Triple-point defective ruled surfaces

Luca Chiantini ${ }^{\text {a }}$, Thomas Markwig ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Universitá degli Studi di Siena, Dipartimento di Matematica, Via del Capitano, 15, I - 53100 Siena, Italy
${ }^{\text {b }}$ Universität Kaiserslautern, Fachbereich Mathematik, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany

Received 29 May 2007; received in revised form 29 August 2007

Communicated by A.V. Geramita

Abstract

In [L. Chiantini, T. Markwig, Triple-point defective regular surfaces. arXiv:0705.3912, 2007] we studied triple-point defective very ample linear systems on regular surfaces, and we showed that they can only exist if the surface is ruled. In the present paper we show that we can drop the regularity assumption, and we classify the triple-point defective very ample linear systems on ruled surfaces.

(C) 2007 Elsevier B.V. All rights reserved.

MSC: 14H10; 14J10; 14C20; 32S15

Let $S \subset \mathbb{P}^{n}$ be a smooth projective surface, $K=K_{S}$ the canonical class and L the hyperplane divisor class on S.
We study a classical interpolation problem for the pair (S, L), namely whether for a general point $p \in S$ the linear system $|L-3 p|$ has the expected dimension

$$
\operatorname{expdim}|L-3 p|=\max \{-1, \operatorname{dim}|L|-6\} .
$$

If this is not the case we call the pair (S, L) triple-point defective.
The terminology is a little bit different from the classical one, of differential flavour, where such surfaces are referred to as satisfying one Laplace equation. Some classical results on these surfaces are contained, e.g., in the papers of Terracini [9] and Togliatti [10]. However, no general classification of these surfaces has been achieved in classical projective geometry.

This paper is a continuation of [3], where indeed some classification of triple-point defective pairs is achieved, under the following assumptions:

$$
L-K \text { very ample, and }(L-K)^{2}>16,
$$

conditions that we will take all over the paper.

[^0]With these assumptions, the main result of [3] says that all triple-point defective regular surfaces are rationally ruled.

In the present paper, we show that we can drop the regularity assumption. Our main results is:
Theorem 1. Suppose that the pair (S, L) is triple-point defective where L and $L-K$ are very ample with $(L-K)^{2}>16$. Then S admits a ruling $\pi: S \rightarrow C$, i.e. a morphism whose generic fibre is isomorphic to \mathbb{P}^{1}.

In Theorem 3 we also show a classification of line bundles L on a ruled surface S, such that the pair (S, L) is triple-point defective.

Notice that the previous classification is far from being complete if we drop the assumption that S is smooth. Namely, as explained in [3], a classical result of [2] shows that if Y is a (necessarily singular) developable scroll in planes of dimension 3 then any surface contained in Y is triple-point defective.

Our method follows Reider's analysis of rank 2 bundles arising from points which do not impose independent conditions, adapted to the case of fat points, as explained in the paper [1].

Let us observe that our assumption $(L-K)^{2}>16$ is essential, if one wants to apply Reider's construction.
On the other hand, the assumption $L-K$ very ample might be more restrictive than necessary for the purpose of getting a classification. However, our investigations in [3] heavily rely on the embedding of S provided by $L-K$, and even with an extensive use of the known vanishing theorems (following a procedure well explained in [1]), we were not able to exclude a wide range of possibilities without this assumption. We note that the assumption becomes sometimes automatic (e.g. when K is trivial), and it could be replaced by merely numerical (but a little stronger) hypotheses, in the spirit e.g. of [5].

Finally, let us point out that our initial aim was not a detailed, deep and heavy chase for minimal conditions yielding a classification, but we wanted to show that, in some non-trivial environment, the study of rank 2 bundles could lead to an effective classification of surfaces with unexpected interpolation behaviour, missing in classical geometry.

Let us describe the method in more details. In [3] we tackled the problem by considering $|L-3 p|$ as fibres of the map α in the following diagram,

$$
\begin{equation*}
|L|=\mathbb{P}\left(H^{0}(L)^{*}\right) \stackrel{\beta}{\beta}_{\mathcal{L}_{3}} \stackrel{\alpha}{\longrightarrow} S \tag{1}
\end{equation*}
$$

where \mathcal{L}_{3} denotes the incidence variety

$$
\mathcal{L}_{3}=\left\{(C, p) \in|L| \times S \mid \operatorname{mult}_{p}(C) \geq 3\right\}
$$

and α and β are the obvious projections.
Assuming that for a general point $p \in S$ there is a curve in L_{p} with a triple point in $p-$ and hence α surjective, we considered then the equimultiplicity scheme Z_{p} of a curve $L_{p} \in|L-3 p|$ defined by

$$
\mathcal{J}_{Z_{p}, p}=\left\langle\frac{\partial f_{p}}{\partial x_{p}}, \frac{\partial f_{p}}{\partial y_{p}}\right\rangle+\left\langle x_{p}, y_{p}\right\rangle^{3} .
$$

One easily sees that (S, L) triple-point defective necessarily implies that

$$
h^{1}\left(S, \mathcal{J}_{Z_{p}}(L)\right) \neq 0
$$

Non-zero elements in $H^{1}\left(S, \mathcal{J}_{Z_{p}}(L)\right)$ determine by Serre duality a non-trivial extension \mathcal{E}_{p} of $\mathcal{J}_{Z_{p}}(L-K)$ by \mathcal{O}_{S}, which turns out to be a rank 2 bundle on the surface. Due to the assumption $(L-K)^{2}>16, \mathcal{E}_{p}$ is Bogomolov unstable. We then exploited the destabilising divisor A_{p} of \mathcal{E}_{p} in order to obtain the above mentioned result.

In this analysis, we prove that, when S is regular, then $L-K-A_{p}$ is embedded by L as a line, so S is ruled. The analysis requires a careful examination of many cases. In some of them, we could simply assume $L-K$ big and nef, but there are cases in which we cannot proceed without assuming $L-K$ very ample.

For non-regular surfaces, the argument of Chiantini and Markwig [3] shows the following lemma (see [3], Propositions 17 and 18), where we denote by $|D|_{a}=\left\{C \mid C \sim_{a} D, C\right.$ a curve in $\left.S\right\}$ the family of curves in S which are algebraically equivalent to the divisor D :

Proposition 2. Suppose that, with the notation in (1), α is surjective, and suppose as usual that L and $L-K$ are very ample with $(L-K)^{2}>16$.

For p general in S and for $L_{p} \in|L-3 p|$ general, call Z_{p}^{\prime} the minimal subscheme of the equimultiplicity scheme Z_{p} of L_{p} such that

$$
h^{1}\left(S, \mathcal{J}_{Z_{p}^{\prime}}(L)\right) \neq 0
$$

Then either:
(1) length $\left(Z_{p}^{\prime}\right)=3$ and S is ruled; or
(2) length $\left(Z_{p}^{\prime}\right)=4$ and, for $p \in S$ general, there are smooth, elliptic curves E_{p} and F_{p} in S through p such that $E_{p}^{2}=F_{p}^{2}=0, E_{p} \cdot F_{p}=1$ and L. $E_{p}=L . F_{p}=3$. In particular, both $|E|_{a}$ and $|F|_{a}$ are pencils inducing an elliptic fibration with section on S over an elliptic curve.
This is our starting point. We will in this paper show that the latter case actually cannot occur, and we will classify the triple-point defective linear systems L as above on ruled surfaces. It will in particular follow that the fibre of the ruling is contained exactly twice, and thus that the map β above is generically finite.

We call a ruled surface $\pi: S \rightarrow C$ geometrically ruled if π is minimal, i.e. if all fibres are isomorphic to \mathbb{P}^{1}. For the classification result, call C_{0} a section of the ruling C, \mathfrak{e} the line bundle on the base curve given by the determinant of the defining bundle, and call E_{i} the exceptional divisors (see Section 2 for a more precise setting of the notation):

Theorem 3. Assume that $\pi: S \rightarrow C$ is a ruled surface and that the pair (S, L) is triple-point defective, where L and $L-K$ are very ample with $(L-K)^{2}>16$.

Then π is minimal, i.e. S is geometrically ruled, and for a general point $p \in S$ the linear system $|L-3 p|$ contains a fibre of the ruling as fixed component with multiplicity two.

Moreover, in the previous notation, the line bundle L is of type $C_{0}+\pi^{*} \mathfrak{b}$ for some divisor \mathfrak{b} on C such that $\mathfrak{b}+\mathfrak{e}$ is very ample.

In Section 1 we will first show that a surface S admitting two elliptic fibrations as required by Case (2) of Proposition 2 would necessarily be a product of two elliptic curves and the triple-point defective linear system would be of type $(3,3)$. We then show that such a system is never triple-point defective, setting the first part of the main theorem.

In Section 2 we classify the triple-point defective linear systems on ruled surfaces, thus completing our main results.

1. Products of elliptic curves

In the above setting, consider a triple-point defective pair (S, L) where the equimultiplicity scheme Z_{p} (see [3]) of a general element $L_{p} \in|L-3 p|$ admits a complete intersection subscheme Z_{p}^{\prime} of length four with

$$
h^{1}\left(S, \mathcal{J}_{Z_{p}^{\prime}}(L)\right) \neq 0
$$

As explained in the introduction, Proposition 2, after [3] we know that, for $p \in S$ general, there are smooth, elliptic curves E_{p} and F_{p} in S through p such that $E_{p}^{2}=F_{p}^{2}=0, E_{p} \cdot F_{p}=1$ and $L \cdot E_{p}=L \cdot F_{p}=3$.

In particular, both $|E|_{a}$ and $|F|_{a}$ induce an elliptic fibration with section on S over an elliptic curve.
We will now show that this situation indeed cannot occur. Namely, for general p and L_{p} there cannot exist such a scheme Z_{p}^{\prime}.

Lemma 4. Suppose that the surface S has two elliptic fibrations $\pi: S \longrightarrow E_{0}$ and $\pi^{\prime}: S \longrightarrow F_{0}$ with general fibre E respectively F satisfying $E . F=1$.

Then E_{0} and F_{0} are elliptic curves, and S is the blow-up of a product of two elliptic curves $S^{\prime}=E \times E_{0} \cong E \times F$.
Proof. Since $E . F=1$ we have that F is a section of π, and thus $F \cong E_{0}$ via π. In particular, E_{0} and, similarly, F_{0} are elliptic curves.

It is well known that there are no non-constant maps from a rational curve to a curve of positive genus ([6], IV.2.5.4). Thus any exceptional curve of S sits in some fibre. Thus we can reach relatively minimal models of π
and π^{\prime} by successively blowing down exceptional curves which belong to fibres of both π and π^{\prime}, i.e. we have the following commutative diagram

where S^{\prime} is actually a minimal surface. Since a general fibre of π or π^{\prime} is not touched by the blowing-down ϕ we may denote the general fibres of $\tilde{\pi}$ and $\tilde{\pi}^{\prime}$ again by E respectively F, and we still have $E . F=1$.

We will now try to identify the minimal surface S^{\prime} in the classification of minimal surfaces.
There are $r, s \in \mathbb{Q}$ such that

$$
s E \sim_{n} K_{S^{\prime}} \sim_{n} r F,
$$

where \sim_{n} means numerically equivalent. Suppose that $s \neq 0$ then $0=E^{2}=\frac{r}{x} \cdot E \cdot F=\frac{r}{s}$ leads to the contradiction $0 \sim_{n} K_{S^{\prime}} \sim_{n} s E \not \nsim n_{n} 0$. Thus $s=0$ and $K_{S^{\prime}}$ is numerically trivial. Moreover, no multiple of $K_{S^{\prime}}$ can be effective, since it otherwise would intersect at least one of E or F positively, and hence the Kodaira dimension $\kappa\left(S^{\prime}\right)$ of S^{\prime} is zero.

Taking into account that by the Nakai-Moishezon Criterion $E+F$ is ample, $\left(S^{\prime}, E+F\right)$ is a polarised surface of sectional genus

$$
p_{a}(E+F)=1+\frac{\left(K_{S^{\prime}}+E+F\right) \cdot(E+F)}{2}=2 .
$$

Note that $\tilde{\pi}$ and $\tilde{\pi}^{\prime}$ induce injective morphisms $\Omega^{1}\left(E_{0}\right) \rightarrow \Omega^{1}\left(S^{\prime}\right)$ and $\Omega^{1}\left(F_{0}\right) \rightarrow \Omega^{1}\left(S^{\prime}\right)$ with distinct images, so that $h^{0}\left(S^{\prime}, \Omega_{S^{\prime}}^{1}\right) \geq 2$. Since by Hodge Theory $q\left(S^{\prime}\right)=h^{1}\left(S^{\prime}, \mathcal{O}_{S^{\prime}}\right)=h^{0}\left(S^{\prime}, \Omega_{S^{\prime}}^{1}\right)$ the irregularity $q\left(S^{\prime}\right)$ is at least two, and S^{\prime} must be an abelian surface. But then necessarily $S^{\prime} \cong E_{0} \times F_{0}$.

Lemma 4 implies that in order to show that the situation of Proposition 2 cannot occur, we have to understand products of elliptic curves.

Let us, therefore, consider a surface $S=C_{1} \times C_{2}$ which is the product of two smooth elliptic curves.
Let us set some notation. We will use some results of Keilen [7] Appendices G.b and G.c in the sequel.
The surface S is naturally equipped with two projections $\pi_{i}: S \longrightarrow C_{i}$. If \mathfrak{a} is a divisor on C_{2} of degree a and \mathfrak{b} is a divisor on C_{1} of degree b then the divisor $\pi_{2}^{*} \mathfrak{a}+\pi_{1}^{*} \mathfrak{b} \sim_{a} a C_{1}+b C_{2}$, where by abuse of notation we denote by C_{1} a fixed fibre of π_{2} and by C_{2} a fixed fibre of π_{1}. Moreover, K_{S} is trivial, and given two divisors $D \sim_{a} a C_{1}+b C_{2}$ and $D^{\prime} \sim_{a} a^{\prime} C_{1}+b^{\prime} C_{2}$ then the intersection product is

$$
D \cdot D^{\prime}=\left(a C_{1}+b C_{2}\right) \cdot\left(a^{\prime} C_{1}+b^{\prime} C_{2}\right)=a \cdot b^{\prime}+a^{\prime} \cdot b
$$

We will consider first the case

$$
L=\pi_{2}^{*} \mathfrak{a}+\pi_{1}^{*} \mathfrak{b}
$$

where both \mathfrak{b} on C_{1} and \mathfrak{a} on C_{2} are divisors of degree 3 . The dimension of the linear system $|L|$ is $\operatorname{dim}|L|=8$, and thus for a point $p \in S$ the expected dimension is expdim $|L-3 p|=\operatorname{dim}|L|-6=2$.

Notice that a divisor of degree three on an elliptic curve is always very ample and embeds the curve as a smooth cubic in \mathbb{P}^{2}. Since the smooth plane cubics are classified by their normal forms $x z^{2}-y \cdot(y-x) \cdot(y-\lambda \cdot x)$ with $\lambda \neq 0$ the following example reflects the behaviour of any product of elliptic curves embedded via a linear system of bidegree $(3,3)$.

Example 5. Consider two smooth plane cubics

$$
C_{1}=V\left(x z^{2}-y \cdot(y-z) \cdot(y-a z)\right)
$$

and

$$
C_{2}=V\left(x z^{2}-y \cdot(y-z) \cdot(y-b z)\right) .
$$

The surface $S=C_{1} \times C_{2}$ is embedded into \mathbb{P}^{8} via the Segre embedding

$$
\phi: \mathbb{P}^{2} \times \mathbb{P}^{2} \longrightarrow \mathbb{P}^{8}:\left(\left(x_{0}: x_{1}: x_{2}\right),\left(y_{0}: y_{1}: y_{2}\right)\right) \mapsto\left(x_{0} y_{0}: \ldots: x_{2} y_{2}\right)
$$

We may assume that both curves contain the point $p=(1: 0: 0)$ as a general non-inflexion point, and the point (p, p) is mapped by the Segre embedding to $\phi(p, p)=(1: 0: \ldots: 0)$. If we denote by $z_{i, j}, i, j \in\{0,1,2\}$, the coordinates on \mathbb{P}^{8} as usual, then the maximal ideal locally at $\phi(p, p)$ is generated by $z_{0,2}$ and $z_{2,0}$, i.e. these are local coordinates of $\phi(S)$ at $\phi(p, p)$. A standard basis computation shows that locally at $\phi(p, p)$ the coordinates $z_{i, j}$ satisfy modulo the ideal of S and up to multiplication by a unit the following congruences (note, $z_{0,0}=1$)

$$
\begin{aligned}
& z_{0,1} \equiv \frac{1}{b} \cdot z_{0,2}^{2}, \quad z_{1,0} \equiv \frac{1}{a} \cdot z_{2,0}^{2}, \quad z_{1,1} \equiv \frac{1}{a b} \cdot z_{0,2}^{2} \cdot z_{2,0}^{2} \\
& z_{1,2} \equiv \frac{1}{a} \cdot z_{0,2} \cdot z_{2,0}^{2}, \quad z_{2,1} \equiv \frac{1}{b} \cdot z_{0,2}^{2} \cdot z_{2,0}, \quad z_{2,2} \equiv z_{0,2} \cdot z_{2,0}
\end{aligned}
$$

Thus a hyperplane section $H=a_{0,0} z_{0,0}+\cdots+a_{2,2} z_{2,2}$ of $\phi(S)$ is locally in $\phi(p, p)$ modulo $\mathfrak{m}^{3}=\left\langle z_{0,2}, z_{2,0}\right\rangle^{3}$ given by

$$
H \equiv a_{0,0}+a_{0,2} z_{0,2}+a_{2,0} z_{2,0}+\frac{a_{0,1}}{b} \cdot z_{0,2}^{2}+\frac{a_{1,0}}{a} \cdot z_{2,0}^{2}+a_{2,2} z_{0,2} z_{2,0},
$$

and hence the family of hyperplane sections having multiplicity at least three in $\phi(p, p)$ is given by

$$
a_{0,0}=a_{0,1}=a_{1,0}=a_{0,2}=a_{2,0}=a_{2,2}=0 .
$$

But then the family has parameters $a_{1,1}, a_{1,2}, a_{2,1}$, and its dimension coincides with the expected dimension 2 . Moreover, the 3 -jet of a hyperplane section H through $\phi(p, p)$ with multiplicity at least three is

$$
\operatorname{jet}_{3}(H) \equiv z_{0,2} \cdot z_{2,0} \cdot\left(\frac{a_{1,2}}{a} \cdot z_{2,0}+\frac{a_{2,1}}{b} \cdot z_{0,2}\right),
$$

which shows that for a general choice of $a_{2,1}$ and $a_{1,2}$ the point $\phi(p, p)$ is an ordinary triple point.
Remark 6. We actually can say very precisely what it means that p is general in the product, namely that neither $\pi_{1}(p)$ is a inflexion point of C_{1}, nor $\pi_{2}(p)$ is a inflexion point of C_{2}.

Indeed, since \mathfrak{a} is very ample of degree three, for each point $p \in S$ there is a unique point $q_{a} \in C_{2}$ such that $q_{a}+2 \cdot \pi_{2}(p) \sim_{l} \mathfrak{a}$. When $\pi_{2}(p)$ is a inflexion point of C_{2}, then $q_{a}=\pi_{2}(p)$ and thus the two-dimensional family

$$
3 C_{1, \pi_{2}(p)}+\left|\pi^{*} \mathfrak{b}\right| \subset|L-3 p|
$$

gives a superabundance of the dimension of $|L-3 p|$ by one.
Similarly one can argue when $\pi_{1}(p)$ is a inflexion point of C_{1}.
Now we are ready for the proof of Theorem 1.
Proof (Proof of Theorem 1). By Proposition 2, it is enough to prove that when S has two elliptic fibrations as in the proposition, then S is not triple-point defective.

By Lemma $4, S$ is the blow-up $\pi: S \longrightarrow S^{\prime}$ of a product $S^{\prime}=C_{1} \times C_{2}$ of two elliptic curves, and we may assume that the curves E_{p} and F_{p} in Proposition 2 are the fibres of π_{1} respectively π_{2}.

Our first aim will be to show that actually $S=S^{\prime}$. For this note that

$$
\operatorname{Pic}(S)=\bigoplus_{i=1}^{k} E_{i} \oplus \pi^{*} \operatorname{Pic}\left(S^{\prime}\right)
$$

where the E_{i} are the total transforms of the exceptional curves arising throughout the blow-up, i.e. the E_{i} are (not necessarily irreducible) rational curves with self intersection $E_{i}^{2}=-1$ and such that $E_{i} \cdot E_{j}=0$ for $i \neq j$ and
$E_{i} \cdot \pi^{*}(C)=0$ for any curve C on S^{\prime}. In particular, since $K_{S^{\prime}}$ is trivial we have that $K_{S}=\sum_{i=1}^{k} E_{i}$, and if $L=\pi^{*} L^{\prime}-\sum_{i=1}^{k} e_{i} E_{i}$ then $L-K=\pi^{*} L^{\prime}-\sum_{i=1}^{k}\left(e_{i}+1\right) E_{i}$. We therefore have

$$
16<(L-K)^{2}=\left(L^{\prime}\right)^{2}-\sum_{i=1}^{k}\left(e_{i}+1\right)^{2}
$$

or equivalently

$$
\begin{equation*}
\left(L^{\prime}\right)^{2} \geq 17+\sum_{i=1}^{k}\left(e_{i}+1\right)^{2} \geq 17+4 k \tag{2}
\end{equation*}
$$

where the latter inequality is due to the fact that $e_{i}=L . E_{i}>0$ since L is very ample. By the assumption of Proposition 2 we know that $L^{\prime} . C_{1}=L . E_{p}=3$ and $L^{\prime} . C_{2}=L . F_{p}=3$, and therefore by Hartshorne [6] Ex. V.1.9

$$
\begin{equation*}
\left(L^{\prime}\right)^{2} \leq 2 \cdot\left(L^{\prime} \cdot C_{1}\right) \cdot\left(L^{\prime} \cdot C_{2}\right)=18 \tag{3}
\end{equation*}
$$

But (2) and (3) together imply that no exceptional curve exists, i.e. $S=S^{\prime}$.
Since now S is a product of two elliptic curves, by Lange and Birkenhake [8] we know that the Picard number $\rho=\rho(S)$ satisfies $2 \leq \rho \leq 4$, and the Néron-Severi group can be generated by the two general fibres C_{1} and C_{2} together with certain graphs $C_{j}, 3 \leq j \leq \rho$, of morphisms $\varphi_{j}: C_{1} \longrightarrow C_{2}$. In particular, $C_{j} . C_{2}=1$ and $C_{j} \cdot C_{1}=\operatorname{deg}\left(\varphi_{j}\right) \geq 1$ for $3 \leq j \leq \rho$. Moreover, these graphs have self intersection zero. If we now assume that $L \sim{ }_{a} \sum_{j=1}^{\rho} a_{i} C_{i}$ then

$$
L^{2}=2 \cdot \sum_{i<j} a_{i} \cdot a_{j} \cdot\left(C_{i} \cdot C_{j}\right)
$$

is divisible by 2 , and since $L=L-K$ with $(L-K)^{2}>16$ we deduce with [6] Ex. V.1.9 that

$$
L^{2}=(L-K)^{2}=18=2 \cdot\left(L . C_{1}\right) \cdot\left(L . C_{2}\right),
$$

and thus that

$$
L \sim_{a} 3 C_{1}+3 C_{2},
$$

or, equivalently, that

$$
L=\pi_{2}^{*} \mathfrak{a}+\pi_{1}^{*} \mathfrak{b}
$$

for some divisors \mathfrak{a} on C_{2} and \mathfrak{b} on C_{1}, both of degree 3. That is, we are in the situation of Example 5, and we showed there that (S, L) then is not triple-point defective.

Remark 7. Notice that, in practise, since

$$
h^{1}(S, L)=h^{0}\left(C_{1}, \mathfrak{b}\right) \cdot h^{1}\left(C_{2}, \mathfrak{a}\right)+h^{0}\left(C_{2}, \mathfrak{a}\right) \cdot h^{1}\left(C_{1}, \mathfrak{b}\right)=0,
$$

the non-triple-point defectiveness shows that for general $p \in S$ and $L_{p} \in|L-3 p|$ no Z_{p}^{\prime} as in the assumptions of Proposition 2 can have length 4.

2. Geometrically ruled surfaces

Let $S=\mathbb{P}(\mathcal{E}) \xrightarrow{\pi} C \quad$ be a geometrically ruled surface with normalised bundle \mathcal{E} (in the sense of [6] V.2.8.1). The Néron-Severi group of S is

$$
\mathrm{NS}(S)=C_{0} \mathbb{Z} \oplus f \mathbb{Z}
$$

with intersection matrix

$$
\left(\begin{array}{rr}
-e & 1 \\
1 & 0
\end{array}\right)
$$

where $f \cong \mathbb{P}^{1}$ is a fixed fibre of π, C_{0} a fixed section of π with $\mathcal{O}_{S}\left(C_{0}\right) \cong \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$, and $e=-\operatorname{deg}(\mathfrak{e}) \geq-g$ where $\mathfrak{e}=\Lambda^{2} \mathcal{E}$. If \mathfrak{b} is a divisor on C we will write $\mathfrak{b} f$ for the divisor $\pi^{*} \mathfrak{b}$ on S, and so for the canonical divisor we have

$$
K_{S} \sim_{l}-2 C_{0}+\left(K_{C}+\mathfrak{e}\right) f \sim_{a}-2 C_{0}+(2 g-2-e) f,
$$

where $g=g(C)$ is the genus of the base curve C.
Example 8. Let \mathfrak{b} be a divisor on C such that \mathfrak{b} and $\mathfrak{b}+\mathfrak{e}$ are both very ample and such that \mathfrak{b} is non-special. If C is rational we should in addition assume that $\operatorname{deg}(\mathfrak{b})+\operatorname{deg}(\mathfrak{b}+\mathfrak{e}) \geq 6$. Then the divisor $L=C_{0}+\mathfrak{b} f$ is very ample (see e.g. [4] Prop. 24) of dimension

$$
\operatorname{dim}|L|=h^{0}(C, \mathfrak{b})+h^{0}(C, \mathfrak{b}+\mathfrak{e})-1 .
$$

Moreover, for any point $p \in S$ we then have (see [4] Cor. 22)

$$
\operatorname{dim}\left|C_{0}+(\mathfrak{b}-2 \pi(p)) f\right|=\operatorname{dim}\left|C_{0}+\mathfrak{b} f\right|-4=h^{0}(C, \mathfrak{b})+h^{0}(C, \mathfrak{b}+\mathfrak{e})-5,
$$

and we have for p general

$$
\operatorname{dim}\left|C_{0}+(\mathfrak{b}-2 \pi(p)) f-p\right|=h^{0}(C, \mathfrak{b})+h^{0}(C, \mathfrak{b}+\mathfrak{e})-6 .
$$

For this note that \mathfrak{b} and $\mathfrak{b}+\mathfrak{e}$ very ample implies that this number is non-negative - in the rational case we need the above degree bound.

If we denote by $f_{p}=\pi^{*}(\pi(p))$ the fibre of π over $\pi(p)$, then by Bézout and since $L \cdot f_{p}=\left(L-f_{p}\right) \cdot f_{p}=1$ we see that $2 f_{p}$ is a fixed component of $|L-3 p|$ and we have

$$
|L-3 p|=2 f_{p}+\left|C_{0}+(\mathfrak{b}-2 \pi(p)) f-p\right|,
$$

so that

$$
\begin{aligned}
\operatorname{dim}|L-3 p| & =h^{0}(C, \mathfrak{b})+h^{0}(C, \mathfrak{b}+\mathfrak{e})-6=\operatorname{dim}|L|-5 \\
& >\operatorname{dim}|L|-6=\operatorname{expdim}|L-3 p| .
\end{aligned}
$$

This shows that (S, L) is triple-point defective and $|L-3 p|$ contains a fibre of the ruling as double component. Moreover, for a general p the linear series $|L-3 p|$ cannot contain a fibre of the ruling more than twice due to the above dimension count for $\left|C_{0}+(\mathfrak{b}-2 \pi(p)) f-p\right|$.

Next we are showing that a geometrically ruled surface is indeed triple-point defective with respect to a line bundle L which fulfills our assumptions, and in Corollary 13 we will see that this is not the case for non-geometrically ruled surfaces.

Proposition 9. On every geometrically ruled surface $S=\mathbb{P}(\mathcal{E}) \xrightarrow{\pi} C$ there exists some very ample line bundle L such that the pair (S, L) is triple-point defective, and moreover also $L-K$ is very ample with $(L-K)^{2}>16$.

Proof. It is enough to take $L=C_{0}+\mathfrak{b} f$, with $b=\operatorname{deg}(\mathfrak{b})=3 a$ such that $a, a-e, a+e, a-2 g+2+e, a-2 g+2-e$ are all bigger or equal than $2 g+1$.

Indeed in this case \mathfrak{b} and $\mathfrak{b}+\mathfrak{e}$ are both very ample. For $p \in C$ general, we also have that both $\mathfrak{b}-p$ and $\mathfrak{b}+\mathfrak{e}-p$ are non-special. It follows that L is very ample (by [6] Ex. V.2.11.b) and (S, L) is triple-point defective, by the previous example. Moreover, in this situation we have:

$$
L-K \sim_{l} 3 C_{0}+\left(\mathfrak{b}-K_{C}-\mathfrak{e}\right) f
$$

Hence

$$
(L-K)^{2}=\left(3 C_{0}+(\operatorname{deg}(\mathfrak{b})-2 g+2+e) f\right)^{2} \geq 18>16 .
$$

Finally, if we fix a divisor \mathfrak{a} of degree a on C, then $L-K$ is the sum of the divisors $C_{0}+\left(\mathfrak{a}-K_{C}\right) f, C_{0}+(\mathfrak{a}-\mathfrak{e}) f$, $C_{0}+\mathfrak{a} f$, which are very ample ([6] Ex. V.2.11). Thus $L-K$ is very ample.

Next, let us describe which linear systems L on a ruled surface $\pi: S \rightarrow C$ determine a triple-point defective pair (S, L).

We will show that Example 8 describes, in most cases, the only possibilities. In order to do so we first have to consider the possible algebraic classes of irreducible curves with self intersection zero on a geometrically ruled surface.

Lemma 10. Let $B \in\left|b C_{0}+b^{\prime} f\right|_{a}$ be an irreducible curve with $B^{2}=0$ and $\operatorname{dim}|B|_{a} \geq 0$, then we are in one of the following cases:
(1) $B \sim{ }_{a} f$,
(2) $e=0, b \geq 1, B \sim_{a} b C_{0}$, and $|B|_{a}=|B|_{l}$, or
(3) $e<0, b \geq 2, b^{\prime}=\frac{b e}{2}<0, B \sim_{a} b C_{0}+\frac{b e}{2} f$ and $|B|_{a}=|B|_{l}$.

Moreover, if $b=1$, then $S \cong C_{0} \times \mathbb{P}^{1}$.
Proof. See [7] App. Lemma G.2.
We can now classify the triple-point defective linear systems on a geometrically ruled surface. In order to do so we should recall the result of [3] Prop. 18.

Proposition 11. Suppose that, with the notation in (1), α is surjective, and suppose that L and $L-K$ are very ample with $(L-K)^{2}>16$. Moreover, suppose that for $p \in S$ general and for $L_{p} \in|L-3 p|$ general the equimultiplicity scheme Z_{p} of L_{p} has a subscheme Z_{p}^{\prime} of length 3 such that $h^{1}\left(S, \mathcal{J}_{Z_{p}^{\prime}}(L)\right) \neq 0$.

Then for $p \in S$ general there is an irreducible, smooth, rational curve B_{p} in a pencil $|B|_{a}$ with $B^{2}=0$, $(L-K) . B=3$ and $L-K-B$ big.

In particular, $S \rightarrow|B|_{a}$ is a ruled surface and $2 B_{p}$ is a fixed component of $|L-3 p|$.
Theorem 12. With the above notation let $\pi: S \rightarrow C$ be a geometrically ruled surface, and let L be a line bundle on S such that L and $L-K$ are very ample. Suppose that $(L-K)^{2}>16$ and that for a general $p \in S$ the linear system $|L-3 p|$ contains a curve L_{p} such that $h^{1}\left(S, \mathcal{J}_{Z_{p}}(L)\right) \neq 0$ where Z_{p} is the equimultiplicity scheme of L_{p} at p.

Then $L=C_{0}+\mathfrak{b} f$ for some divisor \mathfrak{b} on C such that $\mathfrak{b}+\mathfrak{e}$ is very ample and $|L-3 p|$ contains a fibre of π as fixed component with multiplicity two. Moreover, if $e \geq-1$ then $\operatorname{deg}(\mathfrak{b}) \geq 2 g+1$ and we are in the situation of Example 8 .

Proof. As in the proof of [3] Thm. 19, since the case in which the length of Z_{p} is 4 has been ruled out in Remark 7, we only have to consider the situations in Proposition 11.

Using the notation there we have a divisor $A:=L-K-B \sim_{a} a C_{0}+a^{\prime} f$ and a curve $B \sim_{a} b C_{0}+b^{\prime} f$ satisfying certain numerical properties, in particular $p_{a}(B)=0, B^{2}=0$, and $a>0$ since A is big. Moreover,

$$
\begin{equation*}
3=A \cdot B=-e a b+a b^{\prime}+a^{\prime} b \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
a \cdot\left(2 a^{\prime}-a e\right)=A^{2}=(L-K)^{2}-2 \cdot A \cdot B-B^{2} \geq 17-2 \cdot A \cdot B-B^{2}=11 . \tag{5}
\end{equation*}
$$

By Lemma 10 there are three possibilities for B to consider. If $e<0$ and $B \sim{ }_{a} b C_{0}+\frac{e b}{2} f$ with $b \geq 2$, then Riemann-Roch leads to the impossible equation

$$
-2=2 p_{a}(B)-2=B . K=(2 g-2) \cdot b .
$$

If $e=0$ and $B \sim_{a} b C_{0}$, then similarly Riemann-Roch shows

$$
-2=B \cdot K=(2 g-2) \cdot b,
$$

which now implies that $b=1$ and $g=0$. In particular, $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L \sim_{a} A+B+K \sim_{a}(a-1) C_{0}+f$, since $3=A \cdot B=a^{\prime}$. But this is then one of the cases of Example 8.

Finally, if $B \sim_{a} f$ then (4) gives $a=3$, and thus

$$
L \sim_{a} A+B+K \sim_{a} C_{0}+\left(\mathfrak{a}^{\prime}+\pi(p)+K_{C}+\mathfrak{e}\right) f
$$

where $A=3 C_{0}+\mathfrak{a}^{\prime} f$. Moreover, by the assumptions of Case (b) the linear system $|L-3 p|$ contains the fibre of the ruling over p as double fixed component, and since L is very ample it induces on C the very ample divisor $\mathfrak{e}+\left(\mathfrak{a}^{\prime}+\pi(p)+K_{C}+\mathfrak{e}\right)$. Note also, that (5) implies that

$$
a^{\prime}-2-e \geq \frac{e}{2}
$$

and thus for $e \geq-1$ we have

$$
\operatorname{deg}\left(\mathfrak{a}^{\prime}+\pi(p)+K_{C}+\mathfrak{e}\right)=2 g+1+\left(a^{\prime}-2-e\right) \geq 2 g+1,
$$

so that then the assumptions of Example 8 are fulfilled. This finishes the proof.
If $\pi: S \longrightarrow C$ is a ruled surface, then there is a (not necessarily unique (if $g(C)=0$)) minimal model

and the Néron-Severi group of S is

$$
\operatorname{NS}(S)=C_{0} \cdot \mathbb{Z} \oplus f \cdot \mathbb{Z} \oplus \bigoplus_{i=1}^{k} E_{i} \cdot \mathbb{Z}
$$

where f is a general fibre of π, C_{0} is the total transform of the section of $\tilde{\pi}$, and the E_{i} are the total transforms of the exceptional divisors of the blow-up ϕ. Moreover, for the Picard group of S we just have to replace $f \cdot \mathbb{Z}$ by $\pi^{*} \operatorname{Pic}(C)$. We may, therefore, represent a divisor class A on S as

$$
\begin{equation*}
L=a C_{0}+\pi^{*} \mathfrak{b}-\sum_{i=1}^{k} c_{i} E_{i} \tag{6}
\end{equation*}
$$

Corollary 13. Suppose that (S, L) is a pair as in Proposition 2 with ruling $\pi: S \rightarrow C$, and suppose that the Néron-Severi group of S is as described before with general fibre $f=B_{p}$.

Then S is minimal, $L=C_{0}+\pi^{*} \mathfrak{b}$ for some divisor \mathfrak{b} on C such that $\mathfrak{b}+\mathfrak{e}$ is very ample and $|L-3 p|$ contains a fibre of π as fixed component with multiplicity two.
Proof. Let $L=C_{0}+\pi^{*} \mathfrak{b}-\sum_{i=1}^{k} c_{i} E_{i}$, as described in (6). Then

$$
L-K=(a+2) C_{0}+\pi^{*}\left(\mathfrak{b}-K_{C}-\mathfrak{e}\right)-\sum_{i=1}^{k}\left(c_{i}+1\right) E_{i},
$$

and thus considering Proposition 11

$$
3=(L-K) \cdot B=a+2 .
$$

The very ampleness of L implies now that $c_{i}>0$ for all i. Therefore, if S is not minimal and f^{\prime} is the strict transform of a fibre of the minimal model meeting some E_{i}, then $L . f^{\prime} \leq 0$, a contradiction.

By [3] we get Theorem 3 as an immediate corollary.

Acknowledgements

The second author was supported by the EAGER node of Torino and by the Institute for Mathematics and its Applications (IMA) in Minneapolis. The authors would like to thank the referee for valuable comments concerning the proof of Lemma 4 and for pointing out Ref. [1].

References

[1] M.C. Beltrametti, P. Francia, A.J. Sommese, On Reider's method and higher order embeddings, Duke Math. J. 58 (2) (1989).
[2] M. Castellani, Sulle superficie i cui spazi osculatori sono biosculatori, Rend. Accad. Lincei XXXI (1922) 347-350.
[3] L. Chiantini, T. Markwig, Triple-point defective regular surfaces. arXiv:0705.3912, 2007.
[4] L. Fuentes Garcia, M. Pedreira, The projective theory of ruled surfaces, Note Mat. 24 (1) (2005) 25-63.
[5] G. Greuel, C. Lossen, E. Shustin, New asymptotics in the geometry of equisingular families of curves, Int. Math. Res. Not. 13 (1997) 595-611.
[6] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[7] T. Keilen, Families of curves with prescribed singularities, Ph.D. Thesis, Universität Kaiserslautern, 2001.
[8] H. Lange, C. Birkenhake, Complex Abelian Varieties, in: Grundlehren der mathematischen Wissenschaften, vol. 302, Springer, 1992.
[9] A. Terracini, Alcune questioni sugli spazi tangenti e osculatori ad una varietá, Atti R. Accad. Sci. Torino 55 (1920) 480-500.
[10] E. Togliatti, Alcuni esempi di superficie algebriche degli iperspazi che rappresentano un'equazione di Laplace, Comment Math. Helv. 1 (1929) 255-272.

[^0]: * Corresponding author.

 E-mail addresses: chiantini@unisi.it (L. Chiantini), keilen@mathematik.uni-kl.de (T. Markwig).
 URLs: http://pcserver.mat.unisi.it/web/chiantini/chlam.htm (L. Chiantini), http://www.mathematik.uni-kl.de/ \sim keilen (T. Markwig).

