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Abstract

Exotic pentaquark baryon with strangeness+1,Θ+, is studied in the QCD sum rule approach. We derive sum rules fo
positive and negative parity baryon states withJ = 1

2 andI = 0. It is found that the standard values of the QCD condens
predict a negative parityΘ+ of mass� 1.5 GeV, while no positive parity state is found. We stress the roles of chiral
condensates in determining the parity and mass ofΘ+.
 2004 Published by Elsevier B.V.
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The discovery of theΘ+ state by the LEPS grou
at SPring-8 [1] is quite striking.Θ+ is produced by
the γ + n → K− + Θ+ reaction and is observed
the invariant mass of then+K+ final state. Its mas
is 1540 MeV/c2 and the width is less than 25 Me
Several other groups have confirmed this result [2–
The conservation laws of the strong interaction
us thatΘ+ is a baryon with strangeness+1 and
thus contains ās quark. Therefore the simplest qua
content ofΘ+ is uudds̄, and it cannot be made o
three quarks. Over a thousand hadrons are comp
by the Particle Data Group [5], but so far none of th
is confirmed as an exotic hadron, which cannot
associated with either a three-quark baryon or a qua
antiquark meson.
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The spin and parity of theΘ+ are not yet deter
mined, but many conjectures have been made [6–
We first realize thatΘ+ may be isospin single
(I = 0), because nopK+ resonance is observed. Th
is against the proposal by Capstick et al. [11], w
interpretedΘ+ as an isotensor (I = 2) state be-
cause of the “unusually narrow” width. It is, how
ever, pointed out that the coupling constant for
Θ+ → NK decay is not too small even ifΘ+ is an
I = 0 baryon [13]. Thus we assume thatΘ+ is an
I = 0 baryon.

The spin is naturally assumed to be12, because
all the hadrons observed so far follow the sim
rule that higher spin states have larger masses.1 The
one-gluon exchange interaction, which is a typi

1 We assume that there is no other resonance state nor a b
state belowΘ+(1540). Such assumption is supported by the curr
experimental data.
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the
qq interaction, prefers lower spin states, for instan
This, however, should be confirmed by experimen
is also interesting to note the spin of the four-qu
subsystem. If the(ud)2 system hasJ = 1 [9], thenΘ+
should have aJ = 3

2 partner at maybe a few hundre
MeV above. No excited state ofΘ+ is observed so far

The narrowness ofΘ+ may indicate aP -wave
resonance, meaning12

+
state. This is consistent wit

the Skyrme model prediction by Diakonov et al. [6
However, the quark model naturally gives1

2
−

state as
the ground state [12]. Several suggestions were m
[7,8,10] to reverse their order, but this is still an op
problem.

It is rather clear that the parity as well as the s
of theΘ+ is critical in understanding the pentaqua
structure of this baryon. We here attempt to determ
the parity, assuming that its spin is12, directly from
quantum chromodynamics (QCD). To this goal,
employ the QCD sum rule technique [14,15]. In th
approach, a correlation function is calculated by
use of operator product expansion (OPE) in the dee
Euclidean region on one hand, and is compared w
that calculated for a phenomenological parameter
tion. Thus the sum rules relate hadron properties
rectly to the QCD vacuum condensates, such as〈q̄q〉
and 〈αs

π
G2〉, as well as the other fundamental co

stants, such asms .
We employ the following interpolating field oper

tor for the pentaquark state,

η(x)= εabcεdef εcfg
{
uTa (x)Cdb(x)

}
× {

uTd (x)Cγ5de(x)
}
Cs̄Tg (x),

η̄(x)= −εabcεdef εcfgsTg (x)C
{
d̄e(x)γ5Cū

T
d (x)

}
(1)× {

d̄b(x)Cū
T
a (x)

}
,

where a, b, c, . . . are color indices andC = iγ 2γ 0.
It is easy to confirm that this operator produc
a baryon withJ = 1

2, I = 0 and strangeness+1.
The parts,Sc(x)= εabcuTa (x)Cγ5db(x) andPc(x)=
εabcuTa (x)Cdb(x), give the scalarS (0+) and the
pseudoscalarP (0−) ud diquarks, respectively. The
both belong to the antitriplet(3∗) representation o
the color SU(3) and haveI = 0. The scalar diquar
corresponds to the1S0 state of theI = 0 ud quark
system. It is known that a gluon exchange force as w
as the instanton mediated force commonly used in
quark model spectroscopy give significant attract
between the quarks in this channel. The pseudosc
diquark does not have nonrelativistic limit, thou
from the quantum number, we may assign it to the3P0
state ofud (I = 0).

It is natural to ask why we do not use a pro
uct of two scalar diquarks. The answer is that it
not possible to construct a local operator with twoud
scalar diquarks, as they behave as identical boson
erators, which are to be antisymmetric in the co
quantum number. Thus, as a next simple local op
ator, we employ the combination of a scalar diqu
and a pseudoscalar diquark. One of the advantag
this operator is that its coupling to the main cont
uum state,NK, is expected to be small, becauseη(x)
cannot be decomposed into a product ofN(3q) and
K(qq̄) operators in the nonrelativistic limit.

We would like to stress here that the parity
the baryon is not specified because the interpola
field operator, Eq. (1), may generate both the posi
and negative parity baryons. To digest this fact,
consider the spatial inversion applied toη(t, �x),

(2)η(t, �x)→ +γ 0η(t,−�x).
It may seem that the parity ofη is positive and
thereforeη annihilates positive parity baryons on
But one may change the parity of the operator sim
by multiplyingγ 5,

(3)γ 5η(t, �x)→ +γ 5γ 0η(t,−�x)= −γ 0γ 5η(t,−�x).
The correlation function

(4)ΠT (q)=
∫
d4x eiq·xi〈0|T (

η(x)η̄(0)
)|0〉

can be expressed in terms of the spectral func
by inserting intermediate baryon states in betweeη
andη̄. For the positive parity states, the matrix elem
is given by

(5)〈0|η(x)∣∣B+( �p)〉 = λ+ u+( �p)e−ip·x,
while for the negative parity states, we have

(6)〈0|η(x)∣∣B−( �p)〉 = λ− γ 5u−( �p)e−ip·x.
Thus the correlation function can be expressed by
positive parity spectral functionρ+ and the negative
parity oneρ− as

ΠT (q)= −
∫
dm+

ρ+(m+)
/q −m+
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+
∫
dm− γ 5ρ

−(m−)
/q −m−

γ 5

(7)

= −
∫
dm+

ρ+(m+)
/q −m+

−
∫
dm−

ρ−(m−)
/q +m−

.

In order to separate the positive and negative pa
states out of the correlation function, we use
technique developed in Ref. [17] for the ordina
three-quark baryons. We consider the retarded Gre
function and choose the rest frame,�q = 0,

(8)Π(q0)=
∫
d4x eiq·xi〈0|θ(x0)η(x)η̄(0)|0〉

∣∣∣∣�q=0
.

This correlation function is analytic for Imq0> 0 and
satisfies

(9)ImΠ(t, �x)= ImΠT (t, �x) for t > 0,

whereΠT is the Feynman correlator defined in Eq. (
Thus the retarded correlation function has singulari
only at real positiveq0. From Eqs. (7) and (9), w
obtain, for realq0> 0,

1

π
ImΠ(q0)=A(q0)γ

0 +B(q0),

A(q0)= 1

2

(
ρ+(q0)+ ρ−(q0)

)
,

(10)B(q0)= 1

2

(
ρ+(q0)− ρ−(q0)

)
,

or equivalently,

(11)ρ±(q0)= A(q0)±B(q0).

The imaginary part of the correlation function
evaluated at the asymptotic region,q2

0 → −∞, by the
operator product expansion (OPE) technique. We t
obtain

AOPE(q0)= q11
0

5!5!2107π8
+ q7

0

3!5!28π6
ms〈s̄s〉

+ q7
0

5!3!210π6

〈
αs

π
G2

〉

− q5
0

4!3!29π6ms〈s̄gsσ ·Gs〉,

BOPE(q0)= q10
0 ms

5!5!210π8
− q8

0

4!5!27π6
〈s̄s〉

(12)+ q6
0

3!4!29π6
〈s̄gsσ ·Gs〉
from the OPE up to the dimension 6 operato
Fig. 1 shows various terms of OPE graphically. H
the masses of theu, d quarks are neglected. Som
special features of this OPE are (1) that neitheu
nor d quark condensate appears up to this order,
(2) the B term consists of chiral odd condensat
〈s̄s〉 and 〈s̄gsσ · Gs〉, as well as the strange qua
massms , which breaks chiral symmetry explicitly
Eq. (11) shows that the splitting of the positive a
negative parity spectrum comes fromB. In other
words, chiral symmetry breaking is responsible for
parity splitting. This feature has been seen also in
baryon sum rule and shows explicit roles of the ch
symmetry breaking on the hadron spectrum.

The first feature comes from the structure of
interpolating field operator, Eq. (1). One sees in Fig
that the OPE consists only of the contractions of
scalar diquarks,S–S, and the pseudoscalar diquark
P–P , while the other terms of the typeS–P vanish.
Then the chiral structure of the diquark operat
prohibits appearance of theu, or d , condensates, i.e
the diquarks contain only the left–left or right–rig
combinations and therefore a single quark conden
vanishes in the chiral limit,mu � md � 0. We also
note that four quark condensates of dimension 6
not contribute to the leading order in 1/Nc, which is
another advantage of this choice ofη(x).

The sum rule is obtained by comparing the OPE
the correlation function, Eq. (12), and explicit forms
the spectral functions using the analytic continuati
The spectral function is commonly parametrized b
pole plus continuum contribution,

ρ±
Phen(q0)= |λ±|2δ(q0 −m±)

(13)+ θ(q0 − √
sth)ρ

±
CONT(q0),

where|λ±|2, defined in Eqs. (5) and (6), denotes t
residue of the pole determined by the matrix elem
of the interpolating field for the designated state
massm±. The residue should be positive, which giv
a condition to check the validity of the sum rul
The continuum part is assumed to be identical to
corresponding OPE function at above the thresh√
sth, ρ±

CONT = ρ±
OPE≡AOPE±BOPE.

In order to enhance the pole part and also supp
the higher dimension terms of the OPE, we introd
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Fig. 1. Contributions to Eq. (12). The dashed lines are gluons, and the blob on the quark line indicates the insertion of the mas
condensates. Plot (a) gives the term without condensate, (b) thems , 〈s̄s〉, 〈s̄gsσ ·Gs〉, ms〈s̄s〉, andms 〈s̄gsσ ·Gs〉 terms, and (c) and (d) giv
the gluon condensate term,〈αsπ G2〉.
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a weight function

(14)W(q0)= exp

(
− q2

0

M2

)
,

whereM is the relevant mass scale for the baryon. T
sum rule is obtained as

(15)

∫
dq0W(q0)ρ

±
Phen(q0)=

∫
dq0W(q0)ρ

±
OPE(q0).

This form of the weight function is borrowed from
the Borel sum rule formulation and thereM is often
called the “Borel mass”. Physical quantities are to
independent of the choice ofM ideally, but in practice
the truncation in the OPE and the incompletenes
the pole plus continuum assumption lead to mildM
dependence. We have to choose a reasonable ran
M to evaluate the physical quantities.
f

Finally, we obtain the sum rules for the positive a
negative parity baryons,

|λ±|2e−m±2/M2

= 1

3!4!27π6

×
[

1

5600π2I11(M, sth)± 1

800π2I10(M, sth)ms

∓ 1

20
I8(M, sth)〈s̄s〉 + 1

10
I7(M, sth)ms〈s̄s〉

+ 1

40
I7(M, sth)

〈
αs

π
G2

〉

± 1

4
I6(M, sth)〈s̄gsσ ·Gs〉

(16)− 1

4
I5(M, sth)ms〈s̄gsσ ·Gs〉

]
,
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Table 1
Standard values of the QCD parameters

ms 〈s̄s〉 m2
0 ≡ 〈s̄gsσ ·Gs〉/〈s̄s〉 〈αsπ G2〉

0.12 GeV/c2 0.8× (−0.23 GeV)3 0.8 GeV2 (0.33 GeV)4
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where the functionIn(M, sth) is defined by

(17)In(M, sth)≡
√
sth∫

0

dq0q
n
0e

−q2
0/M

2
.

In order to eliminate|λ±|2, we differentiate Eq. (16
by −1/M2 and obtain

|λ±|2m2±e−M±2/M2

= 1

3!4!27π6

×
[

1

5600π2I13(M, sth)± 1

800π2I12(M, sth)ms

∓ 1

20
I10(M, sth)〈s̄s〉 + 1

10
I9(M, sth)ms〈s̄s〉

+ 1

40
I9(M, sth)

〈
αs

π
G2

〉

± 1

4
I8(M, sth)〈s̄gsσ ·Gs〉

(18)− 1

4
I7(M, sth)ms〈s̄gsσ ·Gs〉

]
.

One sees that the difference between the pos
and negative parity states comes from the te
with ± sign. These are the terms which are chira
odd, and thus the mass splitting is attributed to
chiral symmetry breaking. The leading (i.e., lowe
dimension) OPE term which causes the parity splitt
is thems term, but the contributions of the〈s̄s〉 and
〈s̄gsσ ·Gs〉 are larger in magnitude. At dimension
we have neglectedms〈αsπ G2〉 term, which happens t
be small.

Dividing Eq. (18) by Eq. (16), we express th
massesm± in terms of the QCD parameters,ms ,
〈s̄s〉, 〈s̄gsσ · Gs〉, 〈αs

π
G2〉, as well as the threshol

parametersth and the “Borel mass”,M. The values
of the parameters are summarized in Table 1. Th
values ofsth are chosen for the evaluation,

√
sth =

1.6, 1.8, and 2.0 GeV, whileM of the range 1.0 →
2.0 GeV is considered.
The pole residue|λ±|2 must be positive in orde
to be able to normalize the baryon state. In fact
we find zero or negative residue, such a pole m
be spurious. In order to avoid the spurious pole,
examine the values of Eq. (16), which are plotted
M in Fig. 2. There the contributions from each te
of OPE are added up subsequently. We find that
dimension-5 condensate,〈s̄gsσ · Gs〉, gives a large
negative contribution to|λ+|2, which ends up with
almost zero or a slightly negative value. This sugge
that the pole in the positive parity spectral functi
is spurious. It is indeed shown that the derived m
for the positive parity baryon is wildly sensitive
M and the continuum threshold,

√
sth, as Eq. (16)

comes in the denominator of the sum rule. Theref
we conclude that the sum rule shows no positive pa
solution.

In contrast, the large〈s̄gsσ · Gs〉 contribution
makes |λ−|2 positive, and therefore the obtain
negative parity state is a real one. It is, however, no
that the cancellation between the dimension-3 te
〈s̄s〉, and dimension-5 term,〈s̄gsσ · Gs〉, is rather
sensitive to the value ofm2

0, defined by

m2
0 ≡ 〈s̄gsσ ·Gs〉

〈s̄s〉 .

The value is determined from the sum rules of
strange baryons, and a generally accepted valu
m2

0 � 0.8 ± 0.2 GeV2 [16]. We therefore varym2
0

from 0.6 to 1.0 GeV2, and check the positivity o
|λ±|2. It is found that the conclusion does not chan
within this window. It should be mentioned, howev
that ifm2

0 were smaller as 0.4 GeV2, then the negative
parity baryon would be turned to a spurious sta
while the positive parity becomes a real state. But s
a value ofm2

0 may not be physical. In Fig. 2, one se
that the other terms of OPE are not important, and
results are found to be insensitive to the other Q
parameters. Thus we conclude that the sum rule
the standard values of condensate values predic
negative parityΘ+.
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Fig. 2. Contributions from each term of Eq. (16) added up subsequently for the negative parity and positive parity sum ru√
sth = 1.8 GeV.
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In Fig. 3, the obtained masses of the negative pa
Θ+ are plotted againstM, where the lines,M =m−
andM = 1.5 GeV, are also drawn for guidelines. T
curves show that theM dependence is weak and the
fore the sum rule works. The results, however,
pend on the choice of the threshold

√
sth of the contin-

uum, which may come mainly from theS-waveKN
scattering states. As we expect no excited reson
states in this channel, the continuum starts up gra
ally, and therefore the threshold parameter can b
large as 2 GeV. We thus choose

√
sth = 1.6, 1.8 and

2.0 GeV. The extractedΘ+ masses are given in Ta
ble 2. For

√
sth = 1.8 GeV, the solutions forM =m−
Table 2
Masses of the12

−
baryon for various

√
sth

√
sth [GeV] M =m− [GeV] M = 1.5 [GeV]

1.6 1.34 1.35
1.7 1.42 1.42
1.8 1.49 1.49
1.9 1.57 1.56
2.0 1.65 1.63

andM = 1.5 GeV agree atm− � 1.5 GeV, which is
consistent with the observedΘ+ mass.

In conclusion, we have performed a QCD su
rule analysis of the pentaquark baryon with stran
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Fig. 3. Masses of the negative parityΘ+ baryon vs.M .
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s.
ness+1. The parity of the state is projected a
we have found that the standard QCD conden
parameters give the negative parity baryon with
mass around 1.5 GeV, although the sum rule
found to be sensitive to the dimension-5 condens
〈s̄gsσ ·Gs〉, or its ratio to the dimension-3 quark co
densate,m2

0.
Finally, we give some comments on previous wo

on the QCD sum rule approach to the pentaqu
baryon. Zhu [18] performed an analysis of the pe
taquark baryon withI = 0, 1 and 2, in the QCD sum
rule. Matheus et al. [19] also calculated the mass
Θ+ andN(1440)as pentaquark states in the QCD s
rule. They both obtain baryon state consistent with
observedΘ+(1540), although the interpolating fiel
operator they used are different with each other,
also from us. Neither of them, however, determin
the parity of the state. (Although Zhu conjectured
parity is negative, his sum rule cannot give the r
son for the conjecture.) In fact, they both conside
only the chiral-even part (A(q0) part in Eq. (10)) of the
correlation function and therefore their results can
distinguish parity. On the other hand, we have fou
that the chiral-odd part (B(q0) part in Eq. (10)) plays
the critical role in determining the parity. Although th
chiral-even part of our sum rule gives a consistent
sult with theirs, we think that the chiral-odd part ca
not be ignored.
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