79] also argued that LiEDC is
extremely reactive with traces of water in the electrolyte and forms
Li;CO3 upon reacting.

According to the second theory proposed by Dey et al. [101],
Besenhard et al. [102] and Chung et al. [103], reaction (iii) is a more
preferred reaction and [EC-] undergoes a two-electron reduction
reaction. The solvated Li ions are co-intercalated into the graphene
layers held by weak van der Waals forces and form intermediate
ternary graphite intercalated compounds (GIC) such as [Li(Sol)xCy].
The ternary GICs are subsequently reduced to form the SEI Since
the literature supports both hypotheses, the proposed mechanisms
are still debated. Reaction (ii) and reaction (iii) may even compete
against each other and both might occur in parallel during the SEI
formation process. Reaction (iv) is the heterogeneous transfer of
electrons directly to the salt anions to form inorganic SEI products.

6. Methods of analyzing and characterizing the SEI layer

SEI layers easily react with ambient CO, and H;O to form inor-
ganic lithium-containing compounds such as Li;CO3 and Li,O
[42,89,104]. Hence, washing the electrode in electrolyte solvents for
analysis can easily introduce artifacts in the morphology and
chemical composition of the SEI layer. For example, ROCO,Li and
ROLi react with CO; to form Li»CO3 [105]. The lithium in the SEI will
also react spontaneously with atmospheric oxygen to form various
lithium oxides (LiyO, LiO, and LiO,) [36]. These oxides are strong
nucleophiles and react further with organic solvents and semi-
carbonates to form carbonates and alkoxides [106]. Thus, special-
ized sample chambers are necessary when transferring SEI speci-
mens from the inert atmosphere of a glove box to an analytical
instrument to avoid chemical contamination and physical damage.

A variety of tools and techniques have been used to analyze the
SEIl, including traditional electrochemical methods such as elec-
trochemical impedance spectroscopy (EIS) and Cyclic Voltammetry
(CV). EIS is a nondestructive analysis tool, which provides useful
information from a complex electrochemical system having a
diffusion layer, electrolyte resistance, electrode kinetics, and
double-layer capacitance [55,64,107—114]. To diagnose EIS spectra
properly, a good equivalent circuit model is required. CV, which
measures current in the anodic (oxidation) and cathodic (reduc-
tion) directions, has also been successfully implemented to un-
derstand the SEI [112,114—119]. Traditional tools of scanning
electron microscopy (SEM) [38,55,64,112,116,120—123], trans-
mission electron microscopy (TEM) [65,118,121,124,125], scanning
tunneling microscopy (STM) [119,126], atomic force microscopy
(AFM) [64,85,126], and Ellipsometry [115] have been implemented
to image the surface features and morphology of the SEI. TEM can
also show surface crystallinity, in-situ interface formation, and
lithiation/delithiation in operando [127—129]. AFM is a useful tool
for studying SEI morphology and thickness because it can measure

differences in depth at Angstrom resolution. Ellipsometry is a non-
destructive optical tool that measures thickness and roughness of
thin films by using reflectance ratios, but its weakness is that the
measured signal depends not only on thickness, but also material
properties.

Because the anode SEI is a thin layer on graphite, surface anal-
ysis tools such as X-ray photoelectron spectroscopy (XPS)
[16,55,62,64,65,91,110,112,116,118,121,123,124] and Fourier trans-
form infrared spectroscopy (FTIR) [64,118,125,126] have been used
for characterization because of their surface sensitivity and chem-
ical identification ability. Raman spectroscopy [16,64,121], X-ray
diffraction (XRD) [16,121], Secondary lon Mass Spectrometry
(SIMS) [55,65], nuclear magnetic resonance (NMR) [92,109,110,118],
neutron reflectometry (NR) [130], small-angle neutron scattering
(SANS) [131], and temperature-programed desorption mass spec-
trometry (TPD-MS) [120] have also been successfully applied to
identify SEI surface species.

7. Effects of carbon/graphite properties on SEI formation

Carbons are widely used as LIB anodes because of their stability
and low working potential. Graphite is a crystallite and the most
stable allotrope of carbon. It has perfect stacking of graphene layers
in AB form and in some cases ABC form. In general, aggregates of
perfectly stacked graphite crystallites exist with different orienta-
tions in an electrode. Graphite has a redox potential very close to Li/
Li*, is safe, is the most stable form of carbon, is environmentally
benign, and has low (pre-processed) cost. A lithium atom is inter-
calated between the graphite layers to form an intercalation com-
pound (i.e. LiCg) during LIB operation [19,20]. The intercalation
reaction prevents the deposition of metallic lithium on the graphite
surface and avoids dendritic growth making these types of LIBs
safe. The lithium-ion charge is also maintained, essentially elimi-
nating the activation energy associated with the formation of a
chemical bond. The carbon is reduced to maintain charge balance.

Fig. 7 shows an aggregate graphite particle and the graphite
layers within that particle. In a crystallite of graphite, the two
characteristic surfaces are referred to as basal and edge planes. The
surfaces parallel to the graphene layers are called basal planes, and
the surfaces normal to the graphene layers are edge planes. Lithium
predominantly intercalates into the graphene layers through the
edge planes in the direction parallel to the basal plane. The SEI
formation process also differs at these two planes. Thus the ratio of
basal plane to edge planes determines electrochemical perfor-
mance of graphite electrodes. Different types of graphite such as
highly oriented pyrolytic graphite (HOPG) and natural graphite
have been used as anodes. Since the basal plane to edge plane ratios
will differ in different forms of graphite, the SEI formation process
will be different, as well as the chemical and physical properties of
the SEl layer. In turn, these property differences will affect electrode
performance during early life and the shape of the long-term ca-
pacity fade curve.

The SEI layer forms differently depending on composition and
structure of carbon/graphite surface. The key factors for SEI for-
mation are particle size, basal-to-edge-plane ratio, pore size, de-
gree of crystallinity, and surface chemical composition (adsorbed
species) [132,133]. The surface area of small particles is greater than
that of large ones for the same weight. Smaller particle size
generally causes more edge sites, as well as more SEI formation
surface area. The decomposition on basal planes and edges differs
because edge sites provide better reactivity than basal ones. Hence,
electrolyte decomposition occurs at edge sites first. The edge sites
are also the access points for lithium intercalation to graphene
layers. Lithium ions diffuse along with solvent molecules and salts.
At a potential lower than 0.2 V vs. Li/Li*, lithium intercalation into
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the graphene layers via edge sites begins. This intercalation gen-
erates concentration differences inducing solvent and salt reactants
to move towards the edge sites and decompose there if the edge
sites are not fully occupied by the SEI layer. This process also results
in a thicker SEI on edge sites than on basal planes.

Few studies have been reported on the effect of the graphite
particle size distribution, porosity, surface roughness, surface
chemistry and crystallinity [120,132,134—137]. Graphite with low
specific surface area tends to exfoliate more. As the surface area is
decreased by heat treatment, the number of surface defects in-
creases and the exfoliation tendency of the graphite further in-
creases. Above a critical specific surface area of 0.2 m?/g, the
exfoliation tendency is suppressed in the absence of surface defects
[120]. Graphite particle sizes with surface areas of 1-5 m?/g may
mitigate exfoliation without introducing excessive irreversible ca-
pacity loss. The degree of graphite crystallinity is also an important
factor in SEI formation, and highly ordered graphite is preferred for
high-energy LIB anodes. When the particle size is small, irreversible
capacity loss increases due to larger surface area for lithium in-
ventory loss during SEI formation (a side benefit, though, is that the
power density increases with smaller anode particle size).
Increasing graphite size is one way for lower irreversible capacity
loss and higher energy density, but large particle sizes increase the
probability of exfoliation.

Chemical composition on carbon/graphite surfaces may also
affect the exchange current density and potential for SEI formation,
as well as wettability of electrolyte, chemical adhesion between
carbon and the SEI layer after decomposition, and between carbon
and electrolyte before decomposition [64,93,138—144]. The pres-
ence of oxygen species on graphite surfaces increases the reduction
potential vs Li/Li” and helps early SEI formation before lithium
intercalation. The presence of these species has been shown to be
vital in SEI formation by serving as nucleation sites for electrolyte
decomposition, and a lack of them can hinder the decomposition
reactions and increase the exfoliation of the graphene layers [145].

Oxygen species on graphite surfaces can be attached by heat
treatment in various environments. Natural graphite usually has
oxygen-containing species on its surface, although the degree of
crystallinity may not be that high. To increase it, calcination in air
produces more crystallites and increases the adsorbed oxygen-
containing species.

8. Effects of electrolyte composition on SEI formation

LIB liquid electrolytes are commonly composed of a combina-
tion of low-molecular-weight organic solvents like ethylene car-
bonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC),
ethyl methyl carbonate (EMC), or propylene carbonate (PC) and
lithium salts like LiPFg or LiBF4. Because of the high oxidation po-
tential (4.7 V vs. Li/Li*) of these organic carbonates, SEI formation is
prevented on the cathode surface during charging. PC had histori-
cally been a widely used solvent because it is a liquid at cell oper-
ating temperatures and has a high dielectric constant (e = 64) [ 146].
The dielectric constant is an important indicator that predicts de-
gree of salt dissolution. The drawback of using PC is severe solvent
co-intercalation with lithium ions into graphite that exfoliates the
graphene sheets, forming decomposition products within the
sheets and releasing gases like propylene. Instead, EC is widely used
because of its high dielectric constant (¢ = 89) and stable SEI for-
mation, although its high viscosity and melting point of 36 °C
require thinning solvents such as DMC, DEC, and EMC. For example,
1-1.2 M LiPFg in 1:1 wt ratio of EC/DEC is a common electrolyte
composition. In mixtures of EC/DEC or EC/DMC, LiPFg dissolves well
and yields ionic conductivities of up to ~1072 Sjcm~', a high
reduction potential of 1.3 V vs Li/Li*, and an oxidation potential of
above 4.5 V vs Li/Li*. This combination results in excellent elec-
trolyte properties, but it is highly flammable.

LiClO4 has high ionic conductivity (5.6 mS/cm in PC, 8.4 mS/cm
in EC/DMC) and may form less resistive SEI layers than LiPFg and
LiBF4 due to no LiF decomposition. The drawback is thermal
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instability that the salt reacts with solvents at elevated temperature
and it is explosive. LiBF4 shows better thermal stability and less
sensitivity to moisture than LiPFg. But it was not commonly adopted
in industry because of low ion conductivity (3.4 mS/cm in PC,
4.9 mS/cm in EC/DMC): about 40% lower than LiPFs (5.8 mS/cm in
PC, 10.7 mS/cm in EC/DMC) and high resistance of SEI from LiBF4
electrolyte [147]. Lithium Bis(trifluoromethanesulfonyl) imide(Li
Imide) is highly ion-conductive (5.1 mS/cm in PC, 9.0 mS/cm in EC/
DMC) and thermally stable: no decomposition until 360 °C. But it
has a serious Al corrosion issue. LiAsFg is not adopted in industries
because of concerns about the toxicity of As(V) although it has high
ion conductivity. LiPFg is a well-known salt that is currently used in
industries. It may not be the best in all requirements for an elec-
trolyte but well balanced. In terms of safety, an inorganic electro-
lyte of LiBF4 in 1-ethyl-3-methylimidazolium tetrafluoroborate
(EMI-BFy) is one alternative due to its higher boiling point than
LiPFs in EC/DEC and non-flammability. EMI-BF4 also has a higher
oxidation potential, but its ionic conductivity is lower due to the
high solvent viscosity. Lithium bis(oxalato)borate (LiBOB) also has
less thermal reactivity. It is used as a salt by itself or an additive in
an electrolyte. LiBOB stabilizes the graphite structure effectively
even in pure propylene carbonate (PC) and facilitates SEI formation
on the surface of electrode materials. On the other hand, its solu-
bility and conductivity in other common solvents such as EC and PC
are inferior. However, these limitations are improved by using a
more appropriate solvent such as dimethyl sulfite (DMS) with y-
butyrolactone (yBL) [148,149].

In order to enhance early and stable SEI formation on the
graphite anode surface and to prevent exfoliation during the
lithium intercalation, liquid additives are often used in organic
electrolytes. The most commonly used additive is vinylene car-
bonate (VC), and it has lower reductive activation energy (13 kcal/
mol) and higher reduction potential (1.05—1.4 V Li/Li*) than EC
(24.9 kcal/mol and 0.65—0.9 V Li/Li", respectively) and PC
(26.4 kcal/mol and 0.5—-0.75 V Li/Li*) [36,150,151]. VC added to PC
promotes reductive decomposition at potentials around 1.3 V.
About 3 wt% of VC is usually incorporated and improves cycle life
and Coulombic efficiency by creating a more stable SEI layer. During
the first charging step, VC in EC or PC increases the reduction po-
tential by around 0.2 V, so the solvent mixture decomposes earlier
in the formation process than without VC, which starts building an
enhanced SEI layer before lithium intercalation begins. When VC is
used in EC, it is possible to have large portions of polymer species in
SEI [152].

Tasaki et al. investigated the reduction activation energy of
various additives in the presence of a lithium anode [150]. This
study showed that reduction activation energy (energy difference
between the reactant and its transition state) of VC is 13 kcal/mol,
which is lower than that of EC (24.9 kcal/mol) and PC (26.4 kcal/
mol) and indicates the tendency of VC to reduce easier than EC or
PC. Regarding reduction potential, Yoon et al. [153] reported
reduction potentials of various additives including VC and N-
substituted caprolactam (CL) derivatives. The reductions of CL, VC,
and EC take place at 1.10 V, 1.05 V, and 0.65 V vs. Li/Li™, respectively.
Jung et al. [154] also obtained similar results via DFT calculations
and experiment and showed that EC (0.6 V vs. Li/Li", —55.9 k]/mol
Gibbs free energy of reduction) has lower reduction potential than
VC (0.75 V vs. Li/Li*, —=160.0 kJ/mol Gibbs free energy of reduction),
which agrees with the calculations of Tasaki et al. On the other
hand, Wang et al. [155,156] found different results from a polarized
continuum model in calculating reduction activation energy of
(EC)yLit(VC), n = 1-3. Ring-opening barriers of EC (8.8—11.1 kcal/
mol) were found to be lower than that of VC (20.1-21.1 kcal/mol)
for reduction reactions, and a major conclusion was that EC de-
composes more readily than VC because VC acts as a stable anion

intermediate and assists nearby EC reduction. Although the calcu-
lations from Wang et al. [156] yielded slightly different results,
agreement was found that VC increases solvent reduction reaction
rates. Considering reduction potential, reaction enthalpy and acti-
vation energy, VC is reduced before EC and PC do during a reduction
cycle (charge) although the reduction products of VC may not be as
stable as those of EC and PC [153]. In industry, many different
proprietary additives are used in even more combinations together
with variations on the formation protocol, and the resulting SEI
structures are closely guarded.

9. Relationship between electrolyte decomposition reactions
and LIB formation protocol

In 1979, Peled first used the term solid electrolyte interphase
(SEI) for the LIB anode passivation layer [140], and, in 1990, Dahn
et al. discovered the advantage of using EC in the electrolyte for
forming the SEI [157]. Before the use of EC was commonplace, PC
was the most widely used LIB electrolyte solvent, which was highly
compatible with lithium metal anodes. Early LIBs implemented
lithium anodes, but dendrite growth was a problem in terms of
safety and long-term performance [158—161]. Once the discovery
of graphite as a safe, high-performing anode intercalation material
was made, its major drawback was also quickly discovered. PC
easily co-intercalates with lithium ions and exfoliates the graphene
layers during electrolyte decomposition, while also releasing pro-
pylene gas. Attention shifted to using amorphous carbons having
little crystallinity because they tended to exfoliate much less in PC
based electrolyte solutions and showed good reversible capacity.
The problem with these materials, though, was high initial capacity
loss due to thick SEI layer formation. When Dahn et al. found that
EC reduced the first-cycle capacity loss (due to a much thinner SEI
layer formation) and increased the stability of the SEI by mitigating
exfoliation of graphite, solvent mixtures high in EC concentration
were mainly used. As the appreciation of having a stable, durable
SEI has grown since the early 1990s, much effort has been dedi-
cated to: 1) improving its formation by using additives that result in
better SEI-layer architectures; 2) modifying the anode surface for
improving exchange current density and charge—discharge reac-
tion kinetics; 3) implementing charge—discharge cycles that
enhance layer formation; and 4) developing alternative electrolytes
that result in less lithium inventory loss during formation.

Current densities, cut-off voltages, and temperatures used dur-
ing formation cycling have all been shown to have a profound effect
on the chemical and microstructural properties of the SEI layer. It
starts to form around 0.8 V vs Li/Li*, and the thickness gradually
increases until around 0.3 V vs Li/Li". At higher charging anode
potentials vs Li/Lit, the SEI is composed of loosely aggregated
organic components with lower ionic conductivity. As the anode
potential drops, the SEI becomes more compact and begins to
contain inorganic components with higher conductivity. The ki-
netics of the different SEI forming reactions can be exploited by
varying the current densities and temperature. At higher current
densities, the formed SEI has a more porous nature with high
electronic and ionic conductivity. At lower current densities, the
formed SEI is denser with lower electronic conductivity and higher
ionic conductivity, which is the main reason formation protocols
have historically required extremely low first-charge (and even low
second and third charge) rates [121,162,163]. Elevated temperature
also enables formation of a stable SEI.

Few studies have been reported on electrolyte wetting of elec-
trodes, although it is an important factor for reducing SEI formation
time and manufacturing resources that directly affect LIB pack cost.
In fact, wetting takes the majority of cell production time and in-
volves many of the latter manufacturing steps such as addition of
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insulators, seals, and safety devices [7]. It takes many hours for
electrolyte to completely wet the separator and reach the smallest
pores of the electrodes [15], and studying wetting transport phe-
nomena without a complete cell assembly facility is difficult.
Wetting electrodes (at low vacuum pressures during electrolyte
filling and subsequently at elevated temperature after cell sealing)
with electrolyte and forming SEI layers requires ~0.5—2 weeks for
the entire process [7,15]. Wood et al. reported costs for a general
wetting and formation process, which showed the SEI formation
can contribute up to $32—33/kWh of usable energy for the battery
pack cost (out of a total cost of ~$500/kWh) [15]. Anode and
cathode electrodes need to be fully wetted with electrolyte during
the initial portion of formation cycling, which is the process of the
first 12 successive, slow and shallow charge—discharge cycles of a
cell's life where the anode SEI layer is first formed. The initial
wetting process is slow because the electrolyte has to permeate
into all pores of the separator and electrodes in a near fully
assembled cell. Evacuating gases out of the pores under high vac-
uum during cell assembly can accelerate infusion of the electrolyte
and enable uniform distribution, although it requires more equip-
ment and processing expense. Even under an evacuated condition,
the smallest pores of the electrodes and separator may not fully wet
unless they have a higher surface energy than the electrolyte. This
situation is due to the competition between hydrodynamic forces at
low pressure and non-wetting surface forces (the smaller the pore
size, the lower the vacuum pressure needed to make a non-wetting
liquid enter a pore). To avoid costly and time-consuming vacuum
pumping, both electrodes (and the separator) should have high
wettability of the electrolyte for full active material utilization
during the formation cycling process. The formation process cannot
commence until full wetting of all component porous volume is
achieved. Wettability of the electrolyte into the electrode pores can
be enhanced by lowering surface tension of electrolyte with an
additive(s) or by increasing the composite surface energy of the
electrode. Stable SEI formation also requires proper char-
ge—discharge protocols that involve significant time due to slow
charge rates between C/5 and C/20 [15]. Simply increasing charge
rates for fast SEI formation results in incomplete, non-uniform,
electrochemically unstable layers or deposits [121,171—173],
thereby lowering cell efficiency, durability and safety. Similarly,
insufficient electrolyte wetting leads to a low-quality SEI layer,
inactive surface area, and/or premature cell performance

Table 2

degradation.

Electrolyte wetting and charge rate, particularly first-charge
rate, are highly interlinked by a symbiotic electrochemical and
mass transport relationship. In order to reduce formation time
without losing cell performance, it is pertinent to fully review the
current understanding of the SEI formation process, composition,
morphology, structure, and their combined effects on both short-
term (irreversible capacity loss) and long-term performance (ca-
pacity fade).

During SEI formation, lithium ions react at extremely electro-
reducing potentials (close to 0 V vs. Li/Li*) with electrolyte sol-
vents and salts and anode electrons via electro-reduction reactions
during charging. The reduced reactants precipitate and form the
passive anode SEI layers, and reported reactions are enumerated in
Table 2. SEI formation takes place mainly during first charging due
to abundant electron availability to the electrolyte constituents
because of negligible electrical resistance on the anode active ma-
terial surface.

The reduction processes for EC and PC on a charging graphite
anode are very similar, yielding similar SEI chemical compositions,
but the layers behave differently during subsequent char-
ge—discharge cycles (i.e. irreversible capacity loss and capacity
fade) due to different bulk properties (i.e. thickness, porosity, tor-
tuosity, etc.) of the reduction species [140,174,175].

An electrolyte system with LiPFg dissolved in an EC:DMC
mixture is mostly stable above 1 V vs. Li/Lit [55,65,154], and no
significant decomposition occurs. At potentials below 1 V vs. Li/Lit,
minor decomposition of the electrolyte species may occur,
depending on the surface chemistry and morphology of graphite
and the nature of electrolyte additives. Temperature and charge
rate below this potential threshold also affect the decomposition
reaction rates and products [113,114,125]. Disordered carbonaceous
structures have a broader range of decomposition potentials than
highly oriented ones because of differing reaction site energetics
[64]. Graphite surface coatings or modifications can also alter the
decomposition potential range. In some cases, minor amounts of
highly resistive LiF precipitates can form in the SEI above 1 V vs. Li/
Li* due to the stability of PF5 in a compact polar solvent such as EC
[92]. This LiF is sometimes detected during the early stages of
electrolyte decomposition in nanometer-sized crystallites [55]. PF5
is known as a strong Lewis acid that can also react with traces of
water to produce HF, eliminate alkyl carbonate from lithium alkyl

SEI formation and electrolyte decomposition reaction categories corresponding to reaction paths in Figs. 8—11.

Reaction group  Reaction index

Ethylene carbonate One-electron

E1[58,79,109,113,164], E2 [145,155], E3 [145,155], E4 [145,155], E5 [155], E6 [58,79,109,113], E7 [109], E8 [109]

(EC) reduction
Two-electron E9 [155,165,166], E10 [58,62,66,79,109,150,155,165—167], E11 [55,145,155], E12 [55,60,62,79,91,125,155]
reduction
Secondary E13 [145,168], E14 [145], E15 [145,167,168], E16 [145,167], E17 [145], E18 [145,167,168], E19 [165,166,168], E20 [125,166,169],
reaction E21 [62,166,170], E22 [17,145]
Propylene One-electron P1[37,58,126,164], P2 [109,126], P3 [37,126], P4 [37,42], P5 [58,109,126], P6 [109], P7 [109]
carbonate (PC) reduction
Two-electron P8 [17,58], P9 [58,79,126], P10 [17,168]
reduction
Secondary P11 [165,168], P12 [104,168], P13 [165,168], P14 [37,104,168], P15 [17,165,168], P16 [125,165,166], P17 [37], P18 [37], P19 [37]
reaction
Linear carbonate  One-electron L1[166,167], L2 [164]
(LC) reduction
Two-electron L3 [62,91], L4 [62,91]
reduction
Secondary L5 [165,167,168), L6 [165,167,168], L7 [17], L8 [17,104,165,166,168,169], L9 [17,145]
reaction
Salt S1[17,91,92,145,165—170], S2 [17,55,165—167], S3 [17,60,145,165—169], S4 [165—168], S5 [17,91,92], S6 [91], S7 [91], S8

[17,42,60,104,165,168], S9 [17,42,104,165,168], S10 [17,42,104], S11 [165,166]
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carbonate, and react with solvent carbonyl groups to produce
insoluble ether-containing species [17,92,145]. At higher anode
potentials, decomposition products like LiF are usually generated
on graphite edge plane sites, which are preferable for nucleation
due to a lower energy requirement than on basal plane sites.
Fortunately LiF generation is kinetically slow and the amount of
decomposition is small above 1 V vs. Li/Li*.

It is well accepted that most of the SEI layer formation takes
place within the potential range of 0.2—1.0 V vs. Li/Lit. However,
the formation mechanism(s) is highly debated. There have been
two different concepts on the SEI formation process hypothesized,
although their final structures are mostly alike. One concept follows
a one-electron transfer to the electrolyte at high potential and a
multi-electron transfer at low potential [55,145]. In other words,
“bulk” lithium compounds (precipitates) are first partially reduced
at high potential by a one-electron process due to insufficient
electrons with low electron transfer resistance from electrode to
electrolyte for complete reduction. At low potential, “compact”
lithium compounds are generated from further reduction of pre-
existing bulk lithium-containing precipitates on the anode surface,
or directly by complete reduction of lithium compounds in elec-
trolyte driven by high energy at low potential. The second concept
supposes little or no precipitates preoccupying the anode graphite
surface at high potential. Hence, electrons can transfer to electro-
lyte constituents without interference from resistive interfacial
compounds. This high electron transfer rate induces compact
lithium compound formation at higher potentials, and, as the po-
tential is lowered and the decomposition layer thickens, electrolyte
solvent molecules are gradually reduced. Subsequently, partially
reduced bulk lithium compounds precipitate on top of the resistive
compact layer to a greater extent as the potential reaches ~0.2 V vs.
Li/Li™.

Proponents of both hypotheses agree that major SEI formation
begins around 0.8 V vs. Li/Li™, but it can be higher for certain highly
porous carbonaceous active materials [131]. In an ideal situation,
the SEI formation will occur prior to lithium intercalation, which
prevents co-intercalation of electrolyte constituents. For highly
oriented graphite, lithium intercalation occurs at 0.2 V vs. Li/Li* or
less, but it can start at slightly higher potentials in disordered or
porous carbons [64,116,131]. Within the potential range of
0.6—0.8 V vs. Li/Li*, electrons at the graphite surface transfer to the
liquid electrolyte containing solvated lithium ions. These cations
diffuse towards the graphite particles with an average of four
strongly coordinated solvent molecules and an uncoordinated PFg
anion [118]. Uncoordinated solvent molecules are less likely to
accept an electron because they are more stable than those asso-
ciated with lithium ions. Most decomposition products from
electro-reduction precipitate on the anode surfaces, while minor
amounts diffuse back into the liquid phase and eventually re-
precipitate elsewhere. Decomposition reactions prefer graphite
edges because these sites usually include defects that are unstable
and tend to be highly reactive. As the reaction rate on edge sites
slows due to an increase in the coverage of precipitates, decom-
position takes place on basal planes as well. These electrolyte
decomposition reactions are irreversible and result in loss of
lithium ions (cathode lithium inventory), solvent molecules, and
salt anions (see Table 2 and Figs. 8—11) [145].

Below 0.6 V vs. Li/Li", a much greater extent of electrolyte
decomposition takes place [55]. Dense inorganic lithium com-
pound formation (i.e. LiOy, Li,CO3 and LiF) is highly favorable at
edge sites because of low electronic resistance to reducing solvent-
coordinated lithium ions. Some less dense inorganic species such as
lithium alkali carbonates and other organic species generally
decompose on basal planes where reactions are less favorable.
Since electronic resistance increases when a dense inorganic film is

present on the graphite surfaces, subsequent decomposition onto
the inorganic compounds will involve only partial reduction
resulting in precipitation of loosely aggregated compounds such as
lithium alkyl carbonates, or polymers. A portion of the lithium alkyl
carbonate can be further reduced to form LiO> or Li»CO3 and release
ethylene (from EC), propylene (from PC), or CO, gases [131]. The
release of these gases may cause cracks in the existing SEI layer or
even expose new anode graphite surface to electrolyte for further
SEI decomposition reactions (further consuming lithium
inventory).

A second or even third formation charging is usually needed to
completely form a stable SEI layer for long LIB lifetimes. These
subsequent charging half-cycles are often at progressively faster C
rates.

10. Prospects for improving SEI properties and reducing
formation time

Reducing LIB formation protocol time is necessary to lower
production cost of cells (and ultimately packs) and manufacturing
capital costs. The process currently lasts from about 4—5 days up to
~2 weeks depending on the cell chemistry, and it consumes a great
deal of process energy (low-grade heat and electricity). In addition,
it is also a substantial process bottleneck unless an inordinate
amount of formation cyclers are used. SEI formation time can be
reduced four ways: 1) by mixing additives into the electrolyte to
form the SEI compounds more quickly and/or alter the overall
composition of the SEI layer; 2) by modifying the anode graphite
surface chemistry or substitution of the inactive binder and
conductive additive materials with those having better wettability;
3) by charging and discharging the cells at higher rates within
certain portions of the operating voltage window; and 4) by
increasing the cell temperature during wetting and SEI formation.

Besides the popular vinyl carbonate (VC) additive, fluoro-
ethylene carbonate, diphenyloctyl phosphate, acetyl caprolactam,
3-fluoro-1,3-propane sultone, prop-1-ene-1,3-sultone, and others
have been proposed recently [112,123,153,154| These chemicals
show different advantages over VC with respect to SEI composition
and stability and cell lifetime, yet they have not been shown to save
time during the formation cycling process. Developing or discov-
ering an additive with an even higher reduction potential and high
reactivity could result in reduced SEI formation time.

Anode active material surface coatings and chemical modifica-
tions can also improve SEI layer properties [144,176]. The volume
change of carbonaceous materials during lithium intercalation is
much lower when compared to other anode materials such as Al, Si,
Sn, and Sb [43]. It has been found that an increase in disordered
carbon anode surface oxygen resulted in low graphite exfoliation
and stable SEI formation [135,143,177,178]. Using this property, a
thin carbon coating on graphite can be implemented for improving
capacity retention. Non-graphitic carbons do not undergo exfolia-
tion to a great extent, but their first-cycle irreversible capacity loss
is much higher due to greater surface area. When graphite is used
without a carbon coating, reversible capacity is lower; however,
once coated by a high-surface-area disordered carbon, reversible
capacity increases because the majority of the SEI layer forms
within the thin coating. This surface modification tends to prevent
extensive graphite exfoliation [96,136,179].

It is plausible that SEI compounds differ not only depending on
the reaction sites, such as edges vs. basal planes, but also depending
on the initial surface elemental composition.

Initial precipitates on the non-oxidized graphite surfaces are
likely different from those on oxidized surfaces, which could affect
subsequent precipitation. Other surface modifications of various
types of anode graphite have shown significant effects on SEI
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Fig. 8. Ethylene carbonate (EC) reduction process (reference groups in parentheses; details are shown in Table 2).
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formation [93,94,136—138,179—181].

Generally, a high charging rate during the first cycle results in a
porous and highly resistive SEI layer, while a low charging rate
results in the opposite SEI characteristics. It has been found that for
a 0.5C charging rate during SEI formation, capacity retention at
room temperature operation was negatively affected [113]. Also,
when the cell temperature was held above 40 °C, capacity retention
was even more negatively affected for a 0.5C SEI formation charging
rate [114]. Hence, a first charging rate between 0.05C and 0.2C is
preferred for stable SEI formation. In some cases, though, high
charging rate can be beneficial to SEI formation. For example, when
TIMREX® SFG44 graphite was heat-treated in an inert gas at
3000 °C, a high charge current of 320 mA/g (~1C), showed better
reversible capacity in 1 M LiPFg EC/DMC than a much lower charge
current of 10 mA/g (~0.03C) [122]. In this case, high current
decomposed the electrolyte faster than solvents could intercalate
into graphene sheets and cause exfoliation. Low charging rates may
be beneficial for SEI formation, but they slow cell production rates
and increase production cost and plant capital expense. Building a
stable SEI with a charging rate greater than 0.5C may require a great
deal of further effort on developing proper additives, optimizing
cell temperature, and modifying the anode surface chemistry.

At higher temperatures, SEI formation may also be accelerated.
SEI layers formed at temperatures around 40 °C tend to have more
compact lithium precipitates, such as Li,CO3 and Li,O, rather than
softer, organic precipitates like ROCO,Li. However, high tempera-
ture may induce LiF precipitation from fluorine containing salts.

11. Recent progress in SEI layer studies and prospects for
future understanding

11.1. Computational studies

11.1.1. Overview of molecular dynamics (MD) and density
functional theory (DFT) studies

Molecular dynamics (MD) and density functional theory (DFT)
simulation methods have been used to understand the intricate
relationship between the SEI layer and electrolyte. The MD
approach uses atomic force calculations through solving Newton's
equations of motion and investigates dynamic movements and
equilibrium of atoms and molecules primarily with potentials from
semi-empirical relationships. While MD has provided detailed in-
formation on classical many-body problems, ab-initio molecular
dynamics (AIMD) has extended MD capability by combining the
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Fig. 12. Interlayer binding energy of graphite as a function of interlayer separation
calculated by LDA, GGA and five different vdW functionals [192]. Reproduced from
Ref. 192 with permission from The Royal Society of Chemistry. (A colour version of this
figure can be viewed online.)

Schrodinger wave equation with Newton's equations. Certain
interfacial reduction and oxidation reactions have been described

lithium alkyl carbonate electrolytes. The M06-L, MP2, and G4MP2
levels, on the other hand, have shown similar, and more reasonable,
binding energies [189—191].

Density functional theory (DFT) is more rigorous than MD, and
the former is another computational approach in quantum me-
chanics that solves Schrodinger equation. It estimates the electronic
structures in atomic and molecular systems, but it is limited to
smaller simulation sizes than MD because of the associated
computational intensity. One of the issues in using DFT is weak van-
der-Waals-like forces of graphene layers, which can affect calcula-
tions for lithium-ion/solvent-molecule co-intercalation into
graphite. Computed graphene interlayer binding energy signifi-
cantly varies depending on DFT functionals [192]. Local-density
approximation (LDA), a well-known and simple functional, un-
derestimates the binding energy of graphite interlayer as shown in
Fig. 12. The binding energies from experiments were 31—-52 meV/
atom [193—195]. Another issue in using quantum simulations is
that the simulations are typically not suitable for estimating
competing reactions.

DFT and MD mainly deal with Angstrom and nanometer length
scales, respectively. Because of the small length scales and heavy
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calculation load, it is extremely difficult to fully combine electrode,
SEI layer, electrolyte, and all of their interactions together into a
single model. Hence, the computational literature on SEI formation
and physical chemistry is comprised of reactions and molecular
coordination of lithium ions with one or two types of molecules. In
this section, some of the SEl-related calculations are discussed.

11.1.2. Correlation of SEI with graphite

Jorn et al. performed ab initio molecular dynamics simulations
with graphite in LiPFg/EC electrolytes, while considering graphite
basal and edge planes [196]. In this study, the SEI layer was
composed of Li;EDC (lithium ethylene dicarbonate) only or Li;EDC
with different amounts of LiF. They found that edge planes could
accommodate more Li ions than basal planes due to the broad range
of EC orientations, which might cause different SEI formation
processes and structures at the two types of reaction sites. Thicker
SEI layers or higher HF contents in the electrolyte resulted in a
higher lithium ion concentration in the vicinity of the SEI surface,
promoting higher probability of lithium ion transport from solvent
to SEL DFT calculations also showed that irreversible capacity loss
(ICL) on graphite surfaces, generally on edges, having dangling
bonds is higher than that on graphite surfaces having H-terminated
edges [197]. This finding perhaps implies greater SEI formation
thickness due to unstable graphite edges. Surface properties of
graphite may also affect adhesion of the SEI to the graphite surfaces.
DFT-MD simulations were carried out with probable SEI film
components from EC-based electrolyte (Li,EDC) to see their adhe-
sion to graphite having H-terminations [198]. It was found that the
adhesion to the H-terminated graphite was unstable in EC. Disso-
lution energies of Li;EDC in EC were +12.2 kcal/mol.

There have been other computational approaches to under-
standing SEI formation and lithium-ion/solvent co-intercalation
into graphene layers. DFT and MD simulations showed that half-
distances between C—C (graphene) interlayers were 0.59 nm for
LiT(EC)C72, 0.69 nm for Li*(EC)4C7,, 0.70 nm for Li"(PC)C7;, and
0.85 nm for Lit*(PC)4C72 when no ring openings of EC or PC were
assumed [199]. Half-distances between C—C interlayers were
0.325—-0.335 nm with no lithium ions or solvent molecules and
0.356—0.376 nm for LiCg [199—202]. If there were ring openings of
EC or PC, the difference between the associated EC and PC C—C
distances would be little because the PC methyl group would have
free rotation after the ring opening. For the case where the PC and
EC molecules would not undergo ring opening during co-
intercalation, Lit(PC), and Li"(EC), could cause graphite disinte-
gration by widening the C—C layers (which experience only weak
van der Waals forces), and since Lit(PC), is more massive than
Li"(EC),, the probability of this disintegration process could be
higher for Li*(PC), than Li*(EC)p.

11.1.3. Reduction reactions

Most reduction processes take place between 0.9 V and 0.2 V vs
Li/Li* on highly ordered graphite, but salt products may decompose
at higher voltages according to one DFT study. LiF formation,
deposition, and radical recombination were found to occur near 2 V
vs Li/Li* before the main solvent reduction reactions below 0.9 V vs.
Li/Li* for FEC or below 0.6 V vs. Li/Li* for EC [203]. In the case of EC
and PC based electrolytes, reduction energies of Li*(EC)y, were
8 kcal/mol lower than Li*(PC)4 [199], which implies that Lit(EC), is
more prone to reduction than Li*(PC),. Statistical and surface an-
alyses also showed that smaller molecular-weight compounds and
salt decomposed on the anode surfaces in the presence of elec-
trolyte, followed by long-chain oligomer compounds [204—206].

For the case of 1 M LiPFg with different binary solvents such as
EC:EMC, EC:DMC, or EC:DEC (1:2 volume ratio), in-situ experi-
ments showed the released gases were in the following order of

amount: C;Hg > CO > CH4 > CoHg > CO, [207]. Contrary to these
experimental findings of greater CO than CO,, a particular DFT
study showed different results [208]. Calculations using the hybrid-
level functionals B3LYP with basis set 6-311+4G(d,p) showed that
EC strongly coordinated with the PFg anion and was prone to
oxidation to the EC radical cation on cathode via 1-electron transfer.
The EC radical cation was subsequently reduced on the anode and
produced CO,, aldehyde, and oligomers of alkyl carbonates. CO,
was generated to a greater extent than CO due to the high activation
energy for CO.

Regarding the common VC additive, DFT based MD simulations
from Ushirogata et al. showed that VC reacted with an EC anion
radical causing a one-electron reduction of EC [182], which implies
that VC assists the EC reduction process. Although exactly how VC
decomposes is not yet clear, experimental and computational
agreement has been found that VC increases solvent reduction
reaction rates.

11.1.4. SEI layer composition and ion diffusion

A molecular dynamics study from Kim et al. showed that Li;CO3
and Li;O were the main SEI components on anodes when EC and
DMC were used as the electrolyte solvents [51]. SEI layers were
found to form at about 1 V vs. Li/Li", and they were composed
primarily of inorganic components close to the anode surface and
primarily of organic ones close to the liquid electrolyte. In these
simulations, however, lithium metal was considered as the anode
instead of graphite. It should also be noted that the presence of
electrolyte salts were not considered, and reaction gas products
from the inner portion of the SEI were not allowed to diffuse out-
ward into the liquid phase (these gases would be removed under
real-world formation conditions). Hence, actual SEI layers are
composed of somewhat different compounds than these particular
calculated ones.

Lithium ion transport in Li;EDC, a common component of SEI
layers, was studied by EIS experiments and MD simulations with
APPLE&P force field and G4MP2 and MP2 levels [189]. The con-
ductivity of Li,EDC at room temperature was found to be 1072 Sjcm
from EIS analysis and 2 x 107°~10~8 S/cm from MD simulation.
The calculated activation energy ranged from 64 to 84 kJ/mol at
393 K, indicating that lithium ion transport exhibited a hopping
mechanism at high temperature.

11.2. SEI on anode metalloid or metal oxide

Metalloid or metal oxides, especially SiOy and SnOy, are regar-
ded as prime candidate materials for high-energy batteries due to
high theoretical capacity and earth abundance [209—211], despite
Si and Sn having higher operating potentials than graphite (around
0.4 V and 0.6 V vs. Li/Li*, respectively). One of main problems,
however, is that these two materials suffer from extreme volume
changes during lithium intercalation and deintercalation, leading
to: 1) extensive, unstable, and thick SEI formation; 2) poor long-
term mechanical properties; and 3) severe capacity fade.

In order to build stable SEI layers on these materials, research
has concentrated on a combined materials approach such as Si al-
loys [52,209,210,212], Sn alloys [213—216], Si—C or Sn—C compos-
ites [213,217—230], Sn or Si composited with carbon nanomaterials
[231-239], Mo—C or Ni—C [240—244], or mixing with graphene
[245—247]. For these solutions, volumetric capacities drop to half of
those of pure Si or Sn, but the reductions in capacity still result in
anodes with much higher specific capacities than graphite. Volume
changes on these composited and blended materials also become
smaller, making the formed SEI layers more chemically stable and
longer lasting. Coating Al,O3 on these materials also mitigates
volume changes [248,249].
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Lithium metal is also being reconsidered as a possible anode
candidate because it has the highest specific capacity, but it suffers
from significant safety concerns related to lithium dendrite growth
into and through the separator (electrical shorting). One reason this
degradation and potential failure mechanism occurs is because the
SEI layer is not uniform and tough enough to prevent dendrite
growth. Some of the proposed ways to prevent lithium dendrite
growth are hollow carbon nanospheres covering surface of lithium
anode, adopting an alternative salt, and electrolyte additives
[250—252].

11.3. Additives

Some additives having fluorine can also improve SEI formation
on metal anode materials. For example, FEC has moved to the
forefront as an attractive additive since it improves SEI layer
properties and cell cycle life of metal anode systems [253,254]. It is
especially effective when the when the metal particles are nano-
scale [255]. Studies on understanding FEC's effect on metal anode
formation mechanisms are currently ongoing [183,256,257].

In general, most additive research focuses on forming stable and
robust SEI layers. Zhu et al., on the other hand, used polyfluoroalkyl
compounds as an additive to build a micelle-like SEI layer on an
anode electrode. The heads of the additive decompose on the
electrode surfaces and solvophobic tails point outwards towards
the electrolyte [258]. They found 4-(perfluorooctyl)-1,3-dioxolan-
2-one improved capacity retention and lowered impedance in high
voltage lithium ion batteries. These pre-formed SEI layers were
found to protect the cathode from electrolyte decomposition as
well as the anode. They also tested lithium difluorooxalatoborate,
triphenylamine, and 1,4-benzodiozane-6,7-diol as a combined ad-
ditive and obtained improved capacity retention and lowered
impedance for a Li2Nig15Mng 5500102 (TODA HE5050)/graphite
cell [259].

PC as an electrolyte solvent has excellent properties with the
exception of exfoliating the graphite during unstable SEI formation.
Wagner et al. improved anode SEI formation by using methyl vinyl
sulfone (MVS) and ethyl vinyl sulfone (EVS) additives in PC [260].
These additives decomposed on graphite and built protective SEI
layers before PC could intercalate and react because MVS and EVS
have 1.3 eV and 1.2 eV lower LUMO energies, respectively, than PC.
Unlike these “active” additives that decompose on the anode, there
are other additives that prevent decomposition during cycling. For
example, Chrétien et al. mixed both LiF and glyme additives (CH30
[CH,CH,0],CH3) in the electrolyte to inhibit side reactions [261].
Glymes and lithium salt compounds are more electrochemically
stable than ethers and have high oxidation potentials close to 4.7 V,
allowing high-voltage operation with NMC.

11.4. Prospects for future understanding

LIBs for high energy or high power demands like vehicle
application require high capacity, high capacity retention, high
voltage operation, low cost, low weight and volume, etc. All of these
requirements are deeply related to SEI layers. Regarding capacity
and capacity retention during the first few charge cycles, batteries
lose approximately 10—15% of their capacity due to initial anode SEI
formation. Afterword, irreversible capacity loss continues due to
gradual SEI deposition during long-term cycling, although it is far
less than the loss during initial SEI formation. The capacity loss
percentage and initial SEI properties vary depending on formation
conditions such as anode material surface area, surface properties
of the material, anode-to-cathode capacity ratio, temperature,
charge rate, charge depth, surface properties of the anode mate-
rials, salt/solvent properties, additives, and impurities. Detailed

information about the effects of these properties and conditions
can be found in previous sections of this paper.

High-voltage operation of LIBs does not significantly affect
anode SEI formation directly, but it does have indirect effects.
Cathode materials designed for operation at high cell potential (i.e.
overcharged NMC or LMR-NMC) release cathode constituents
(mostly Mn, some Ni, and a minor amount of Co) into the electro-
lyte that diffuse through the separator to the anode side, and in
turn, induce more SEI formation by increasing the electron con-
ductivity of SEI layer. High-voltage operation of cells also causes
electrolyte instability (oxidation) on the cathode surfaces, and a
SEl-like layer forms at the cathode that is chemically less stable
than its anode counterpart. Hence, under these cell operating
conditions, cell impedance increases due to both changes in the
anode SEI layer and excessive growth of the cathode SEI layer.

12. Summary

This paper comprehensively reviews the science of SEI layer
formation on carbon/graphite anode surfaces in the LIBs, including
structure, morphology, chemical composition, electrochemistry,
formation mechanism, and formation cycling. In order to develop
shorter, more robust LIB formation protocols, which are needed to
reduce cell manufacturing cost and battery plant capital invest-
ment, a thorough understanding of the relationship between state-
of-the-art SEI layer compositions and capacity fade are still needed.
Furthermore, new formation protocols which develop ideal SEI
layers (those that consume minimal lithium inventory during for-
mation and reduce capacity fade during long-term cell operation)
in shorter time periods will require an understanding of SEI layer
evolution over the LIB life, a subject which is currently not well
understood.

It is understood and accepted, however, that the SEI is formed by
the decomposition products of the electrolyte solvent molecules
and lithium salt, and it critically affects the short-term and long-
term performance of the cell. The importance of the SEI layer was
given in terms of first-cycle efficiency, capacity retention, and cell
cost, as well as the state of understanding of the SEI formation
mechanism and methods of analysis and characterization. Various
factors that affect SEI formation were also discussed such as anode
materials, surface properties, formation current density, electrolyte
additives, and cell temperature.

The anode SEI layer covers the graphite surfaces and shields
lithium ions from the electrolyte solution, which prevents further
electrolyte decomposition. This shielding property enables revers-
ible capacity during extended charge—discharge cycling. However,
the SEI formation process consumes lithium ions and electrolyte
when generated, resulting in first-cycle irreversible capacity and
lithium inventory losses. This irreversible capacity loss may
continue if the SEI is not well formed by hindering electrolyte
diffusion or allowing unwanted electron transfer from the graphite
to the liquid phase.

SEI compositions and morphologies are complicated and differ
depending on graphite surface properties, electrolyte, and forma-
tion conditions. Several modeling and experimental efforts are
underway to address the correct pathways of these electro-
reduction reactions and elucidate the debate within the LIB
research community. SEI analysis is a challenging task due to its
thickness being only ~3—100 nm and its delicate nature. A variety of
traditional experimental techniques have been used for the elec-
trochemical, morphological, and chemical analysis of the SEI layer.

The morphology and chemical makeup of an SEI is unique to the
specific graphite surface and electrolyte solution pair, but it can
generally be thought of as consisting of three layers: an outer
porous, less-compact layer formed from the organic compounds
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near the liquid electrolyte zone; an inner more-compact inorganic
structure adjacent to the graphite surface; and an intermixed layer
with intermediate properties between the inner and outer layers.
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