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1. Introduction

The aim of the program of reverse mathematics, founded by Harvey Friedman, is the exact determination of the axioms
which are needed for proving theorems of ordinary mathematics. Exact determination here means not only showing that
the theorem is provable from the axioms but also proving that the axioms can be regained from the theorem. In this article,
we examine determinacy theorems which can be described in the following way. A game between two players is given by a
set A of sequences of natural numbers. The two players alternately choose natural numbers, and thereby produce an infinite
sequence of natural numbers. Player I wins iff this sequence is an element of the given set; otherwise player II wins. Axioms
of determinacy say that for special complexity of the set A either player I or player II has a winning strategy.
Determinacy strength has been examined for many axiom systems. For example, ZFC proves ∆11-determinacy but not

Σ11 -determinacy or Π
1
1 -determinacy (see for example [3]). Full second-order arithmetic does not prove 6

0
4-determinacy

(see [4]). For the determinacy strength of some subsystems of second-order arithmetic see [9].
Wewill examineΠ12 -CA0, that is second-order arithmeticwith comprehension restricted toΠ

1
2 -formulas [9].Wewill use

a previous result thatΠ12 -CA0 is strongly connected to a systemof iteratedmonotone inductive definitions calledµ-calculus.

Definition 1.1 (Language of the µ-calculusLµ). We start with the language of second-order arithmetic and add a set-
constructor µ. For each X-positive formula ϕ(x, X) which contains no second-order quantifiers we add a set term
µxXϕ(x, X), which is intended to denote the least fixed point of the monotone operator Γϕ(X) := {x | ϕ(x, X)}. We say
that a free variable Y occurs positively in t ∈ µxXϕ(x, X) (t 6∈ µxXϕ(x, X)) if and only if ϕ is Y -positive (Y -negative). ϕ may
contain further µ-terms such that nestings of fixed points are possible.
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Definition 1.2. For each X-positive formula ϕ(x, X), let LFP(ϕ, I) be an abbreviation for the conjunction of the formulas

• ∀x[x ∈ I ↔ ϕ(x, I)], which means that I is a fixed point of the operator given by ϕ;
• ∀Y [∀x(ϕ(x, Y )→ x ∈ Y )→ I ⊂ Y ], which means that I is a subset of each fixed point of the operator given by ϕ.

LFP means ‘‘least fixed point’’.

Definition 1.3 (µ-calculus). The µ-calculus is formulated inLµ and contains the following axioms:

• the axioms of ACA0 (see [9]) with comprehension for allLµ-formulas without second-order quantifiers;
• LFP(ϕ(x, X), µxXϕ(x, X)) for each X-positive first-order formula ϕ ofLµ.

Definition 1.4. (S,�,≺) is called a ϕ-compatible prewellordering iff

• (S,�,≺) is a prewellordering, i.e.,
– ∀x(x ∈ S → x � x),
– ∀x, y(x � y→ x ∈ S),
– ∀x, y(x � x ∧ y 6� x→ x ≺ y),
– ∀x, y(x ≺ y→ x � y),
– ∀x, y, z[x ≺ y � z → x ≺ z],
– ≺ is wellfounded,

• ∀x, y[x � y↔ x ≺ y ∨ ϕ(x, {z | z ≺ y})].

We abbreviate that by IGF(ϕ, S,�,≺); IGF means ‘‘inductively generated fixed point’’.

The following lemma is proved in [5](lemma 3.17).

Lemma 1.5. Letϕ(x, X) be an X-positive first-order formula ofL2. ThenACA0 proves the following. Let S be a set and�,≺ binary
relations with IGF(ϕ, S,�,≺). Then LFP(ϕ, S).

Theorem 1.6 (Möllerfeld). The µ-calculus and Π12 -CA0 prove the same Π
1
1 -sentences; therefore they are proof-theoretically

equivalent.

For the proof see [5].
We therefore can examine the µ-calculus instead ofΠ12 -CA0. As pointed out in [5], the µ-calculus is strongly connected

to generalized quantifiers: a generalized quantifier Q on ω is a subset of P (ω) satisfying ∅ 6∈ Q, Q 6= ∅ and X ⊂ Y ∧ X ∈
Q ⇒ Y ∈ Q. (Qx)ϕ(x) is an abbreviation for {x | ϕ(x)} ∈ Q. In this notation, the familiar quantifier ∀ is {N} and ∃ is
{X ⊂ N | X 6= ∅}. For each quantifier Q, the inverse Q := {X c | X 6∈ Q} is again a quantifier, and it holds that Q = Q and
(Qx)ϕ(x)↔ ¬Qx¬ϕ(x).
For each quantifier Q, we define the next quantifier Q∨:

(Q∨x)ϕ(x) :⇔ (Qx0)(Qx1)(Qx2) · · ·
∨
n∈N

ϕ(〈x0, . . . , xn〉).

Note that ∃∨ is the Souslin quantifier. By iterationwe define generalized quantifiers ∃n and∀n for each n ∈ ω putting ∃0 := ∃,
∃
n+1
:= (∃n)∨ and ∀n := ∃n.
We now introduce a language and a theory where we can talk about ∃n and ∀n.

Definition 1.7 (LanguageLa of the theory aame). We enlarge the languageL2 by quantifiers ∀n and ∃n for each n ∈ ω. The
rules in the definition of formulas for these quantifiers are analogous to the rules for the ordinary first-order quantifiers ∀
and ∃ with the restriction that ∀nxϕ(x) and ∃nϕ(x) can only be built if ϕ contains no second-order quantifiers (but ϕ may
contain further quantifiers ∃m or ∀m). We do not count formulas containing ∀n or ∃n as first-order formulas.

Definition 1.8 (Theory aame). The theory aame is formulated inLa and contains the following axioms:

• the axioms of ACA0, with comprehension for allLa-formulas without second-order quantifiers;
• ∃

0xϕ(x)↔ ∃xϕ(x)
• ∃

n+1xϕ(x, Ey, EY )↔ ∀X
(
∀x(ϕ∃

n
(x, Ey, X, EY )→ x ∈ X)→ 〈〉 ∈ X

)
;

• ∀
nxϕ(x)↔ ¬∃nx¬ϕ(x);

where ϕ varies overLa-formulas without second-order quantifiers. ϕQ(s, Ey, X, EY ) is an abbreviation for

ϕ(s, Ey, EY ) ∨ (Qx)s_〈x〉 ∈ X .

Since ϕQ is X-positive, the formula

∀X
(
∀x(ϕ∃

n
(x, Ey, X, EY )→ x ∈ X)→ 〈〉 ∈ X

)
expresses ‘‘ the least fixed point of the operator given by ϕ∃

n
(x, X) contains 〈〉.’’ Therefore ∃n+1 is the next quantifier of ∃n.
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As shown in [5], the theories aame and the µ-calculus are equivalent in the following way.

Theorem 1.9 (Möllerfeld). Theµ-calculus andaame prove the sameL2-sentences; they especially prove the sameΠ11 -sentences
and are therefore proof-theoretically equivalent.

Let<ω-602 denote the union of the finite levels of the difference hierarchy over 6
0
2. It is a tedious exercise to prove that

this is the Boolean closure (i.e., the closure under finite union and complement) of the 602-sets. A proof is given in [2]. Let
<ω-602 -Det0 be ACA0 with determinacy for <ω-6

0
2-formulas. For lightface versions of <ω-6

0
2 -Det0, see [7,8]. In the first

paper, they show thatΠ02 -comprehension proves<ω-Σ
0
2 -determinacy. In the second one, they show a kind of the reversal.

Now we can state the main theorem of this article.

Theorem 1.10. The µ-calculus and<ω-602 -Det0 prove the sameL2-sentences.

Together with Theorem 1.6, we obtain the following.

Corollary 1.11. Π12 -CA0 and<ω-6
0
2 -Det0 prove the sameΠ

1
1 -sentences and are therefore proof-theoretically equivalent.

2. The µ-calculus proves<ω-602-determinacy

To show that<ω-602-determinacy is provable within the µ-calculus we need a finer characterization of<ω-6
0
2.

Definition 2.1. We define the hierarchy 6δn as follows:

• 6δ0 = 6
0
1,

• 5δ
n = ¬6

δ
n for n ∈ ω,

• 6δn+1 = 6
0
2 ∧5

δ
n for n ∈ ω,

where the elements of 602 ∧5
δ
n are the intersections between a 6

0
2-set and a5

δ
n-set.

Further, let 6δ :=
⋃
n∈N 6

δ
n.

It follows directly from the definitions that 6δ = Diff(<ω;602). For the first direction of Theorem 1.10, it therefore
suffices to prove the following lemma.
We use lower-case Greek letters as syntactical variables for infinite sequences of natural numbers. By α[x]we denote the

initial segment of length x of α. By ϕ(EX+, EY−, EZ+−)we denote a formula where the variables EX occur positively (i.e., inside
an even number of negations), EY occur negatively (i.e., inside an odd number of negations) and EZ occur both positively and
negatively.
We say that a set term depends uniformly on a formula ϕ if it can be defined by comprehension over a formula which

may contain ϕ as a subformula.

Lemma 2.2. For each 6δn-game G given by the formula

• ∃xϕ(α[x], EX+, EY−, EZ+−) for n = 0,
• ∃x∀yϕ(x, α[y], EX+, EY−, EZ+−) for n = 1,
• ∃x∀yϕ(x, α[y], EX+, EY−, EZ+−) ∧ R(α, EX+, EY−, EZ+−) with R(α, EX+, EY−, EZ+−) ∈ 5δ

n−1 for n > 1,

there exist set terms of µ-calculus WG, SGI and S
G
II which depend uniformly on ϕ and R, and W

G depends only positively on EX and
only negatively on EY , such that the µ-calculus proves that

• if 〈〉 ∈ WG, then SGI is a winning strategy for player I in G;
• if 〈〉 6∈ WG, then SGII is a winning strategy for player II in G.

This statement holds also for a5δ
n-game G of the form

∀x∃yϕ(x, α[y], EX+, EY−, EZ+−) ∨ R(α, EX+, EY−, EZ+−),

with R(α, EX+, EY−, EZ+−) ∈ 6δn−1.

Proof. The proof is by meta induction on n (that means the induction from outside and not inside the µ-calculus).
For n = 0, the claim is the theorem of Gale and Stewart that all open sets are determined [6]. This proof is formalizable

in the µ-calculus.
For n = 1, the proof is a formalization of Wolfe’s proof of602-determinacy (see [6]). This is in fact Tanaka’s formalization

of Wolfe’s theorem in 611-MI0 (see [10]). Because this is implicit in the case n > 1 we skip it.
The proof for n > 1 is a generalization of Wolfe’s theorem to <ω-602-games. This idea was first published by Bradfield

in [1]. We will formalize it in the µ-calculus.
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Because x does not occur freely in R, the game G is of the form

∃x
(
∀yϕ(x, α[y], EX+, EY−, EZ+−) ∧ R(α, EX+, EY−, EZ+−)

)
.

Let Qi be the following501-game:

Qi(α, EX, EY , EZ) :⇔ ∀yϕ(i, α[y], EX, EY , EZ).

For each Qi, we consider the tree Ti given by

s ∈ Ti :⇔ (∀t ⊂ s)∀yϕ(i, t, EX, EY , EZ).

We then obtain

γ ∈ Qi ↔ γ ∈ [Ti]

with [T ] := {α | ∀s(s ⊂ α→ s ∈ T )}; s ⊂ α means that s is an initial segment of α.
Wewill now define a set of securewinning positions for player I as follows.We start with all positions s (a finite sequence

of natural numbers) such that there exists a natural number i such that player I canwin the game [Ti]∩R. If P is the set of the
already secured winning positions, we add all positions in which player I can stay in R and in Ti ∪ P . All positions obtained
in this way are winning positions for player I in G, because player I can follow his strategy that holds him inside R and Ti ∪ P .
At the moment the position leaves Ti it is in P and player I wins by induction hypothesis. If Ti is never left, the played path
is in [Ti] and in R, so player I wins, too. To formalize this in the µ-calculus we define a5δ

n−1-game Aw,i(P) by

[Aw,i(P)](γ ) :⇔ (w_a ∈ Ti ∪ P for all a ⊂ γ ) ∧ R(w_γ ).

The setsW Aw,i(P), SAw,i(P)I and SAw,i(P)II exist by induction hypothesis. Let

ψ(〈s, i〉, V ) :⇔ 〈〉 ∈ W As,i((V )
1)

with (V )1 := {x | ∃i〈x, i〉 ∈ V }. There is such a formula ψ becauseW A is uniform in A for each game A. V occurs positively
in As,i((V )1), so V is positive inW As,i((V )

1) by the induction hypothesis for As,i((V )1). Therefore we can build the least fixed
point of ψ:

Iψ := µxXψ(x, X).

LetWG := (Iψ )1. Notice that the variables EX and EY occur positively (respectively negatively) inWG.
There are uniformly inψ stage comparison relations�ψ and≺ψ such that theµ-calculus proves that IGF(ψ, Iψ ,�ψ ,≺ψ

). We now define the strategy SGI according to our description above and show by induction on≺ψ that for each position in
(Iψ )1 our strategy is winning the game. This is possible because if we are in the position a with 〈a, i〉 ∈ Iψ we can describe
the set of the winning positions that are secured up to this moment as {b | ∃j〈b, j〉 ≺ψ 〈a, i〉}.
Finally, we have to give a winning strategy for player II if 〈〉 6∈ WG. But then there exists no i such that 〈〈〉, i〉 ∈ Iψ .

According to the second point of Definition 1.3 of the µ-calculus, we have

〈〈〉, i〉 6∈ Iψ → ¬ψ(〈〈〉, i〉, Iψ ),

and together with the definition of ψ

〈〉 6∈ W A〈〉,i((Iψ )
1) for each i.

According to our induction hypothesis, player II has a winning strategy in A〈〉,i((Iψ )1) for each i. So player II can play as
follows. He takes the least i0 such that 〈〉 is in Ti0 , and then he plays according to his winning strategy in A〈〉,i0((Iψ )

1). If the
position does not leave (Iψ )1 ∪ Ti0 after finitely many moves, the played sequence is not in R, so player II wins the game G.
Otherwise, let x be the first position that is not in (Iψ )1 ∪ Ti0 . Then player II takes the least i1 such that x is not in Ti1 , and he
goes on in the manner described above (with x instead of 〈〉). So he forces the played sequence to be in none of the Ti, and
he wins the game.
We now prove the statement for a5δ

n-game G of the form

∀x∃yϕ(x, α[y], EX+, EY−, EZ+−) ∨ R(α, EX+, EY−, EZ+−)

with R(α, EX+, EY−, EZ+−) ∈ 6δn−1. Let G be the game ‘‘G
c and the other player begins’’; more formally,

G := {〈n〉_γ | γ 6∈ G ∧ n ∈ ω}.

Then G is6δn, and by the first part of the lemmawe obtain setsW
G, SGI and S

G
II . Now the claim follows forW

G
:={s |∃n(〈n〉_s 6∈

WG)}, SGI :={s | ∃n(〈n〉
_s ∈ SGII )} and S

G
II :={s | ∃n(〈n〉

_s ∈ SGI )}. The variables which occur positively in G occur negatively in
G, and hence negatively inWG and positively inWG.
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The complete strength of the µ-calculus is used in this proof. In each step of the induction we build the least fixed point
of

ψ(〈s, i〉, V ) :⇔ 〈〉 ∈ W As,i((V )
1),

whereW As,i((V )
1) is the set of winning positions in a 5δ

n−1-game. But as we have seen in the last paragraph, this set is the
complement of the set of winning positions in a 6δn−1-game, and therefore the complement of an inductive set built in the
previous induction step. This occurrence of the complement of the previous fixed point ensures that the complexity of the
fixed points is rising in the course of the induction. �

3. Embedding aame in<ω-602-Det0

To prove the remaining direction of Theorem 1.10, it is sufficient to embedaame in<ω-602 -Det0 because of Theorem 1.9.
The idea of the proof is to describe the generalized quantifiers by games of complexities within <ω-602. For a formula
∃
1xϕ(x), imagine a game where player I wants to prove that the formula is true, and player II that it is false. In this game,
player II has to play natural numbers, and player I either passes or plays ‘‘break’’. Player I wins the game iff he has played
‘‘break’’ at some time and ϕ holds for the sequence of natural numbers played by player II before the break of player I. If
player I wins the game, he wins it after finitely many moves; therefore it is an open game. If we change the roles of player
I and player II, we get a game for the ∀1-quantifier: player I plays natural numbers, and player II passes or plays break. This
game is closed because player I loses in the finite. The game for ∃2 is a kind of iteration of the ∀1-game (that is no surprise
because the ∃2-quantifier is a kind of iteration of ∀1). First, player I decides if he wants to play a ∀1-game. If he decides to
play, they do so until the first break of player II (if II never plays break, he loses). Then player I can decide if he wants to play
another ∀1-game, and so on. Suppose that player I decides after the nth ∀1-game that he does not want a further ∀1-game
and plays break. Let sn be the finite sequence played in the nth ∀1-game. Then player I wins iff ϕ(〈s1, . . . , sn〉) holds. To find a
convenient notation for this game, we imagine that player I plays functions fromω toω, and player II answers with a natural
number which chooses the initial sequence of length n of the function played by I. This is in fact the same game, and it can
be denoted in the following way:

I

II

f1 f2 f3 f4
· · ·

n1 n2 n3 n4

Note that this is only a convenient notation for the game described above; our games remain games on ω and not on
functions on ω!
Pursuing that we can describe all quantifiers ∃n and ∀n by games. We do that by meta induction (i.e., induction outside

<ω-602 -Det0) on n. To be able to write down the sequences of natural numbers that are played during these games, we
define the notations rulen and rulen also by induction on n. The intended meaning is that rulen denotes the rules of the game
for ∃n, and rulen the rules for ∀n. rule1 is ‘‘Player II plays natural numbers until player I plays a break; player I has to play his
final break at some time’’; rule1 is the same with player I and II swapped. rulen is ‘‘Play according to rulen−1. After this player
I has the opportunity to play a final break. If he does this, the game is over, if he does not, another game according to rulen−1
is played. After this, player I again has the opportunity to play a final break, and so on, and this is repeated until player I
plays his break. At some time, player I has to play his final break’’. So the game in the diagram above is played according to
rule2. rulen is rulen with player I and II swapped.
During the following proofswewill often have to denote courses of games, i.e., sequences of natural numberswhichwere

played according to these rules. Therefore we will denote by rulen also a sequence of natural numbers played according to
rulen. For example, we denote a game for ∃n like this:

I

II
rulen−1 rulen−1 rulen−1 rulen−1 rulen−1 · · ·

Let α : ω → ω be a sequence of natural numbers played in a ∃n-game. Then α(m) is a natural number coding the
sequence which was played in the mth part which was played according to rulen−1. Let (α�m) := 〈α(0), . . . , α(m)〉. Then
player I wins this game iff ∃mϕ((α�m)).
The complexity of these games are all in<ω-602. In the case that the final break is never played, we have to check which

of the players did not play a ‘‘break’’ at level k although the other player played infinitely many breaks at level k − 1.
The statement ‘‘one player played infinitely (only finitely) many breaks of a certain level’’ is 502 (respectively 6

0
2), i.e., the

complexity stays in<ω-602.
To talk about the set of winning positions in these games we need the following lemma.
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Lemma 3.1. Let ϕ(x, α) be a<ω-602-game. Then<ω-6
0
2 -Det0 proves that

∃Xϕ∀x((Xϕ)x is a winning strategy for one player in ϕ(x, α)).

Proof. Consider the following game. First player I plays a natural number x, and then player II decides which of the games
ϕ(x, α) and¬ϕ(x, α) they play. The winner of this game is the winner of the whole game. Player I obviously has no winning
strategy in this game; therefore by determinacy player II has a winning strategy. From that strategy Xϕ can be defined. �

We say that s is a winning position in the game for ∃nxϕ(x) iff s is a finite sequence of courses of games played according
to rulen−1 and player I wins the game for ∃nxϕ(s_x). Using the previous lemma, we define this set formally by

W nϕ := {s | (Xψ )s is a strategy for player I},

where ψ is the <ω-602-formula for the game of ∃
nxϕ(s_x). Since the existence of W nϕ is proved in <ω-6

0
2 -Det0, we can

treatW nϕ as a constant in our language from now on. We now have to show thatW
n
ϕ is the least fixed point of the formula

ϕ∃
n−1
(x, Ey, X, EY ) (for the definition of ϕ∃

n−1
see 1.8). Then we have shown that we can map ∃nxϕ(x) to 〈〉 ∈ W nϕ and our

embedding of aame into<ω-602 -Det0 is done.
By Lemma 1.5, it suffices to prove that IGF(ϕ∃

n−1
,W nϕ ,�

n
ϕ,≺

n
ϕ) for appropriate �

n
ϕ,≺

n
ϕ . We will first have a look at the

game for s �2ϕ t for two appropriate sequences s and t . In the notation introduced above, this game looks like this:

I f s1 nt1 f s2 nt2
· · ·

II ns1 f t1 ns2 f t2

Let αs := (f s1 �n
s
1)(f

s
2 �n

s
2) · · · and α

t
:= (f t1 �n

t
1)(f

t
2 �n

t
2) · · · . Then the winning condition for player I is

∃n(ϕ(s_(αs�n)) ∧ ∀n′ < n¬ϕ(t_(αt�n′))).

In this game, the two games for ∃2xϕ(s_x) and ∃2xϕ(t_x) are played simultaneously: player I tries to prove that he can win
the game to show that ∃2xϕ(s_x) is true, and that he can do this at least as quickly as player II can win the game in which
he shows that ∃2xϕ(t_x) is true. The diagram for the general case would be

I

II
rulen−1 rulen−1 rulen−1 rulen−1 rulen−1 · · ·

The definition of s ≺nϕ t is analogous. We give the diagram for the general case:

I

II
rulen−1 rulen−1 rulen−1 rulen−1 rulen−1 · · ·

Let αt be the sequence whose elements are the courses of the rulen−1-parts of the game, and αs respectively for the rulen−1-
parts. Then the winning condition for player I is

∃n[ϕ(s_(αs�n)) ∧ ∀n′ ≤ n¬ϕ(t_(αt�n′))].

The complexity of these games is again in<ω-602.
Analogously toW nϕ , we define�

n
ϕ and≺

n
ϕ using the games described above. For�

n
ϕ , let

ψ(〈s, t〉, α) :⇔ ∃n(ϕ(s_(αs�n)) ∧ ∀n′ < n¬ϕ(t_(αt�n′))),

where αs is the sequence of the rulen−1-parts and αt is the sequence of the rulen−1-parts of α. We now apply 3.1 to ψ and
define

s �nϕ t :⇔ (Xψ )〈s,t〉 is a strategy for player I.

The definition of≺nϕ is analogous.
From now on, we will talk about ∃n and ∀n in the theory <ω-602 -Det0. That should be read as an abbreviation for the

corresponding second-order formula (see 1.8). We will prove the following theorem.
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Theorem 3.2. <ω-602 -Det0 proves that IGF(ϕ
∃
n−1
,W nϕ ,�

n
ϕ,≺

n
ϕ) and therefore also LFP(ϕ

∃
n−1
,W nϕ ) for each first-order

formula ϕ.

The proof is bymeta-induction on n (i.e., induction outside of<ω-602 -Det0). To make clear the idea of the proof we will first
consider the case n = 2.

Lemma 3.3. <ω-602 -Det0 proves that there exists no (si)i∈ω such that s1 ∈ W
2
ϕ ∧ s1 �

2
ϕ s2 �

2
ϕ s3 · · · .

Proof. We assume that s1 ∈ W 2ϕ ∧ s1 �
2
ϕ s2 �

2
ϕ s3 · · · . Then by determinacy of the corresponding game we have winning

strategies for one player. We link these strategies in the following way (the player with the winning strategy is printed in
boldface):

s1 ∈ W 2ϕ

I f s11 f s12

II ns11 ns12

s1 �2ϕ s2

I f s11 ns21 f s12 ns22

II ns11 f s21 ns12 f s22

s2 �2ϕ s3

I f s21 ns31 f s22 ns32

II ns21 f s31 ns22 f s32

s3 �2ϕ s4

I f s31 ns41 f s32

II ns31 f s41 ns32 f s42

s4 �2ϕ s5

I f s41

II ns41 f s51

? ?
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· · ·

· · ·

· · ·

· · ·

· · ·

This diagram is to be read as follows. The winning strategy for player I in the game for s1 ∈ W 2ϕ delivers an f
s1
1 . We play

that function in the game for s1 �2ϕ s2 and get by the winning strategy for player II an n
s1
1 and f

s2
1 , and so on. Let

αi := (f
si
1 �nsi1 )(f

si
2 �nsi2 )(f

si
3 �nsi3 ) · · · .

Player I wins the game for s1 ∈ W 2ϕ , i.e.

∃n1ϕ(s1_(α1�n1)).

Because player II wins the game for si �2ϕ si+1, we get for each i

∀ni[¬ϕ(si_(αi�ni)) ∨ ∃ni+1 < niϕ(si+1_(αi+1�ni+1))].

Therefore we have constructed an infinite descending sequence of natural numbers n1 > n2 > n3 · · · , a contradiction. �

Corollary 3.4. <ω-602 -Det0 proves that

1. s ∈ W 2ϕ implies that s �
2
ϕ s;

2. ≺2ϕ is wellfounded.
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Proof. The first statement follows directly from Lemma 3.3. For 2, we prove that

s ≺2ϕ t⇒ t �
2
ϕ s and s ≺2ϕ t⇒ s ∈ W

2
ϕ

by linking the strategies of the corresponding games like in the proof of the last lemma. Then wellfoundedness follows
immediately from the last lemma. �

In the next lemma, we prove the general case.

Lemma 3.5. <ω-602 -Det0 proves that

s �nϕ t ↔ ϕ∃
n−1
(s, {u | u ≺nϕ t}).

Proof. Assume that s �nϕ t . If ϕ(s), then we are done. So we may assume that¬ϕ(s).
We have to show ∀n−1x(s_〈x〉 ≺nϕ t), which is equivalent to¬∃

n−1x¬(s_〈x〉 ≺nϕ t) by the last clause of Definition 1.8. By
induction hypothesis of the induction in the proof of Theorem 3.2 together with the definition of ∃n−1 (see Definition 1.8),
this is equivalent to¬〈〉 ∈ W n−1

¬ψ with ψ(x) := s
_
〈x〉 ≺nϕ t . By definition ofW , this means ‘‘Player II has a winning strategy

in the game for ∃n−1x¬ψ(x)’’, which is the rulen−1-game which player I wins if the position x after the final break satisfies
¬ψ(x). Considering this game with changed roles of player I and II, this is equivalent to ‘‘Player I has a winning strategy in
the rulen−1-game which player II wins if the position x after the final break satisfies ¬ψ(x)’’. But this is the same as ‘‘Player
I has a winning strategy in the rulen−1-game which player I wins if the position x after the final break satisfies s_〈x〉 ≺nϕ t ’’.
Hencewe have to give a strategy for player I to play according to rulen−1, such that if we substitute the course of the game for
x, player I has a winning strategy in the game for s_〈x〉 ≺nϕ t . The strategy for player I is described in the following diagram:

s �nϕ t
I seqs1 seqt1 seqs2 seqt2

rulen−1 rulen−1 rulen−1 rulen−1
II

∀
n−1x(s_〈x〉 ≺nϕ t)

I
rulen−1 rulen−1 rulen−1 rulen−1

II seqs1 seqt1 seqs2 seqt2

6

?

6

?

6

?

6

?

· · ·

· · ·

This diagram is to be read as follows. Each pair of arrows indicates that we use the part of player I’s winning strategy
which belongs to the corresponding part of the upper game to define the strategy for player I in the corresponding part of
the lower game. The first rulen−1-part of the lower game is to determine the x, and the rest of the game is to determine if
for this x it holds that s_〈x〉 ≺nϕ t . As strategy for player I in the first rulen−1-part of the lower game we take the strategy in
the first rulen−1-part from the winning strategy for player I in the s �nϕ t-game. The result of the first part of the games is
a sequence seqs1. The elements of seq

s
1 are sequences which are played according to rulen−2, and so on; hence the depth of

these nested sequences increases with the induction on n. For this seqs1 we have to prove that s
_
〈seqs1〉 ≺

n
ϕ t , which means

that we have to give a winning strategy for player I in the corresponding game. This winning strategy is defined by the next
parts of thewinning strategy for player I in the s �nϕ t-game, as the diagram above indicates.We name the sequences played
in each part as denoted in the diagram and define

αs := (seqs1)(seq
s
2)(seq

s
3) · · · ,

αt := (seqt1)(seq
t
2)(seq

t
3) · · ·

and

αs
_
〈x〉
:= (seqs2)(seq

s
3)(seq

s
4) · · · .

We have to show that

∃m[ϕ(s_〈seqs1〉
_(αs

_
〈x〉�m)) ∧ ∀m′ ≤ m¬ϕ(t_(αt�m′))].

Player I wins the s �nϕ t-game; hence

∃k[ϕ(s_(αs�k)) ∧ ∀k′ < k¬ϕ(t_(αt�k′))].

Because of ¬ϕ(s)we have k ≥ 1, so we choosem := k− 1 and are done. The other direction is analogous. �
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The other properties that are needed for PWO(W nϕ ,�
n
ϕ,≺

n
ϕ) are proved analogously; therefore we have proved

Theorem 3.2.

Corollary 3.6. <ω-602 -Det0 proves that if ϕ(x) is equivalent to a first-order formula then also ∃
nxϕ(x) and ∀nxϕ(x). Therefore

we have comprehension for allLa-formulas and we have an embedding of aame into<ω-602 -Det0.

Proof. By 3.2 we have ∃nxϕ(x)↔ 〈〉 ∈ W nϕ and ∀
nxϕ(x)↔ 〈〉 6∈ W n

¬ϕ . �

This, together with Theorem 1.9 and Lemma 2.2, finishes the proof of Theorem 1.10.
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