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Abstract

In this paper, a model is considered to describe the dynamics of Cohen—Grossberg neural network
with variable coefficients antime-varying delays. Unifornyl ultimate boundedness and uniform
boundedness are studied for thedel by utilizing the Hedy inequality. Combining with the Ha-
lanay inequality and the lapunov functional method, some newfg&iént conditions are derived for
the model to be globally exponentially stable. The activation functions are not assumed to be differ-
entiable or strictly increasing. Moreover, no assumption on the symmetry of the connection matrices
is necessary. These criteria are important in signal processing and the design of networks.
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1. Introduction

In the past few decades, neural networkdsas Hopfield neural network [1], cellular
neural network [2,3], and bi-directional associative memory neural network [4—6,10,11,33]
have attracted the attention of many mathematicians, physicists, and computer scientists
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(see [7—17]) due to their wide range of apgaliions in, for example, pattern recognition,
associative memory, and combinatorial optimization. Among them, the Cohen—Grossberg
neural network [18] is an important one, which can be described by the system of ordinary
differential equations

dx;(t) =—a,(x,(t) |: x,(t) th/g/ (;)i| i=1,2...,n, (1)

dt

in which n > 2 is the number of neurons in the netwosk(z) denotes the state variable

of theith neuron at time; g; (x;(¢)) denotes the activation function of thi¢h neuron at

time ¢; the feedback matrixC = (c;;)nx» indicates the strength of the neuron intercon-
nections within the networky; (x;(¢)) represents an amplification functioby(x; (¢)) is

an appropriately behaved function suchtttiee solutions of model (1) remain bounded.

This model was firstly proposed and studied by Cohen and Grossberg (1983), it includes
a lot of models from evolutionary theory, population biology and neurobiology. It should

be pointed out that the Cohen—Grossberg neural network encompasses the Hopfield neural
network [1] as a special case (whetix; (1)) = 1,b; (x; (1)) = ’x, () + I;), the latter could

be described as

dx;(1)

x(t) .
G = +,Zf~g, xj0)+ 1, i=12....n, (2)

whereC; andR; are positive constants representing the neuron amplifier input capacitance
and resistance, respectively;is the constant input from outside of the network.

In fact, due to the finite speeds of the switching and transmission of signals in a network,
time delays do exist in a working network and thus should be incorporated into the model
equations of the network. It was observed both experimentally and numerically in [19] that
time delay could induce instability, causingssained oscillations which may be harmful
to a system. For the Cohen—Grossberg model (1), Ye et al. [20] also introduced delays by
considering the following system of delayed differential equations:

dx;
xd:t) _az(xz(t) |: xz(t) ch[jgj Xj t_Tk)):|

k=0 j=1
i=12...,n, (3)
where the time delays, (k=0,1,..., K) are arranged such thatdrg <11 < --- < 1.

Further studies were taken by Wang and Zou [21,22], Lu and Chen [23], Chen and Rong
[24] about the following model:

dx;(t)

- =—a,(x,(r>[ (xi (1)) Zc,,g, (r))—;di,,g,-(x,-(r—r,»,,))+1,»},
@)

in which D = (d;j)axn indicates the strength of the neuron interconnections within the
network with time delay parametets. In [22,24], several sufficient conditions were ob-
tained to ensure model (4) to be asymptotically stable. A set of conditions ensuring global
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exponential stability of system (4) were derived in [21] whgn= 0 andd;; = 0, respec-
tively. And, by the property of Lyapunov diagdrsiable matrix, absolutely global stability
was studied in [23] for model (4) whefi; = 0. A more generalized model was studied by
Hwang in [25],

dx;(t
);:) az(xz(t) |: xz(t) Zcug} x](t)

—Zd,’jgj(x]‘(t—fij(t)))-i-]i} (5)
j=1

and exponential stability result was obtained.

The purpose of this paper is to study the dynamic behavior of the generalized Cohen—
Grossberg neural network with variable di@énts and time-varying delays. The orga-
nization of this paper is as follows. In Section 2, we give a model description and some
prerequisite results. In Section 3, boundedness of the model will be discussed. And the
conditions ensuring the exponential stabilitiithe Cohen—-Grossberg neural network are
obtained in Section 4. In Section 5, some examples and their numerical simulations are
given to confirm and illustrate the analysis. Finally, in Section 6, we give concluding re-
marks of the derived results.

2. Model description and preliminaries

In this paper, we investigate the foIIowing delayed dynamical systems:

dx;(t)
)th =—ai(xz'(t))[ (xi (1) ;cz,(t)g, (x; )
- Zdt/(t)g/ t_ tlj(t))) + Ii(t)j|’ (6)

wherei =1,2,...,n;0< t,-j(t) <t and sup_; ;) Bij () < 1 (Wherei;; (1) represents
the derivative ofr;; (1)); c;; (1), d;j () and;(¢) are continuous and bounded functions de-
fined on[—7, +00).

Definex,(s) = x(t +s), s € [-7,0], t > 0. Letx(r) = (x1(t), x2(1), ..., x, ()T, its

norm is defined as
1

where|x(t +5)| = |:Z|xi(t +s)\r] andr > 1

i=1

llx: |- =
—1<s<0

(7)
Assume that the nonlinear model (6) has initial values of the type
xi(t) =g@i(t), tel[-1,0],

in which ¢; () (i =1, 2,...,n) are continuous functions. By the fundamental theory of
functional differential equatiorf29], model (6) has a unique solutiafir) = (x1(z), x2(t),
., x, ()T satisfying the initial condition in (7).



668 J. Cao, J. Liang / J. Math. Anal. Appl. 296 (2004) 665-685

To establish the main results of the model given in (6), some of the following assump-
tions will apply:

(H1) Each functiory; (1) is bounded, positive and locally Lipschitz continuous. Further-
more, O< a; <a;(u) <&; <+ooforalluceRandi=1,2,...,n.

(H2) Each functiorb; (u) is locally Lipschitz continuous and there exigts> 0 such that
ubi(w) > BiulforueR,i=1,2,...,n.

(Hj) Each functionb; (u) € CL(R,R) andb;(u) > B; > 0; bothb; () andbi‘l(-) are lo-
cally Lipschitz continuous.

(H3) Each functiorg;:R — R satisfies the Lipschitz condition with a Lipschitz constant
L;>0,ie.,|lgiju)—g;w)|<Ljlu—v|forallu,veR, j=1,2,...,n.

(H3) Each functiorg; () is bounded and satisfies the Lip#zicondition with a Lipschitz
constant_; > 0.

Definition 1. System (6) is uniformly bounded if, for any constdnt O, there isB =
B(8) > 0 such that, for allg € [0, +00), ¢, and|¢|, < §, we havex(z, 1o, )|, < B for all
t > 1.

Definition 2. System (6) is uniformly ultimately bounded if there iBa- 0 such that, for
anys > 0, there is a constamt=7(8) > 0 such thatx (¢, 10, ¢)|, < B for t > to + 7 for all
to € [0, +00), llell, < 8.

Under the assumption(#fy), (H;) and(Hy), we know from [21] that system (5) has an
equilibrium pointx* = (xJ, x3, ..., xj;)T. Lety(r) = x(¢) — x*, substitutec (r) = y(z) + x*
in (5) and we have

dy;(t) _
dt

—a; (y,-(t) +x;k) |:b,' (y,-(t) +x;") —b; (xl*)
=Y cij(gi (v +x7) — g;(x7))
i=1

- idtj (8 (it = wij®) +x7) — g5 (xj))}- ®

Denote A; (yi (1)) = ai(yi(t) + x7), Bi(yi(1)) = bi(yi(t) + x{) — bi(x[), fi(yj@®)) =
gilyj() +x;‘) —gj (xj); then system (8) becomes

dy;(t) _ -

P —Ai(yi() |:Bi (i) — Zcijfj (vj(®) — Zdijfj (vi(t—j (t))):|-
j=1 j=1
9)

Definition 3. System (5) or (9) is globally exponentially stable if there exist constant®
andM > 0 such that
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lyellr = llxe — x*[l, < Ml — x*le™*
forallr > 0.

Itis clear thatc* is globally exponentially stable for (5) if and only if the trivial solution
of (8) or (9) is globally exponentially stable.
Throughout this paper, the following Hardydquality and Halanay inequality are used.

Lemma 1 (Hardy inequality [26]).Assume there exist constants a; > 0, px > 0 (k =
1,2,...,m+ 1), then the following inequality holds:

m+1 vl.u m+1 G _1
(H k) < (Z pmﬁ) Suln 4o
k=1 k=1

wherer > 0and Sy41 = > {7 pr.

In (10), if we letpu41=1,r = Spr1=> ;41 Pk + 1, we will get

z 1< 1
(l_[ a]fk)am_ﬂ < - (Z pw,ﬁ) + ;a,r,H_l. (11)
k=1

k=1

Lemma 2 (Halanay inequality [27,28])Assume constant numbers k1, k> satisfy k1 >
k2 > 0, V() is a honnegative continuous function on [7g — 7, f9], and as ¢ > 1o, satisfy
the following inequality:

DYV (1) < —kaV (1) + k2V (1),
where V (1) = SUR_, <5< AV ($)}, T > Oisconstant. Thenas’ > 1o, we have

V() < V(g)e 71,
in which 1 is the unique positive solution of the following equation: A = k1 — kpe’T.

3. Boundednessresults

Consider the following equations:
dx;(t)
dt
where f; (¢, ) : [0, +00) x C[—71,0] — R is continuous with respect t¢, ¢) and sat-
isfies the Lipschitz condition with respectgo(i =1, 2,...,n). Let W;(s): [0, +-00) —
[0, +00) (j =1, 2, 3,4) be continuous and increasing functions with(0) = 0, W, (s) —
400 ass — +o0. Let the functionaV (z, ¢) : [0, +00) x C[—1, 0] — [0, +00) be contin-
uous with respect te, ¢).

=filt,x;), i=12,...,n, (12)

Lemma 3 [29]. The solutions of system (12) are uniformly bounded and uniformly ulti-
mately bounded if the functional V (¢, ¢) and functions W;(s) (j = 1, 2, 3, 4) satisfy the
following conditions:
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() Wa(x®)1) <V, x0) < Wallx(0)]r) + Wa(f)_, Wa(lx($)],) ds);
(i) DTV, x)la2 < —Wa(lx(1)|,) + M for some constant M > 0.

Lemma 4 [30]. For system (12), let f;(t + T, ¢) = f; (¢, ¢) and the solutions be uniformly
bounded and uniformly ultimately bounded. Then system (12) hasa T-periodic solution if,
for any constant § > 0, thereisa constant B = B(8) > 0 such that, for all ¢ with ||¢||, < 3,
wehave | f;(t,p)| < Bforalte[—1,0]1 i =1,2,...,n).

For the boundedness of solutions for system (6), we have the following results.

Theorem 1. Under assumptions (H1)—(H3), all solutions of model (6) are uniformly
bounded and uniformly ultimately bounded if there exist constants vy > 0 (k = 1, 2,
oK) >0(k=1,2,...,K2), w; > 0,0 >0, pij, pj;. qij> q;;- §ij- & mij. nj; € R
such that

n K réjj ij n_ K Pij ij
_ 20 _ 7 P
ra; Biw; — Zzaia)ivk|0ij(t) WL - Zzaiwiﬂk‘dij(f)| L
-1 rp*
" rg¥ TN "L rq; |dji(¢j,- (N
=Y @il L =Y @l e >
; , 1-7;;(y ;@)
j=1 j=1 JENE i

ro

holds for all + > 0; where wijl(t) is the inverse function of v;; (1) =t — 7;; (t); r =

Z,f:ll w+1l= Z;f:zl mkx +1and pij, pf;. qij. 455, &ij. & mij. nj; are any real constant
numbers with Ki&i; + %‘:} =1, Kinij + 77;»'} =1, Kopij + p;kj =1, Kogij + q;kj =1
G,j=L12,...,n).

Proof. Letx(¢) = (x1(¢), x2(t), ..., x,(t))T be any solution of model (6). Now consider
the Lyapunov functional

t -1 rp?‘.
10 n * |dij (= (s)) ]
V(t,Xz)=—E wj |Xi(t)|r+&i§ L |xj(s)|r—u — ds |,
r / 1— ;¥ s))
i=1 j=1 1—15;(0) 1J\¥ij

obviously, we have

1 & P 1 r
Vit x) > ;g;|x,»<r>| = ;g|x(r>|r =wi(jx(],), (13)
1 & . raf; t
Vit,x:) < ;5Z[|x,‘(t)|r + Z&iDiij ij / |xj(s)|r ds:|
i=1 Jj=1 t—1

1_« 1 o
— r _ r
<;a);|xi(t)| +;wLnZ/|xi(s)‘ ds

i=1;"¢
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=W(|x®)],) +W3< / W4(|x(s)|r)ds) (14)

t

forall r > 0, where
w= Mmin w;, o= max w;,
1<i<n 1<i<n
X

\di; (W)
Dij = sup U-U——l’ L = max (&iDijL;qu)7
se[—1,4+00) 1—‘17[.1'(1#[]4 (s)) 1<i,j<n
1 1 20 1
Wi(s) = —ws", Wa(s)=-@s", Wa(s)= ——Ls, Wals)==os".
r r ro 2
Then
‘ 1
DTV (. x)les) =Zw,~[|x,-(t>|" DT |xi (1))
i=1
1&g \di; (W L) P
+a YL o) L —
d =1 1_77[.1'(1#,']‘ (1)

1 g Pdiy O,
—;ai;%q |xj (1 = 7i; ()] m(l—fu(f))]

= Z w; { |xi (1) |r7l sgn(xi (1))
i=1

X |:—ai (xi (1) (bi (xi(0) — Zcij(t)gj (x; ()

j=1
- Zdij 0gj(xj(r —j®)) + L (t))]
j=1

i (i )P

1 " rqk r
+=ai ) Ly |0 —
rie 1— (9,1 0)

1< x .
- ;aiZLZ‘f'-’\xJ-(r—f,»j<t>>|’\d,-,-<t>\"’~}
Jj=1

< sz‘ |:—Qi,3i|xi(t)|r +a; Z|Cij(l)||xi(f)|r71Lj|xj(f)|
i=1 =
@ Y [dij (0[50 T L (e = )|

j=1
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n

+&,»|x,»(r>|"1<2\c,j 0|2 @]+ |dij )] ]2, + |1,»(r)\)

j=1 j=1

1 gt diy ()P
+ @ YLy o) L —
r j=1 ' 1_77[.1'(1#,']‘ )

1 - * *

_ ;&,‘ ZL;‘]’J ‘dij(t)‘rplj |xj (t — 'C,'j(t))‘ri|.
j=1

From Lemma 1, we have

K1 i £k
e[ 0 0] = T (les ] £ ) *eig 0] 0
k=1
K1 g
1 i v—] 1 £X rn;*.
S ;;"k\%m L O+ e 0] L [ o
and
|dij (0| L |30 | (e = 73 @) |
K2 Pij ij = gt
= 1_[(|dij ()] " L;k |xi(f)|)ﬂk |dij(t)|p’-’Lj” |xj(t — ;)|
k=1
K> T
1 pij L 1 * rqi*.
< ;;uk\di,-(r)\ L O]+ 2 ldi O L g (=7 0)]
So
n 1 n Ki @ rjj
D+V(t,x;)|(6) < ;wi { |:—g,~,3,' + ;&,’ Z:L;.Vk‘c,’j (t)] " Ljvk
1= ]: =

1. & iy T ,
+ @y D i 0 L ]|xf<t>|

j=1k=1
1 " £ rn¥
—~. . r&:. 1/
o[t Seors
=1

18 g M (W) .
L<q’jj]—i||xj(t)| }

+ -
e S T TR O)
+Zwi&i<2|cij(l)||gj(0)|
i=1 j=1

+ ) |dij0]|2; )| + |1 (r>|> o]t

j=1
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n 1 n Kip r&;j rnjj
— v v,
<Z —Qiﬂiwi+;aizzwivk|6ij(t) WL
i=1 j=1k=1
1. L& iy i
+ =@y Y wipk|di ()| L
. :
j=lk=1

1 n rE® o’
= G i
+;Zalwl|cﬂ(t)| L,
=1

1Y vt i G @) P
+=) djo;L; ' —L——— |50
r,zzl S T )| i )]

+M Y o]

i=1
ln n L
<=0 a0 +MY x|
i=1 i=1

= —olx®[ +M|x()|/"1

in which

M= sup [Ef@;(wi&i<Z|Cij(t)||gj(0)|+Z|dij(t)||gj(0)|+|1i(t)|>)]-

1€[0,400) j=1 j=1

By the equivalence of the norms R, there is a constart > 0 such thatx(¢)|,—1 <
0|x(1)|,, SO we obtain

1 _ 1
DYV (t, x| < —§0|x(t)|: + x| 1(M9’1— Ea|x(t)|r>

1
< —§a|x(t)|:+M*, (15)
where

1
M*= sup sr_l<M0r_l - —O’S>.
5€10,+00) 2
From (13)—(15) and Lemma 3 we know all solutions of model (6) are uniformly bounded
and uniformly ultimately bounded.O

In Theorem 1, when = 1, define

n n !
V(t,Xz)=Zwi[|xi(t)|+&iZLj / |x; ()]
i=1

=1 g0

\dij (7))
— Y 1 ds
1_Tij(l/f,'j (s))

not using Hardy inequality and by direct computation, we have the following corollary.
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Corollary 1. Under assumptions (H1)—(Hz3), all solutions of model (6) are uniformly
bounded and uniformly ultimately bounded if there exist constantsw; >0 =1, 2,...,n),
o > 0, such that

\dji (W5 (1)

n n
a,Biw; — Z&jwj\cj,»(t)ﬁi - Z&jijim i
j=1 S

j=1
holdsfor all + > 0.

From Theorem 1 and Lemma 4, we can easily derive the following results.

Theorem 2. Under assumptions (Hy)—(H3), let ¢;;j (1), d;j (1), w;j (1), ;(t) (,j =12,
..., n) beperiodic functionswith periodic T > 0, then model (6) has a unique T -periodic
solution if there exist constants vy >0 (k=1,2,..., K1), uxr >0 (k=12,...,K>p),
w; > 0,0 >0, p;j, p;‘fj,qij,q;f‘j,éij,é[j, Nij, n;kj € R such that

n Ky réjj Mij. n_ K Pij T9ij
_ - — 7 Mk
raon 3 S woles 0/ F L -3 om0/ L

n n -1 rp*;
_ £ ri _ rgt dji (Y~ ()7
—Zaja)j|c]'i(t)‘r§f’Li ! _Z“jiji / —1 ” — >ro
j=1 j=1 - Tjt(l//ji )
holdsfor all 7 > 0; where r = (5 v + 1= Y12, e + 1 and K1 +&5 =1, Kunij +
ni; =1 Kapij + pj; =1, Koqij + qf; =1 G, j=12,....n).

Corollary 2. Under assumptions (H1)—(Hz3), let c;;(t),d;j(t), t;; (1), [;(¢) (i,j =12,
..., n) beperiodic functionswith periodic T > 0, then model (6) has a unique T -periodic
solution if thereexist constantsw; >0 (i =1,2,...,n), 0 > 0, such that

\dji (@5 (1)

n n
a,Biw; — Z&jwj\cj,»(t)ni - Z&jijim 0
j=1 S

j=1
holdsfor all ¢+ > 0.

Corollary 3. Under assumptions (H1)—(Ha), let ¢;;(t),d;; (@), 7;; (@), L;(¢) (,j =12,
..., n) beperiodic functionswith periodic T > 0, then model (6) has a unique T -periodic
solution if there exist a constant o > 0, such that

n n
o; B —Z&i|cij(t)|Lj —Z&iLj|dij(t)| >0
j=1 j=1
holdsforall t >0andi =1,2,...,n.

Proof. InTheorem 2, ifwetak&K1 =Ko =1, wi = =r—Lw; =1,&; =n; =pij =
qij ==+ andg’ =¥ = pf; =q7; = % (i, j =1,2,...,n), a condition to ensure system
(6) has ar-periodic solution is obtained as
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n 1 n r— 1 n
i |eij(O|Lj = = 3 @ |ei|Li = —= 3 aildi ()| L;
-1 j=1 j=1

18, o)
- = ZajLi_'—_l >0
rieg T -t )

Let r tends to+oo, and the result follows. O

Remark 1. For system (6), whea; (x; (1)) = 1,b; (x; (t)) = b; (£)x; (¢t) (in whichb; (¢) is not

only differentiable but also bounded on interyalr, +00), and its maximal lower bound

is denoted ag; > 0) then system (6) turns out to be a recurrent neural network model with
variable coefficients and timearying delays. In this case, Theorems 1 and 2 turn out to be
a generalized result for those in [31,32], thatthe results in [31,32] are special cases of
ours.

4, Stability results

In this section, we will obtain some criterfor global exponentiatability of (5) or (9).
Moreover, the uniqueness of the equilibriymoint follows directly from its global expo-
nential stability.

Theorem 3. Under assumptions (H1), (H,) and (Hj), model (9) is globally exponentially
stable if there exist constants vy >0 (k=1,2,..., K1), e >0k =1,2,..., K2), pij,
Pij+4ij- 455+ §ij- &+ mij. mj; € R such that

o1 > 02> 0,
wherer = Z]i;ll ve+1l= Zfﬁluk-kl; K1&ij +§;; =1, K1n;j +77;kj =1, sz,'j-i-p;kj =1,
Koqij + q;;- =1and

VEI rn,/ Dij r4ij.

n n
o1= min raﬂ,—a,ZZvuc,,ka a,ZZuud,,wL“k

j=1k=1 j=1k=1
n rn*
_ rEX L T
—Za,’lc;il il "'},
o]
op=max Y a@;|d;|"iL
\MZ a;ldjil
Proof. Define
1 n
V(ts I):_ |
y ; X]:_bﬁ
1=

it can easily be verified that (z, y,) is a nonnegative function ovért, +o00) and that it
is radically unbounded, that i¥,(¢, y,) — +o0 as|y(t)|, — +o0.
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Next, evaluating the Dini derivative df along the trajectory of (9) gives

DYV (t.y) =y |yi0| " sgr(yi (1)) [—Ai (yi () (B,» (vi ()

i=1

3 icijfj (y]‘(t)) _ id,’jfj ()’j(f — Tij(l)))>:|

j=1

< Z[—giﬂi\yim\’ @ Y leylLi |y @]y o)

i=1 j=1

+a; Z |dij|Lj|yi(t)|r_1|yj (t— fij(t))|]

j=1

< Z[_Qiﬁib’i(f)r

i=1

n 1 Kl r&-’ 'Ilj E " .
+ai2< S el % L o] + = |c,,|’ VL, ”|y,-<r>|>

j=1\" k=1

n K> o Tdij
+&iz< Zﬂk|d11| “k L = |y:(t)|

j=1\" k=1

1 « rgk r
+ ;Idijlrp"ijq” lyi(t — ;)| >:|

rél Mij

n
Z_%Z[’"Q,ﬂi —@ZZWICUI WL
i=1

j=1lk=1

n * k, rpij "ij
—Z&jlciilrsﬁL:n’ — & ZZMHdzﬂ L }|y,(t)|

j=1k=1

i=1\j=1
—o1V (1, y1) + 02V (1),
and from Lemma 2, it can be drawn thatif > o2 > 0, then
Vi < sup Vi))e™
—1<s<0

wherex is the unique positive solution of equation:= o1 — o2e**

Therefore V (¢, y;) converges to zero exponentially, which in turn implies th@j also
converges globally and exponentially to zero with a convergencéra{ed this completes
the proof. O
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-1
=

In Theorem 3, if we take&K1 = Ko =1, vy =k =r — 1, & =mij = pij = qij = -
andg’ =n}, = pf; =qf; =% (i,j =1,2,...,n), we have the following result.

Corollary 4. Under assumptions (H1), (H,) and (Hs), model (9) is globally exponentially
stableif

o1 > 02> 0,
where

n n
01=lr\nii2 {rgiﬁi —( —Da; Z|Cij|Lj —( —Da; Zl|dij|Lj
j:

j=1

n
—Z&jlcﬁlLi},
j=1

n
o2 = M XZ&j|dj,’|L,’
1<i<n 1
]:

and r > 1 isa constant number.

Remark 2. In [25] the authors gave a conditidi(||C|| + || D|)n < 1 to ensure system (5)
to be globally exponentially stable. To obtain the result, firstly system (5) was written into
a matrix form

dx (1)

= —A(x®))[B(x(1) — Cg(x(®)) — Dg(x(t — (1)) + I]:

secondly norm of matrix was utilized. However, in the tegpix ; (r — 7;; (1)), 7;; (?) is not
only related to index but also to index, it is thus impossible to write system (5) into the
required matrix form as suggested in [25].

Theorem 4. Under assumptions (H1), (H,) and (Hj), model (9) is globally exponentially
stableif thereexist constantsv, >0(k=1,2,..., K1), ux >0k =1,2,...,K?),w; >0,
Pij- Pijs dij- 475 §ij- &5+ mij, nj; € R such that

n Kl ré,-j NIJ n K2 Pij NIJ
5 T K - o T
ra;iwi — E E ajwivkleijl % L% — E E @i pukldij| 7 L
j=1k=1 j=1k=1

|dji|"Pi

PR >0
1- Tji(wj,' ()

n * n *
— x TG — rq;;
=Y @jwjleul L, =Y FjwL;
j=1 j=1
holdsfor all # > 0; where r = >"() vx + 1= Y2 i + 1and Kagij + & = 1, Kanyj +
r)z‘j =1, Kopij —i—pz‘}. =1, Koqg;j —i—q;‘j =1(@G,j=1,2,...,n).

Proof. Suppose (1) = (y1(t), y2(1), ..., y.(t))T is a solution of model (9) witp — x* as
its initial function, that is,

yilt)=¢i(t)—x', te[-1,0,i=12 ... n.
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Since

Mij. Pij T4ij.

v 7
ro;Biw; — Zzazwzvk|cu| W‘ L ¢ ZzalszHdzﬂ bk L ¢

J=1lk=1 j=1k=1
n x rnt n rq*
— ré., Ji — Ji
=D @jwjle;il L, —Zajij,-
j=1 j=1

we can choose a small> 0 such that

|d il Pji

- T}t(‘ﬂ], (t))

n o Thij n pij r4ij.
wi (e —ra; ﬂt)"‘ZZa a)lvklcljlvk L * +ZZ“ a)zﬂk|d11|w‘ Luk
J=1lk=1 j=lk=1
n " n N rp%.
_ rex T _ ra’%; |dji| "
+ Y F@jwileil L + e @0 L 1.0 T ©
=1 =1 = Ti(Y;;7 (1)

Now we consider the Lyapunov functional

1 n
Viey) == o [|y,~(t)|’e”
i=1

di; | 1
+azZL / o) ) g |
1— 1 (¥ (5))

1= (1)

calculating the upper right Dini derivative &f(z, y;), we obtain

1« _
DTV (t,y)l9 = - Zwi |:868’|y,~(t)|r +ref|yi)| 1D+|y,~(t)|
i=1

N T e ) ro ldig)'"
+ouZLj STy (1)

e B S ()
n *
_ rg;; *
=&y L i ]y (1 = i) |,€er}
j=1

n
1
<) o [;8|yi(t)|r —a:Bilyio)|

i=1
n
+a@ Y leillyi@] " Lyly; @)

j=1

n
+a; Z |dij||}’i(t)|rile|yj (t—1i;0)]

j=1

1_ & rqf; d;;|"™Pi
+_°‘iZL;' ]e”‘yj(t)r—l‘ i —
r j=1 ' 1_771']'(1”,']' ®))
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1S~ o r
=@y Ly My ]y (= m o).
j=1
Estimating the right of inequality above by the Hardy inequality, we have

n
1
DYV (1, y)l@ <e” Zwi{;e\yi(r)\’ —a,Bilyi@|

i=1

n 1 K1 réij Mij
+&,»Z[r2vk|c,,| L |y +—|c,,|’wa ”|y,(r)|]

j=1L" k=1

n rdij
+&i2|: Zﬂk|dtj| Mk L M |y:(t)|

j=1L" k=1
1 rp?*, rq?j r
+ =1Ly (= 7 ()

.
Id;j|"i

1 1 rq’; r
+ _&i L. t_/eé“[‘yj(t)| —_—
r ; ! 1— 4 ()

1_ &~ ;
_;a,.zL;q'-nd,-,.myj(r—n--f“”"}

j=1
1 n n ’Et Mij
= wi(e —ra; ,3,)+ZZO[ w,vk|c,,|"kL "k
r i=1 Jj=1lk=1
e
+ZZ“ w’“kldU' “k L; " +Z“1w1|cﬂ| SiL
j=1k=1

n % rp'.,
_ rq. d Ji
Y @y ]\ym\’
Jj=1

1— (Y5 )

N
o

and so
V)<V, t=0,
since

V) > }e”wi‘y-(t)‘r = }a)e
= r sl 1 r_

i=1
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V(0)= %gw{\wi(m — x|
0

L o ldjil" -

+ a; Z L.V |yj (S)| .J—ies(s+r,](zpij DN
= 1—1;;(U(s))

/=t -7;(0) JERT ji

0
1 ¢ r ¢ r
< ;a)|:2|(p,~(0)—xi*‘ +LneTy " /|y,-(s)| ds
i=1 i:lf.[
1 n
< ~o(1+ Lnte® ) sup Z|<p,~ (s) — x;"|r
r sel-t,01\; =1
1_ eT * (7
= ;w(1+ Lnze™)llo — x5,
then it easily follows that

Iyelly = Nl — x*[ly < = (L4 Lnze )|l — x*|re™,

ISR

and this means
X
el = llxe — x*|l» < Mllp — x*||,e™*"

forall > 0, whereM > 1 is a constant™ = £ > 0. This implies the solutions of model
(5) or (9) is globally exponentially stable.o

Remark 3. Notice that (5) becomes (4) whemy; (t) = ;. For this model, it has been
reported in [24] that if

i) g;j)(=12,...,n) are nondecreasing and

1 & 1<
(ii) 122":/3,» —ajiLi—5 7&2 l(|c,-j|L,- +lejilLi) — EX;MZ-A
JFL J= J=

1 n
j=1

then (4) has a unique and globaligymptotically stable equilibrium point. In Theorem 4
above, by takingk1 = Ko = v = e = 1, & = mij = pij =&, =nj; = pj; = 3, 0 =

1, q;; =1 andg;; = 0, a similar result can be derived (we obtained a stronger result of
exponential stability). In other words, [24, Theorem 1] is a special case of ours.

Remark 4. In the theoretical developmentin [24, Theorem 3], whén = x(r) —x* #£ 0,
FO@)=gy@® +x*) —gx*) =0andf(y( — 1)) =gyt — 1) + x*) —g(x*) =0,
system (4) becomes

dy;
ydf” = A (i) Bi (i)
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(see [24, Eq. (38)]). The authors then concluded that

dy;
yd—t(t) < —Ai (i) Bivi(0)

which is incorrect and should be modified to

dy;
D*|yi(0)] = sgn(yi (1)) ydt(” = —Ai (3 () sgn(yi (1) B (vi (1)
=—Ai(yi0))|Bi (vi®))| < —Ai (yi ) Bi|yi )]

Nevertheless, the conclusion that(z)| — 0 (ast — +o00) remains valid.

Whenr =1, in the proof of Theorem 4, if one defines

Vi, y) =) o [e“|y,- 0]

i=1

n t

_ |dij| £+ (¥ (9)))

+a Lj / |)’j(s)|.—',e ij\Vij ds |,
jX:l l—l’ij(l/fijl(s))

t—1;j (1)

and not employing the Hardy inequality, direct computation leads to the following results.

Corollary 5. Under assumptions (H1), (H,) and (H3), all solutions of model (9) are glob-
ally exponentially stableif there exist constantsw; >0 (i =1, 2, ..., n), such that

\dji (@5 (1)

n n
a;Bioi — Y @jojle;i®|Li - Y @jo;Li——LF—>
=1 =1 1=y (1)

holdsfor all ¢ > 0.

Corollary 6. Under assumptions (H1), (H,) and (Hy), all solutions of model (9) are glob-
ally exponentially stable if

n n
o;fi — Z&iICilej - Z&iledijl >0
=1 j=1

holdsforallt >0andi =1,2,...,n.

5. Illustrative examples

Example 1. Consider the following system:

dxdl,(t) = — (24 cosx1(1))[8x1(t) —sint x f(x1(r — 0.5sinz — 1))
—cost x f(x2(r — 0.5sins — 1)) + sint],
dx;,(t) = — (24 sinx2(1))[8x2(1) — cost x f(x1(r —0.5sint — 1))

—sint x f(x2(t — 0.5sint — 1)) + cost], (16)
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where f(x) =0.5(]x + 1| — |x — 1]).

The system satisfies all assumptions in this paperasyith o, = 1,000 =02 =3,L1 =
Ly=1,p1=82=8,0<7;(t) =05sint + 1< 1.5 and SUP_15 1) Tij(1) =05 <1
(i, j =1,2).In Corollary 3, if we taker =1, then

a1 — @1|d11(t)|L1 — @1|d12(1)| L2 = 8 — 3| sint| — 3| cost| > o =1,
apB2 — @a|dan(t)| L1 — @2|doa(1)| L2 = 8 — 3| cost| — 3 sint| > o =1,

therefore we can deduce that system (16) has g&riodic solution and it is uniformly
bounded, uniformly ultimately bounded.

0.15} x2
0.1F f

0.05

-0.15- B

0 5 10 15 20 25 30 35 40 45 50
time

Fig. 1. Transient response of state variablgg) andx,(r) for Example 1.

0.15

011

0.051

-0.15[

_02 . . . . . .
-0.2 -0.15 -0.1 -0.05 | 0 0.05 01 0.15
X

Fig. 2. Phase plots of state variablegr) andx,(r) for Example 1.
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For numerical simulation, the following four cases are given:

Case 1 with the initial state(p1(1), ¢2(¢)) = (0.09, —0.09) for t € [—1.5, 0];

Case 2 with the initial state(p1 (1), ¢2(¢)) = (0.115, —0.115) for r € [—1.5, O];

Case 3 with the initial statge1 (1), ¢2(¢)) = (0.08, —0.08) for t € [—1.5, 0];

Case 4 with the initial statgp1 (1), ¢2(t)) = (0.125, —0.125) for r € [—1.5, 0].

Figure 1 depicts the time responses of state variableg©f andx,(z) with steph =
0.01, and Fig. 2 depicts the phase plots of state variahleé$ andxx(z). It confirms that
the proposed condition leads to the unigueeriodic solution for the model.

Example 2. Consider

dxdlt(f) = —(7+ sinx1(1))[3x1(1) — tanhx1(r — 1) — tanhxa(r — 1) + 2],
dxdzt(t) = —(4+ cosx2(1)) [4x2(1) — tanhx1 (r — 1) — tanheo(r — 1) + 3]. (17)

This system satisfies all assumptions in this paper wjte- 6, ¢, = 3,41 = 8,42 =5,
Li=L=1,p=3,p2=4,1;t)=1(,j=12),then

a1 —aildia|L1 — a@1]ld1o|L; =18—-8—-8=2>0,
aofo —azldoa|L1 — dpldoo| Ly =12—-5—-5=2>0,

from Corollary 6 we know the solutions of system (17) are globally exponentially stable.

For numerical simulation, the@flowing two cases are given:

Case 1 with the initial state(p1(z), ¢2(t)) = (—0.1 — |sint|, —0.1 — |cost|) for ¢ €
[—2,05;

Case 2 with the initial state(e1(2), ¢2(t)) = (—0.1— |sin2|, —0.1 — [cos 2|) for ¢ €
[—2,0].

0
— X
-0.5 R
-1k % 4
15 L L L . . . . . .
0 5 10 15 20 25 30 35 40 45 50

time

Fig. 3. Transient response of state variablgg) andx,(r) for Example 2.
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Figure 3 depicts the time responses of state variableg@f andxx(z) with steph =
0.01. It confirms that the propesd condition leads to the unigue and globally exponentially
stable solution for the model.

6. Conclusions

The dynamics of the Cohen—Grossberg neural network is studied in this paper with
variable coefficients and time-varying delays. By employing the Hardy inequality, sev-
eral sufficient conditions have been obtained which guarantee the model to be uniformly
bounded and ultimately uniformly bounded undppeopriate assumptions. The Halanay
inequality and Lyapunov functional method are also used in this paper to derive some new
sufficient conditions ensuring the model to be globally exponentially stable. It is noted
that the criteria derived in this paper are less restrictive than those reported in [21,22,24].
Several examples and their numerical simulations are also given to illustrate the effective-

ness. The results obtained in this paper are delay-independent, which implies the strong

self-regulation is dominant in the networks, and moreover they are useful in the design and
applications of Cohen—Grossberg neural network. In addition, the methods given in this
paper may be extended for more complex systems.
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