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Abstract

In this paper, a model is considered to describe the dynamics of Cohen–Grossberg neural
with variable coefficients andtime-varying delays. Uniformly ultimate boundedness and unifor
boundedness are studied for the model by utilizing the Hardy inequality. Combining with the Ha
lanay inequality and the Lyapunov functional method, some new sufficient conditions are derived fo
the model to be globally exponentially stable. The activation functions are not assumed to be
entiable or strictly increasing. Moreover, no assumption on the symmetry of the connection m
is necessary. These criteria are important in signal processing and the design of networks.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the past few decades, neural networks such as Hopfield neural network [1], cellula
neural network [2,3], and bi-directional associative memory neural network [4–6,10,1
have attracted the attention of many mathematicians, physicists, and computer sc
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(see [7–17]) due to their wide range of applications in, for example, pattern recognitio
associative memory, and combinatorial optimization. Among them, the Cohen–Gro
neural network [18] is an important one, which can be described by the system of or
differential equations

dxi(t)

dt
= −ai

(
xi(t)

)[
bi

(
xi(t)

) −
n∑

j=1

cij gj

(
xj (t)

)]
, i = 1,2, . . . , n, (1)

in which n � 2 is the number of neurons in the network;xi(t) denotes the state variab
of the ith neuron at timet ; gj (xj (t)) denotes the activation function of thej th neuron at
time t ; the feedback matrixC = (cij )n×n indicates the strength of the neuron interc
nections within the network;ai(xi(t)) represents an amplification function;bi(xi(t)) is
an appropriately behaved function such that the solutions of model (1) remain bounde
This model was firstly proposed and studied by Cohen and Grossberg (1983), it in
a lot of models from evolutionary theory, population biology and neurobiology. It sh
be pointed out that the Cohen–Grossberg neural network encompasses the Hopfiel
network [1] as a special case (whenai(xi(t)) ≡ 1,bi(xi(t)) = Ci

Ri
xi(t)+Ii ), the latter could

be described as

Ci
dxi(t)

dt
= −xi(t)

Ri

+
n∑

j=1

cij gj

(
xj (t)

) + Ii , i = 1,2, . . . , n, (2)

whereCi andRi are positive constants representing the neuron amplifier input capac
and resistance, respectively;Ii is the constant input from outside of the network.

In fact, due to the finite speeds of the switching and transmission of signals in a ne
time delays do exist in a working network and thus should be incorporated into the m
equations of the network. It was observed both experimentally and numerically in [19
time delay could induce instability, causing sustained oscillations which may be harm
to a system. For the Cohen–Grossberg model (1), Ye et al. [20] also introduced del
considering the following system of delayed differential equations:

dxi(t)

dt
= −ai

(
xi(t)

)[
bi

(
xi(t)

) −
K∑

k=0

n∑
j=1

ck
ij gj

(
xj (t − τk)

)]
,

i = 1,2, . . . , n, (3)

where the time delaysτk (k = 0,1, . . . ,K) are arranged such that 0= τ0 < τ1 < · · · < τK .
Further studies were taken by Wang and Zou [21,22], Lu and Chen [23], Chen and
[24] about the following model:

dxi(t)

dt
= −ai

(
xi(t)

)[
bi

(
xi(t)

) −
n∑

j=1

cij gj

(
xj (t)

) −
n∑

j=1

dij gj

(
xj (t − τij )

) + Ii

]
,

(4)

in which D = (dij )n×n indicates the strength of the neuron interconnections within
network with time delay parametersτij . In [22,24], several sufficient conditions were o
tained to ensure model (4) to be asymptotically stable. A set of conditions ensuring



J. Cao, J. Liang / J. Math. Anal. Appl. 296 (2004) 665–685 667

ty
by

ohen–
a-
some
nd the
are
ns are
g re-

de-

of
exponential stability of system (4) were derived in [21] whencij ≡ 0 anddij ≡ 0, respec-
tively. And, by the property of Lyapunov diagonal stable matrix, absolutely global stabili
was studied in [23] for model (4) whendij ≡ 0. A more generalized model was studied
Hwang in [25],

dxi(t)

dt
= −ai

(
xi(t)

)[
bi

(
xi(t)

) −
n∑

j=1

cij gj

(
xj (t)

)

−
n∑

j=1

dij gj

(
xj

(
t − τij (t)

)) + Ii

]
(5)

and exponential stability result was obtained.
The purpose of this paper is to study the dynamic behavior of the generalized C

Grossberg neural network with variable coefficients and time-varying delays. The org
nization of this paper is as follows. In Section 2, we give a model description and
prerequisite results. In Section 3, boundedness of the model will be discussed. A
conditions ensuring the exponential stabilityof the Cohen–Grossberg neural network
obtained in Section 4. In Section 5, some examples and their numerical simulatio
given to confirm and illustrate the analysis. Finally, in Section 6, we give concludin
marks of the derived results.

2. Model description and preliminaries

In this paper, we investigate the following delayed dynamical systems:

dxi(t)

dt
= −ai

(
xi(t)

)[
bi

(
xi(t)

) −
n∑

j=1

cij (t)gj

(
xj (t)

)

−
n∑

j=1

dij (t)gj

(
xj

(
t − τij (t)

)) + Ii(t)

]
, (6)

wherei = 1,2, . . . , n; 0 � τij (t) � τ and supt∈[−τ,+∞) τ̇ij (t) < 1 (whereτ̇ij (t) represents
the derivative ofτij (t)); cij (t), dij (t) andIi(t) are continuous and bounded functions
fined on[−τ,+∞).

Definext (s) = x(t + s), s ∈ [−τ,0], t � 0. Let x(t) = (x1(t), x2(t), . . . , xn(t))
T , its

norm is defined as

‖xt‖r = sup
−τ�s�0

∣∣x(t + s)
∣∣
r
, where

∣∣x(t + s)
∣∣
r
=

[
n∑

i=1

∣∣xi(t + s)
∣∣r]

1
r

andr � 1.

(7)

Assume that the nonlinear model (6) has initial values of the type

xi(t) = ϕi(t), t ∈ [−τ,0],
in which ϕi(t) (i = 1,2, . . . , n) are continuous functions. By the fundamental theory
functional differential equations[29], model (6) has a unique solutionx(t) = (x1(t), x2(t),

. . . , xn(t))
T satisfying the initial condition in (7).
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To establish the main results of the model given in (6), some of the following ass
tions will apply:

(H1) Each functionai(u) is bounded, positive and locally Lipschitz continuous. Furth
more, 0< αi � ai(u) � αi < +∞ for all u ∈ R andi = 1,2, . . . , n.

(H2) Each functionbi(u) is locally Lipschitz continuous and there existsβi > 0 such that
ubi(u) � βiu

2 for u ∈ R, i = 1,2, . . . , n.
(H ′

2) Each functionbi(u) ∈ C1(R,R) and ḃi(u) � βi > 0; bothbi(·) andb−1
i (·) are lo-

cally Lipschitz continuous.
(H3) Each functiongj :R → R satisfies the Lipschitz condition with a Lipschitz const

Lj > 0, i.e.,|gj (u) − gj (v)| � Lj |u − v| for all u,v ∈ R, j = 1,2, . . . , n.

(H ′
3) Each functiongj (·) is bounded and satisfies the Lipschitz condition with a Lipschitz

constantLj > 0.

Definition 1. System (6) is uniformly bounded if, for any constantδ > 0, there isB =
B(δ) > 0 such that, for allt0 ∈ [0,+∞), ϕ, and‖ϕ|r < δ, we have|x(t, t0, ϕ)|r < B for all
t � t0.

Definition 2. System (6) is uniformly ultimately bounded if there is aB > 0 such that, for
anyδ > 0, there is a constantt̃ = t̃ (δ) > 0 such that|x(t, t0, ϕ)|r < B for t � t0 + t̃ for all
t0 ∈ [0,+∞), ‖ϕ‖r < δ.

Under the assumptions(H1), (H ′
2) and(H ′

3), we know from [21] that system (5) has a
equilibrium pointx∗ = (x∗

1, x∗
2, . . . , x∗

n)T . Lety(t) = x(t)−x∗, substitutex(t) = y(t)+x∗
in (5) and we have

dyi(t)

dt
= −ai

(
yi(t) + x∗

i

)[
bi

(
yi(t) + x∗

i

) − bi

(
x∗
i

)

−
n∑

j=1

cij

(
gj

(
yj (t) + x∗

j

) − gj

(
x∗
j

))

−
n∑

j=1

dij

(
gj

(
yj

(
t − τij (t)

) + x∗
j

) − gj

(
x∗
j

))]
. (8)

DenoteAi(yi(t)) = ai(yi(t) + x∗
i ), Bi(yi(t)) = bi(yi(t) + x∗

i ) − bi(x
∗
i ), fj (yj (t)) =

gj (yj (t) + x∗
j ) − gj (x

∗
j ); then system (8) becomes

dyi(t)

dt
= −Ai

(
yi(t)

)[
Bi

(
yi(t)

) −
n∑

j=1

cij fj

(
yj (t)

) −
n∑

j=1

dij fj

(
yj

(
t − τij (t)

))]
.

(9)

Definition 3. System (5) or (9) is globally exponentially stable if there exist constantsε > 0
andM > 0 such that
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n

d.
‖yt‖r = ‖xt − x∗‖r � M‖ϕ − x∗‖r e
−εt

for all t � 0.

It is clear thatx∗ is globally exponentially stable for (5) if and only if the trivial solutio
of (8) or (9) is globally exponentially stable.

Throughout this paper, the following Hardy inequality and Halanay inequality are use

Lemma 1 (Hardy inequality [26]).Assume there exist constants ak � 0, pk > 0 (k =
1,2, . . . ,m + 1), then the following inequality holds:(

m+1∏
k=1

a
pk

k

) 1
Sm+1

�
(

m+1∑
k=1

pka
r
k

) 1
r

S
− 1

r

m+1, (10)

where r > 0 and Sm+1 = ∑m+1
k=1 pk .

In (10), if we letpm+1 = 1, r = Sm+1 = ∑m
k=1 pk + 1, we will get(

m∏
k=1

a
pk

k

)
am+1 � 1

r

(
m∑

k=1

pka
r
k

)
+ 1

r
ar
m+1. (11)

Lemma 2 (Halanay inequality [27,28]).Assume constant numbers k1, k2 satisfy k1 >

k2 > 0, V (t) is a nonnegative continuous function on [t0 − τ, t0], and as t � t0, satisfy
the following inequality:

D+V (t) � −k1V (t) + k2V (t),

where V (t) = supt−τ�s�t {V (s)}, τ � 0 is constant. Then as t � t0, we have

V (t) � V (t0)e
−λ(t−t0),

in which λ is the unique positive solution of the following equation: λ = k1 − k2e
λτ .

3. Boundedness results

Consider the following equations:

dxi(t)

dt
= fi(t, xt ), i = 1,2, . . . , n, (12)

wherefi(t, ϕ) : [0,+∞) × C[−τ,0] → R is continuous with respect to(t, ϕ) and sat-
isfies the Lipschitz condition with respect toϕ (i = 1,2, . . . , n). Let Wj(s) : [0,+∞) →
[0,+∞) (j = 1,2,3,4) be continuous and increasing functions withWj(0) = 0,Wj(s) →
+∞ ass → +∞. Let the functionalV (t, ϕ) : [0,+∞) × C[−τ,0] → [0,+∞) be contin-
uous with respect to(t, ϕ).

Lemma 3 [29]. The solutions of system (12) are uniformly bounded and uniformly ulti-
mately bounded if the functional V (t, ϕ) and functions Wj(s) (j = 1,2,3,4) satisfy the
following conditions:
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er
(i) W1(|x(t)|r ) � V (t, xt) � W2(|x(t)|r ) + W3(
∫ t

t−τ W4(|x(s)|r ) ds);
(ii) D+V (t, xt )|(12) � −W4(|x(t)|r ) + M for some constant M > 0.

Lemma 4 [30]. For system (12), let fi(t + T ,ϕ) = fi(t, ϕ) and the solutions be uniformly
bounded and uniformly ultimately bounded. Then system (12) has a T -periodic solution if,
for any constant δ > 0, there is a constant B = B(δ) > 0 such that, for all ϕ with ‖ϕ‖r < δ,
we have |fi(t, ϕ)| < B for all t ∈ [−τ,0] (i = 1,2, . . . , n).

For the boundedness of solutions for system (6), we have the following results.

Theorem 1. Under assumptions (H1)–(H3), all solutions of model (6) are uniformly
bounded and uniformly ultimately bounded if there exist constants νk > 0 (k = 1,2,

. . . ,K1), µk > 0 (k = 1,2, . . . ,K2), ωi > 0, σ > 0, pij ,p∗
ij , qij , q

∗
ij , ξij , ξ∗

ij , ηij , η∗
ij ∈ R

such that

rαiβiωi −
n∑

j=1

K1∑
k=1

αiωiνk

∣∣cij (t)
∣∣ rξij

νk L

rηij
νk

j −
n∑

j=1

K2∑
k=1

αiωiµk

∣∣dij (t)
∣∣ rpij

µk L

rqij
µk

j

−
n∑

j=1

αjωj

∣∣cji(t)
∣∣rξ∗

ji L
rη∗

ji

i −
n∑

j=1

αjωjL
rq∗

ji

i

|dji(ψ
−1
ji (t))|rp∗

ji

1− τ̇j i (ψ
−1
ji (t))

> rσ

holds for all t � 0; where ψ−1
ij (t) is the inverse function of ψij (t) = t − τij (t); r =∑K1

k=1 νk + 1 = ∑K2
k=1 µk + 1 and pij ,p∗

ij , qij , q
∗
ij , ξij , ξ∗

ij , ηij , η
∗
ij are any real constant

numbers with K1ξij + ξ∗
ij = 1, K1ηij + η∗

ij = 1, K2pij + p∗
ij = 1, K2qij + q∗

ij = 1
(i, j = 1,2, . . . , n).

Proof. Let x(t) = (x1(t), x2(t), . . . , xn(t))
T be any solution of model (6). Now consid

the Lyapunov functional

V (t, xt) = 1

r

n∑
i=1

ωi

[∣∣xi(t)
∣∣r + αi

n∑
j=1

L
rq∗

ij

j

t∫
t−τij (t)

∣∣xj (s)
∣∣r |dij (ψ

−1
ij (s))|rp∗

ij

1− τ̇ij (ψ
−1
ij (s))

ds

]
,

obviously, we have

V (t, xt) � 1

r
ω

n∑
i=1

∣∣xi(t)
∣∣r = 1

r
ω

∣∣x(t)
∣∣r
r
= W1

(∣∣x(t)
∣∣
r

)
, (13)

V (t, xt) � 1

r
ω

n∑
i=1

[∣∣xi(t)
∣∣r +

n∑
j=1

αiDijL
rq∗

ij

j

t∫
t−τ

∣∣xj (s)
∣∣r ds

]

� 1

r
ω

n∑
i=1

∣∣xi(t)
∣∣r + 1

r
ωLn

n∑
i=1

t∫ ∣∣xi(s)
∣∣r ds
t−τ
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= W2
(∣∣x(t)

∣∣
r

) + W3

( t∫
t−τ

W4
(∣∣x(s)

∣∣
r

)
ds

)
(14)

for all t � 0, where

ω = min
1�i�n

ωi, ω = max
1�i�n

ωi,

Dij = sup
s∈[−τ,+∞)

|dij (ψ
−1
ij (s))|rp∗

ij

1− τ̇ij (ψ
−1
ij (s))

, L = max
1�i,j�n

(
αiDij L

rq∗
ij

j

)
,

W1(s) = 1

r
ωsr , W2(s) = 1

r
ωsr , W3(s) = 2ωn

rσ
Ls, W4(s) = 1

2
σsr .

Then

D+V (t, xt )|(6) =
n∑

i=1

ωi

[∣∣xi(t)
∣∣r−1

D+∣∣xi(t)
∣∣

+ 1

r
αi

n∑
j=1

L
rq∗

ij

j

∣∣xj (t)
∣∣r |dij (ψ

−1
ij (t))|rp∗

ij

1− τ̇ij (ψ
−1
ij (t))

− 1

r
αi

n∑
j=1

L
rq∗

ij

j

∣∣xj

(
t − τij (t)

)∣∣r |dij (t)|rp
∗
ij

1− τ̇ij (t)

(
1− τ̇ij (t)

)]

=
n∑

i=1

ωi

{∣∣xi(t)
∣∣r−1 sgn

(
xi(t)

)

×
[
−ai

(
xi(t)

)(
bi

(
xi(t)

) −
n∑

j=1

cij (t)gj

(
xj (t)

)

−
n∑

j=1

dij (t)gj

(
xj

(
t − τij (t)

)) + Ii(t)

)]

+ 1

r
αi

n∑
j=1

L
rq∗

ij

j

∣∣xj (t)
∣∣r |dij (ψ

−1
ij (t))|rp∗

ij

1− τ̇ij (ψ
−1
ij (t))

− 1

r
αi

n∑
j=1

L
rq∗

ij

j

∣∣xj

(
t − τij (t)

)∣∣r ∣∣dij (t)
∣∣rp∗

ij

}

�
n∑

i=1

ωi

[
−αiβi

∣∣xi(t)
∣∣r + αi

n∑
j=1

∣∣cij (t)
∣∣∣∣xi(t)

∣∣r−1
Lj

∣∣xj (t)
∣∣

+ αi

n∑∣∣dij (t)
∣∣∣∣xi(t)

∣∣r−1
Lj

∣∣xj

(
t − τij (t)

)∣∣

j=1
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+ αi

∣∣xi(t)
∣∣r−1

(
n∑

j=1

∣∣cij (t)
∣∣∣∣gj (0)

∣∣ +
n∑

j=1

∣∣dij (t)
∣∣∣∣gj (0)

∣∣ + ∣∣Ii(t)
∣∣)

+ 1

r
αi

n∑
j=1

L
rq∗

ij

j

∣∣xj (t)
∣∣r |dij (ψ

−1
ij (t))|rp∗

ij

1− τ̇ij (ψ
−1
ij (t))

− 1

r
αi

n∑
j=1

L
rq∗

ij

j

∣∣dij (t)
∣∣rp∗

ij
∣∣xj

(
t − τij (t)

)∣∣r].

From Lemma 1, we have

∣∣cij (t)
∣∣Lj

∣∣xi(t)
∣∣r−1∣∣xj (t)

∣∣ =
K1∏
k=1

(∣∣cij (t)
∣∣ ξij

νk L

ηij
νk

j

∣∣xi(t)
∣∣)νk

∣∣cij (t)
∣∣ξ∗

ij L
η∗
ij

j

∣∣xj (t)
∣∣

� 1

r

K1∑
k=1

νk

∣∣cij (t)
∣∣ rξij

νk L

rηij
νk

j

∣∣xi(t)
∣∣r + 1

r

∣∣cij (t)
∣∣rξ∗

ij L
rη∗

ij

j

∣∣xj (t)
∣∣r

and ∣∣dij (t)
∣∣Lj

∣∣xi(t)
∣∣r−1∣∣xj

(
t − τij (t)

)∣∣
=

K2∏
k=1

(∣∣dij (t)
∣∣ pij

µk L

qij
µk

j

∣∣xi(t)
∣∣)µk

∣∣dij (t)
∣∣p∗

ij L
q∗
ij

j

∣∣xj

(
t − τij (t)

)∣∣

� 1

r

K2∑
k=1

µk

∣∣dij (t)
∣∣ rpij

µk L

rqij
µk

j

∣∣xi(t)
∣∣r + 1

r

∣∣dij (t)
∣∣rp∗

ij L
rq∗

ij

j

∣∣xj

(
t − τij (t)

)∣∣r .
So

D+V (t, xt )|(6) �
n∑

i=1

ωi

{[
−αiβi + 1

r
αi

n∑
j=1

K1∑
k=1

νk

∣∣cij (t)
∣∣ rξij

νk L

rηij
νk

j

+ 1

r
αi

n∑
j=1

K2∑
k=1

µk

∣∣dij (t)
∣∣ rpij

µk L

rqij
µk

j

]∣∣xi(t)
∣∣r

+
[

1

r
αi

n∑
j=1

∣∣cij (t)
∣∣rξ∗

ij L
rη∗

ij

j

+ 1

r
αi

n∑
j=1

L
rq∗

ij

j

|dij (ψ
−1
ij (t))|rp∗

ij

1− τ̇ij (ψ
−1
ij (t))

]∣∣xj (t)
∣∣r}

+
n∑

i=1

ωiαi

(
n∑

j=1

∣∣cij (t)
∣∣∣∣gj (0)

∣∣

+
n∑∣∣dij (t)

∣∣∣∣gj (0)
∣∣ + ∣∣Ii(t)

∣∣)∣∣xi(t)
∣∣r−1
j=1
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nded

y.
�
n∑

i=1

[
−αiβiωi + 1

r
αi

n∑
j=1

K1∑
k=1

ωiνk

∣∣cij (t)
∣∣ rξij

νk L

rηij
νk

j

+ 1

r
αi

n∑
j=1

K2∑
k=1

ωiµk

∣∣dij (t)
∣∣ rpij

µk L

rqij
µk

j

+ 1

r

n∑
j=1

αjωj

∣∣cji(t)
∣∣rξ∗

ji L
rη∗

ji

i

+ 1

r

n∑
j=1

αjωjL
rq∗

ji

i

|dji(ψ
−1
ji (t))|rp∗

ji

1− τ̇j i(ψ
−1
ji (t))

]∣∣xi(t)
∣∣r

+ M

n∑
i=1

∣∣xi(t)
∣∣r−1

� − σ

n∑
i=1

∣∣xi(t)
∣∣r + M

n∑
i=1

∣∣xi(t)
∣∣r−1

= − σ
∣∣x(t)

∣∣r
r
+ M

∣∣x(t)
∣∣r−1
r−1

in which

M = sup
t∈[0,+∞)

[
max

1�i�n

(
ωiαi

(
n∑

j=1

∣∣cij (t)
∣∣∣∣gj (0)

∣∣ +
n∑

j=1

∣∣dij (t)
∣∣∣∣gj (0)

∣∣ + ∣∣Ii(t)
∣∣))]

.

By the equivalence of the norms inRn, there is a constantθ > 0 such that|x(t)|r−1 �
θ |x(t)|r , so we obtain

D+V (t, xt )|(6) � −1

2
σ
∣∣x(t)

∣∣r
r
+ ∣∣x(t)

∣∣r−1
r

(
Mθr−1 − 1

2
σ
∣∣x(t)

∣∣
r

)

� −1

2
σ
∣∣x(t)

∣∣r
r
+ M∗, (15)

where

M∗ = sup
s∈[0,+∞)

sr−1
(

Mθr−1 − 1

2
σs

)
.

From (13)–(15) and Lemma 3 we know all solutions of model (6) are uniformly bou
and uniformly ultimately bounded.�

In Theorem 1, whenr = 1, define

V (t, xt) =
n∑

i=1

ωi

[∣∣xi(t)
∣∣ + αi

n∑
j=1

Lj

t∫
t−τij (t)

∣∣xj (s)
∣∣ |dij (ψ

−1
ij (s))|

1− τ̇ij (ψ
−1
ij (s))

ds

]
,

not using Hardy inequality and by direct computation, we have the following corollar
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Corollary 1. Under assumptions (H1)–(H3), all solutions of model (6) are uniformly
bounded and uniformly ultimately bounded if there exist constants ωi > 0 (i = 1,2, . . . , n),
σ > 0, such that

αiβiωi −
n∑

j=1

αjωj

∣∣cji(t)
∣∣Li −

n∑
j=1

αjωjLi

|dji(ψ
−1
ji (t))|

1− τ̇j i(ψ
−1
ji (t))

> σ

holds for all t � 0.

From Theorem 1 and Lemma 4, we can easily derive the following results.

Theorem 2. Under assumptions (H1)–(H3), let cij (t), dij (t), τij (t), Ii (t) (i, j = 1,2,

. . . , n) be periodic functions with periodic T > 0, then model (6) has a unique T -periodic
solution if there exist constants νk > 0 (k = 1,2, . . . ,K1), µk > 0 (k = 1,2, . . . ,K2),
ωi > 0, σ > 0,pij ,p

∗
ij , qij , q

∗
ij , ξij , ξ

∗
ij , ηij , η

∗
ij ∈ R such that

rαiβiωi −
n∑

j=1

K1∑
k=1

αiωiνk

∣∣cij (t)
∣∣ rξij

νk L

rηij
νk

j −
n∑

j=1

K2∑
k=1

αiωiµk

∣∣dij (t)
∣∣ rpij

µk L

rqij
µk

j

−
n∑

j=1

αjωj

∣∣cji(t)
∣∣rξ∗

ji L
rη∗

ji

i −
n∑

j=1

αjωjL
rq∗

ji

i

|dji(ψ
−1
ji (t))|rp∗

ji

1− τ̇j i (ψ
−1
ji (t))

> rσ

holds for all t � 0; where r = ∑K1
k=1 νk + 1 = ∑K2

k=1 µk + 1 and K1ξij + ξ∗
ij = 1, K1ηij +

η∗
ij = 1, K2pij + p∗

ij = 1, K2qij + q∗
ij = 1 (i, j = 1,2, . . . , n).

Corollary 2. Under assumptions (H1)–(H3), let cij (t), dij (t), τij (t), Ii (t) (i, j = 1,2,

. . . , n) be periodic functions with periodic T > 0, then model (6) has a unique T -periodic
solution if there exist constants ωi > 0 (i = 1,2, . . . , n), σ > 0, such that

αiβiωi −
n∑

j=1

αjωj

∣∣cji(t)
∣∣Li −

n∑
j=1

αjωjLi

|dji(ψ
−1
ji (t))|

1− τ̇j i(ψ
−1
ji (t))

> σ

holds for all t � 0.

Corollary 3. Under assumptions (H1)–(H3), let cij (t), dij (t), τij (t), Ii (t) (i, j = 1,2,

. . . , n) be periodic functions with periodic T > 0, then model (6) has a unique T -periodic
solution if there exist a constant σ > 0, such that

αiβi −
n∑

j=1

αi

∣∣cij (t)
∣∣Lj −

n∑
j=1

αiLj

∣∣dij (t)
∣∣ > σ

holds for all t � 0 and i = 1,2, . . . , n.

Proof. In Theorem 2, if we takeK1 = K2 = 1, νk = µk = r − 1,ωi = 1, ξij = ηij = pij =
qij = r−1

r
andξ∗

ij = η∗
ij = p∗

ij = q∗
ij = 1

r
(i, j = 1,2, . . . , n), a condition to ensure syste

(6) has aT -periodic solution is obtained as
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d
l with
o be

of

-

αiβi − r − 1

r

n∑
j=1

αi

∣∣cij (t)
∣∣Lj − 1

r

n∑
j=1

αj

∣∣cji (t)
∣∣Li − r − 1

r

n∑
j=1

αi

∣∣dij (t)
∣∣Lj

− 1

r

n∑
j=1

αjLi

|dji(ψ
−1
ji (t))|

1− τ̇j i (ψ
−1
ji (t))

> σ.

Let r tends to+∞, and the result follows. �
Remark 1. For system (6), whenai(xi(t)) ≡ 1,bi(xi(t)) = bi(t)xi(t) (in whichbi(t) is not
only differentiable but also bounded on interval[−τ,+∞), and its maximal lower boun
is denoted asβi > 0) then system (6) turns out to be a recurrent neural network mode
variable coefficients and time-varying delays. In this case, Theorems 1 and 2 turn out t
a generalized result for those in [31,32], that is, the results in [31,32] are special cases
ours.

4. Stability results

In this section, we will obtain some criteria for global exponential stability of (5) or (9).
Moreover, the uniqueness of the equilibriumpoint follows directly from its global expo
nential stability.

Theorem 3. Under assumptions (H1), (H ′
2) and (H ′

3), model (9) is globally exponentially
stable if there exist constants νk > 0 (k = 1,2, . . . ,K1), µk > 0 (k = 1,2, . . . ,K2), pij ,

p∗
ij , qij , q

∗
ij , ξij , ξ

∗
ij , ηij , η

∗
ij ∈ R such that

σ1 > σ2 > 0,

where r = ∑K1
k=1 νk +1= ∑K2

k=1 µk +1; K1ξij +ξ∗
ij = 1, K1ηij +η∗

ij = 1, K2pij +p∗
ij = 1,

K2qij + q∗
ij = 1 and

σ1 = min
1�i�n

{
rαiβi − αi

n∑
j=1

K1∑
k=1

νk|cij |
rξij
νk L

rηij
νk

j αi

n∑
j=1

K2∑
k=1

µk|dij |
rpij
µk L

rqij
µk

j

−
n∑

j=1

αj |cji |rξ
∗
jiL

rη∗
ji

i

}
,

σ2 = max
1�i�n

n∑
j=1

αj |dji |rp
∗
ji L

rq∗
ji

i .

Proof. Define

V (t, yt) = 1

r

n∑
i=1

∣∣yi(t)
∣∣r ,

it can easily be verified thatV (t, yt ) is a nonnegative function over[−τ,+∞) and that it
is radically unbounded, that is,V (t, yt ) → +∞ as|y(t)|r → +∞.
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s

Next, evaluating the Dini derivative ofV along the trajectory of (9) gives

D+V (t, yt ) =
n∑

i=1

∣∣yi(t)
∣∣r−1 sgn

(
yi(t)

)[−Ai

(
yi(t)

)(
Bi

(
yi(t)

)

−
n∑

j=1

cij fj

(
yj (t)

) −
n∑

j=1

dijfj

(
yj

(
t − τij (t)

)))]

�
n∑

i=1

[
−αiβi

∣∣yi(t)
∣∣r + αi

n∑
j=1

|cij |Lj

∣∣yi(t)
∣∣r−1∣∣yj (t)

∣∣

+ αi

n∑
j=1

|dij |Lj

∣∣yi(t)
∣∣r−1∣∣yj

(
t − τij (t)

)∣∣]

�
n∑

i=1

[
−αiβi

∣∣yi(t)
∣∣r

+ αi

n∑
j=1

(
1

r

K1∑
k=1

νk |cij |
rξij
νk L

rηij
νk

j

∣∣yi(t)
∣∣r + 1

r
|cij |rξ

∗
ij L

rη∗
ij

j

∣∣yj (t)
∣∣r)

+ αi

n∑
j=1

(
1

r

K2∑
k=1

µk|dij |
rpij
µk L

rqij
µk

j

∣∣yi(t)
∣∣r

+ 1

r
|dij |rp∗

ij L
rq∗

ij

j

∣∣yj

(
t − τij (t)

)∣∣r)]

= −1

r

n∑
i=1

[
rαiβi − αi

n∑
j=1

K1∑
k=1

νk|cij |
rξij
νk L

rηij
νk

j

−
n∑

j=1

αj |cji |rξ∗
ji L

rη∗
ji

i − αi

n∑
j=1

K2∑
k=1

µk|dij |
rpij
µk L

rqij
µk

j

]∣∣yi(t)
∣∣r

+ 1

r

n∑
i=1

(
n∑

j=1

αj |dji |rp
∗
ji L

rq∗
ji

i

∣∣yi

(
t − τji (t)

)∣∣r)

� −σ1V (t, yt ) + σ2V (t),

and from Lemma 2, it can be drawn that ifσ1 > σ2 > 0, then

V (t, yt) �
(

sup
−τ�s�0

V (s)
)
e−λs,

whereλ is the unique positive solution of equation:λ = σ1 − σ2e
λτ .

Therefore,V (t, yt) converges to zero exponentially, which in turn implies thaty(t) also
converges globally and exponentially to zero with a convergence rateλ

r
, and this complete

the proof. �
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)
into

he
In Theorem 3, if we takeK1 = K2 = 1, νk = µk = r − 1, ξij = ηij = pij = qij = r−1
r

andξ∗
ij = η∗

ij = p∗
ij = q∗

ij = 1
r

(i, j = 1,2, . . . , n), we have the following result.

Corollary 4. Under assumptions (H1), (H ′
2) and (H ′

3), model (9) is globally exponentially
stable if

σ1 > σ2 > 0,

where

σ1 = min
1�i�n

{
rαiβi − (r − 1)αi

n∑
j=1

|cij |Lj − (r − 1)αi

n∑
j=1

|dij |Lj

−
n∑

j=1

αj |cji |Li

}
,

σ2 = max
1�i�n

n∑
j=1

αj |dji |Li

and r > 1 is a constant number.

Remark 2. In [25] the authors gave a conditionL(‖C‖ + ‖D‖)η < 1 to ensure system (5
to be globally exponentially stable. To obtain the result, firstly system (5) was written
a matrix form

dx(t)

dt
= −A

(
x(t)

)[
B

(
x(t)

) − Cg
(
x(t)

) − Dg
(
x
(
t − τ (t)

)) + I
];

secondly norm of matrix was utilized. However, in the termgj (xj (t − τij (t))), τij (t) is not
only related to indexj but also to indexi, it is thus impossible to write system (5) into t
required matrix form as suggested in [25].

Theorem 4. Under assumptions (H1), (H ′
2) and (H ′

3), model (9) is globally exponentially
stable if there exist constants νk > 0 (k = 1,2, . . . ,K1), µk > 0 (k = 1,2, . . . ,K2), ωi > 0,
pij ,p

∗
ij , qij , q

∗
ij , ξij , ξ

∗
ij , ηij , η

∗
ij ∈ R such that

rαiβiωi −
n∑

j=1

K1∑
k=1

αiωiνk|cij |
rξij
νk L

rηij
νk

j −
n∑

j=1

K2∑
k=1

αiωiµk|dij |
rpij
µk L

rqij
µk

j

−
n∑

j=1

αjωj |cji |rξ∗
ji L

rη∗
ji

i −
n∑

j=1

αjωjL
rq∗

ji

i

|dji|rp
∗
ji

1− τ̇j i(ψ
−1
ji (t))

> 0

holds for all t � 0; where r = ∑K1
k=1 νk + 1 = ∑K2

k=1 µk + 1 and K1ξij + ξ∗
ij = 1, K1ηij +

η∗
ij = 1, K2pij + p∗

ij = 1, K2qij + q∗
ij = 1 (i, j = 1,2, . . . , n).

Proof. Supposey(t) = (y1(t), y2(t), . . . , yn(t))
T is a solution of model (9) withϕ − x∗ as

its initial function, that is,

yi(t) = ϕi(t) − x∗
i , t ∈ [−τ,0], i = 1,2, . . . , n.
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rαiβiωi −
n∑

j=1

K1∑
k=1

αiωiνk|cij |
rξij
νk L

rηij
νk

j −
n∑

j=1

K2∑
k=1

αiωiµk|dij |
rpij
µk L

rqij
µk

j

−
n∑

j=1

αjωj |cji |rξ
∗
ji L

rη∗
ji

i −
n∑

j=1

αjωjL
rq∗

ji

i

|dji|rp∗
ji

1− τ̇j i(ψ
−1
ji (t))

> 0,

we can choose a smallε > 0 such that

ωi(ε − rαiβi) +
n∑

j=1

K1∑
k=1

αiωiνk|cij |
rξij
νk L

rηij
νk

j +
n∑

j=1

K2∑
k=1

αiωiµk|dij |
rpij
µk L

rqij
µk

j

+
n∑

j=1

αjωj |cji |rξ∗
ji L

rη∗
ji

i + eετ
n∑

j=1

αjωjL
rq∗

ji

i

|dji |rp
∗
ji

1− τ̇j i (ψ
−1
ji (t))

< 0.

Now we consider the Lyapunov functional

V (t, yt) = 1

r

n∑
i=1

ωi

[∣∣yi(t)
∣∣r eεt

+ αi

n∑
j=1

L
rq∗

ij

j

t∫
t−τij (t)

∣∣yj (s)
∣∣r |dij |rp

∗
ij

1− τ̇ij (ψ
−1
ij (s))

e
ε(s+τij (ψ

−1
ij (s)))

ds

]
,

calculating the upper right Dini derivative ofV (t, yt), we obtain

D+V (t, yt )|(9) = 1

r

n∑
i=1

ωi

[
εeεt

∣∣yi(t)
∣∣r + reεt

∣∣yi(t)
∣∣r−1

D+∣∣yi(t)
∣∣

+ αi

n∑
j=1

L
rq∗

ij

j e
ε(t+τij (ψ

−1
ij (t )))

∣∣yj (t)
∣∣r |dij |rp

∗
ij

1− τ̇ij (ψ
−1
ij (t))

− αi

n∑
j=1

L
rq∗

ij

j |dij |rp
∗
ij
∣∣yj

(
t − τij (t)

)∣∣r eεt

]

� eεt
n∑

i=1

ωi

[
1

r
ε
∣∣yi(t)

∣∣r − αiβi

∣∣yi(t)
∣∣r

+ αi

n∑
j=1

|cij |
∣∣yi(t)

∣∣r−1
Lj

∣∣yj (t)
∣∣

+ αi

n∑
j=1

|dij |
∣∣yi(t)

∣∣r−1
Lj

∣∣yj

(
t − τij (t)

)∣∣

+ 1

r
αi

n∑
L

rq∗
ij

j eετ
∣∣yj (t)

∣∣r |dij |rp
∗
ij

1− τ̇ij (ψ
−1
ij (t))
j=1
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− 1

r
αi

n∑
j=1

L
rq∗

ij

j |dij |rp
∗
ij
∣∣yj

(
t − τij (t)

)∣∣r].

Estimating the right of inequality above by the Hardy inequality, we have

D+V (t, yt )|(9) � eεt

n∑
i=1

ωi

{
1

r
ε
∣∣yi(t)

∣∣r − αiβi

∣∣yi(t)
∣∣r

+ αi

n∑
j=1

[
1

r

K1∑
k=1

νk|cij |
rξij
νk L

rηij
νk

j

∣∣yi(t)
∣∣r + 1

r
|cij |rξ∗

ij L
rη∗

ij

j

∣∣yj (t)
∣∣r]

+ αi

n∑
j=1

[
1

r

K2∑
k=1

µk|dij |
rpij
µk L

rqij
µk

j

∣∣yi(t)
∣∣r

+ 1

r
|dij |rp∗

ij L
rq∗

ij

j

∣∣yj

(
t − τij (t)

)∣∣r]

+ 1

r
αi

n∑
j=1

L
rq∗

ij

j eετ
∣∣yj (t)

∣∣r |dij |rp
∗
ij

1− τ̇ij (ψ
−1
ij (t))

− 1

r
αi

n∑
j=1

L
rq∗

ij

j |dij |rp
∗
ij
∣∣yj

(
t − τij (t)

)∣∣r}

= 1

r
eεt

n∑
i=1

[
ωi(ε − rαiβi) +

n∑
j=1

K1∑
k=1

αiωiνk|cij |
rξij
νk L

rηij
νk

j

+
n∑

j=1

K2∑
k=1

αiωiµk|dij |
rpij
µk L

rqij
µk

j +
n∑

j=1

αjωj |cji |rξ
∗
ji L

rη∗
ji

i

+ eετ
n∑

j=1

αjωjL
rq∗

ji

i

|dji|rp
∗
ji

1− τ̇j i(ψ
−1
ji (t))

]∣∣yi(t)
∣∣r

� 0,

and so

V (t) � V (0), t � 0,

since

V (t) � 1

r
eεtω

n∑∣∣yi(t)
∣∣r = 1

r
ωeεt

∣∣y(t)
∣∣r
r
, t � 0,
i=1
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el

n

4

lt of
V (0) = 1

r

n∑
i=1

ωi

[∣∣ϕi(0) − x∗
i

∣∣r

+ αi

n∑
j=1

L
rq∗

ij

j

0∫
−τij (0)

∣∣yj (s)
∣∣r |dji |rp∗

ij

1− τ̇j i(ψ
−1
ji (s))

e
ε(s+τij (ψ

−1
ij (s)))

ds

]

� 1

r
ω

[
n∑

i=1

∣∣ϕi(0) − x∗
i

∣∣r + Lneετ
n∑

i=1

0∫
−τ

∣∣yi(s)
∣∣r ds

]

� 1

r
ω(1+ Lnτeετ ) sup

s∈[−τ,0]

(
n∑

i=1

∣∣ϕi(s) − x∗
i

∣∣r)

= 1

r
ω(1+ Lnτeετ )‖ϕ − x∗‖r

r ,

then it easily follows that

‖yt‖r
r = ‖xt − x∗‖r

r � ω

ω
(1+ Lnτeετ )‖ϕ − x∗‖r

r e
−εt ,

and this means

‖yt‖r = ‖xt − x∗‖r � M‖ϕ − x∗‖r e
−ε∗t

for all t � 0, whereM � 1 is a constant,ε∗ = ε
r

> 0. This implies the solutions of mod
(5) or (9) is globally exponentially stable.�
Remark 3. Notice that (5) becomes (4) whenτij (t) = τij . For this model, it has bee
reported in [24] that if

(i) gj (·) (j = 1,2, . . . , n) are nondecreasing and

(ii) min
1�i�n

{
βi − a+

ii Li − 1

2

n∑
j �=i, j=1

(|cij |Lj + |cji |Li

) − 1

2

n∑
j=1

|dij |

− 1

2

n∑
j=1

|dji |L2
i

}
> 0,

then (4) has a unique and globallyasymptotically stable equilibrium point. In Theorem
above, by takingK1 = K2 = νk = µk = 1, ξij = ηij = pij = ξ∗

ij = η∗
ij = p∗

ij = 1
2, ωi =

1, q∗
ij = 1 andqij = 0, a similar result can be derived (we obtained a stronger resu

exponential stability). In other words, [24, Theorem 1] is a special case of ours.

Remark 4. In the theoretical development in [24, Theorem 3], wheny(t) = x(t)− x∗ �= 0,
f (y(t)) = g(y(t) + x∗) − g(x∗) = 0 andf (y(t − τ )) = g(y(t − τ ) + x∗) − g(x∗) = 0,
system (4) becomes

dyi(t) = −Ai

(
yi(t)

)
Bi

(
yi(t)

)

dt
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sults.
(see [24, Eq. (38)]). The authors then concluded that

dyi(t)

dt
� −Ai

(
yi(t)

)
βiyi(t)

which is incorrect and should be modified to

D+∣∣yi(t)
∣∣ = sgn

(
yi(t)

)dyi(t)

dt
= −Ai

(
yi(t)

)
sgn

(
yi(t)

)
Bi

(
yi(t)

)
= −Ai

(
yi(t)

)∣∣Bi

(
yi(t)

)∣∣ � −Ai

(
yi(t)

)
βi

∣∣yi(t)
∣∣.

Nevertheless, the conclusion that|yi(t)| → 0 (ast → +∞) remains valid.

Whenr = 1, in the proof of Theorem 4, if one defines

V (t, yt) =
n∑

i=1

ωi

[
eεt

∣∣yi(t)
∣∣

+ αi

n∑
j=1

Lj

t∫
t−τij (t)

∣∣yj (s)
∣∣ |dij |
1− τ̇ij (ψ

−1
ij (s))

e
ε(s+τij (ψ

−1
ij (s)))

ds

]
,

and not employing the Hardy inequality, direct computation leads to the following re

Corollary 5. Under assumptions (H1), (H ′
2) and (H ′

3), all solutions of model (9) are glob-
ally exponentially stable if there exist constants ωi > 0 (i = 1,2, . . . , n), such that

αiβiωi −
n∑

j=1

αjωj

∣∣cji(t)
∣∣Li −

n∑
j=1

αjωjLi

|dji(ψ
−1
ji (t))|

1− τ̇j i(ψ
−1
ji (t))

> 0

holds for all t � 0.

Corollary 6. Under assumptions (H1), (H ′
2) and (H ′

3), all solutions of model (9) are glob-
ally exponentially stable if

αiβi −
n∑

j=1

αi |cij |Lj −
n∑

j=1

αiLj |dij | > 0

holds for all t � 0 and i = 1,2, . . . , n.

5. Illustrative examples

Example 1. Consider the following system:

dx1(t)

dt
= − (

2+ cosx1(t)
)[

8x1(t) − sint × f
(
x1(t − 0.5 sint − 1)

)
− cost × f

(
x2(t − 0.5 sint − 1)

) + sint
]
,

dx2(t)

dt
= − (

2+ sinx2(t)
)[

8x2(t) − cost × f
(
x1(t − 0.5 sint − 1)

)
− sint × f

(
x2(t − 0.5 sint − 1)

) + cost
]
, (16)
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wheref (x) = 0.5(|x + 1| − |x − 1|).
The system satisfies all assumptions in this paper withα1 = α2 = 1,α1 = α2 = 3,L1 =

L2 = 1, β1 = β2 = 8, 0� τij (t) = 0.5 sint + 1 � 1.5 and supt∈[−1.5,+∞) τ̇ij (t) = 0.5 < 1
(i, j = 1,2). In Corollary 3, if we takeσ = 1, then

α1β1 − α1
∣∣d11(t)

∣∣L1 − α1
∣∣d12(t)

∣∣L2 = 8− 3|sint| − 3|cost| > σ = 1,

α2β2 − α2
∣∣d21(t)

∣∣L1 − α2
∣∣d22(t)

∣∣L2 = 8− 3|cost| − 3|sint| > σ = 1,

therefore we can deduce that system (16) has a 2π -periodic solution and it is uniformly
bounded, uniformly ultimately bounded.

Fig. 1. Transient response of state variablesx1(t) andx2(t) for Example 1.

Fig. 2. Phase plots of state variablesx1(t) andx2(t) for Example 1.
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ble.
For numerical simulation, the following four cases are given:
Case 1 with the initial state(ϕ1(t), ϕ2(t)) = (0.09,−0.09) for t ∈ [−1.5,0];
Case 2 with the initial state(ϕ1(t), ϕ2(t)) = (0.115,−0.115) for t ∈ [−1.5,0];
Case 3 with the initial state(ϕ1(t), ϕ2(t)) = (0.08,−0.08) for t ∈ [−1.5,0];
Case 4 with the initial state(ϕ1(t), ϕ2(t)) = (0.125,−0.125) for t ∈ [−1.5,0].
Figure 1 depicts the time responses of state variables ofx1(t) andx2(t) with steph =

0.01, and Fig. 2 depicts the phase plots of state variablesx1(t) andx2(t). It confirms that
the proposed condition leads to the unique 2π -periodic solution for the model.

Example 2. Consider

dx1(t)

dt
= −(

7+ sinx1(t)
)[

3x1(t) − tanhx1(t − 1) − tanhx2(t − 1) + 2
]
,

dx2(t)

dt
= −(

4+ cosx2(t)
)[

4x2(t) − tanhx1(t − 1) − tanhx2(t − 1) + 3
]
. (17)

This system satisfies all assumptions in this paper withα1 = 6, α2 = 3, α1 = 8, α2 = 5,
L1 = L2 = 1, β1 = 3, β2 = 4, τij (t) ≡ 1 (i, j = 1,2), then

α1β1 − α1|d11|L1 − α1|d12|L2 = 18− 8− 8 = 2 > 0,

α2β2 − α2|d21|L1 − α2|d22|L2 = 12− 5− 5 = 2 > 0,

from Corollary 6 we know the solutions of system (17) are globally exponentially sta
For numerical simulation, the following two cases are given:
Case 1 with the initial state(ϕ1(t), ϕ2(t)) = (−0.1 − |sint|,−0.1 − |cost|) for t ∈

[−2,0];
Case 2 with the initial state(ϕ1(t), ϕ2(t)) = (−0.1− |sin2t|,−0.1− |cos2t|) for t ∈

[−2,0].

Fig. 3. Transient response of state variablesx1(t) andx2(t) for Example 2.
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Figure 3 depicts the time responses of state variables ofx1(t) andx2(t) with steph =
0.01. It confirms that the proposed condition leads to the unique and globally exponenti
stable solution for the model.

6. Conclusions

The dynamics of the Cohen–Grossberg neural network is studied in this pape
variable coefficients and time-varying delays. By employing the Hardy inequality,
eral sufficient conditions have been obtained which guarantee the model to be uni
bounded and ultimately uniformly bounded under appropriate assumptions. The Halan
inequality and Lyapunov functional method are also used in this paper to derive som
sufficient conditions ensuring the model to be globally exponentially stable. It is n
that the criteria derived in this paper are less restrictive than those reported in [21,2
Several examples and their numerical simulations are also given to illustrate the eff
ness. The results obtained in this paper are delay-independent, which implies the
self-regulation is dominant in the networks, and moreover they are useful in the desi
applications of Cohen–Grossberg neural network. In addition, the methods given
paper may be extended for more complex systems.
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