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Introduction 

In this paper we prove that 1 is a commutator in every irreducible commutator- 

finite orthomodular lattice in which the non-distinguished (#O, 1) commutators are 

totally unordered. An example is presented to illustrate the limitations inherent in 

attempting to improve this result. 

The commutator of two elements x and y of an orthomodular lattice L is the 

element x*y given by the expression 

x*y=(xvy)A(xvy’)A(x’vy)A(x’vy’). 

To say that x*y= 1 is equivalent to saying that the subalgebra T({x, JJ}) of L 

generated by x and y is { 0, 1, x,x’, y, y ‘}, i.e. T({x, r}) = MO2 the six element ortho- 

modular lattice. 

A part of the folklore of the subject is that MO2 is a homomorphic image of a 

subalgebra of every non-Boolean orthomodular lattice. In brief, any non-Boolean 

orthomodular lattice contains elements x and y which do not commute, so that 

cx:=x*y#O. LetZ:=(O,cl,xr\a,x’~cw,y~a,y’r\a}. ThenZU{z’(zEZ} isasub- 

algebra of L isomorphic to either MO2 or Z x (0, a’} = (M02) x 2, depending on 

whether a= 1 or not, so that MO2 is a homomorphic image of a subalgebra of L. 

The question of when 1 is a commutator is equivalent to the question when is 

MO2 not only a homomorphic image of a subalgebra of L but when is it actually 

a subalgebra. The Remark below lists several statements equivalent to MO2 is a sub- 
algebra of L. The verification, which is straightforward, is left to the reader. Readers 

unfamiliar with the rudiments of orthomodular lattice theory are referred to [4]. We 
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write corn L for the set of all commutators of L. Throughout the paper L is an 
orthomodular lattice. 

Remark. These are equivalent: 
(1) 1 Ecom L. 
(2) MO2 is a subalgebra of L. 

(3) For some XE L, x is (strongly) perspective to x’. 
(4) cr E C(L) fl corn L iff a’ E C(L) n corn L. 
(5) C(L) ncom L is a subalgebra of L. 
(6) C(L) c corn L. 

Along the way to providing a non-trivial class of commutator-finite ortho- 
modular lattices in which 1 is always a commutator, we isolate conditions which 
are equivalent in any orthomodular lattice to the subalgebra 17 generated by the 
commutators being a projective plane with corn L = corn 17. 

1. Condition A 

The elements 0,l of L are called distinguished. All other elements of L are called 
non-distinguished. Let corn0 L be the set of non-distinguished commutators of L. 
We say that L satisfies condition A in case 

(1) 1 $comL and 
(2) for all distinct a, /3 E corn0 L, avp = 1. 
That is, L satisfies condition A if no non-zero commutator is distinguished and 

the join of two non-distinguished commutators is distinguished. 
In this section, we shall show that an orthomodular lattice with at least two non- 

distinguished commutators satisfies condition A if and only if the subalgebra Z7 
generated by the commutators of L is a projective plane and corn L = corn 17. 

We begin with a lemma of frequently used results; the proofs may be found in [3]. 

Lemma 1.1. Let x, y,z E L. 
(1) x*y=x*y’=x’*y=x’*y’. 

(2) IfxCyCz, then y/\(x*z)=(y~x)*z. 
(3) Ifa=x*y, then a=(x~a)*(y~a)=(x~cr)~(yr\a). 

(4) xcy iffx*yrx iffx*y=o. 
(5) No atom is a commutator. 
(6) V corn L, if it exists, is central in L. 
(7) If a =x * y and z I a with xCz,Cy, then z E corn L. 
(8) Zf u=x*y and /?EcomL with xC/3Cy, then aV/3EcomL. 

Lemma 1.2. Assume that (Y, p E corn0 L with cr #j? implies aVP = 1. Let a, /3, y E 
corn0 L and let XE L. 
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(1) come L is totally unordered. 

(2) If a@ and a #/3, then a’sp. 
(3) Zf a@x, then aVx= 1. 
(4) If ac.8, then a */?= a’V/?‘. 
(5) If aC,bCy but a@, then p = a * y. 

Proof. Claim (1) is obvious. To prove (2), we need observe only that a’r\p’= 
(avp)‘= l’=O; then a’@’ implies a’lfi’. To prove (3), we observe that a@x im- 
plies a#a *x by Lemma 1.1(4). By hypothesis, 1 = av(a *x)c avx. Claim (4) 
follows from Claim (3) by expanding a *p. Finally to prove (5), we observe that by 
(2) and (4), we have O<a*y=a’vy’l/3; thus a*y=P by (1). 0 

It will assist the reader to appreciate the naturalness of our approach if he keeps 
in mind that ultimately we show that if L satisfies condition d and has more than 
one non-distinguished commutator, then the elements of corn L together with their 
orthocomplements form a projective plane in which the elements a in corn,, L are 
the lines and the elements a’ with a in comoL are the points. 

Lemma 1.3. Assume that L satisfies condition A. Zf a0 and al are distinct non- 
distinguished commutators with aoCal , then there is a non-distinguished com- 
mutator a2 with ao@a2 and alCa2. 

Proof. We may assume ai=x; *yi=XiV_Yi by Lemma 1.1(3). If al E C(X~, _YO), then 
1 = aoval E corn L by Lemma 1.1(S), which contradicts our hypothesis. Thus we 
may assume al@xo, and similarly ao@xl. Since L satisfies condition d, we have 
x0 * al IX,V a; I a0 by lemma 1.2(2); thus x0 * a, = ao. By symmetry, we have also 
that x1 *ao=al. Since x0 *al = ao@xl, we have xoQxl. Since xoQal and xl @ao, it 
follows that ao, al and x0 *xl are distinct non-distinguished commutators. If x0 *xl 
were to commute with al, we would find the contradiction 1 = aoV (x0 *xl) = 
(x0 * al) v (x0 * x1) E corn L by Lemma 1.1(8). Thus x0 *xl @aI and similarly x0 * xl @ao. 

Put a2 = (x0 *x1) * al. Then clearly a, Ca2. Also xl E C(x, *xl, aI) implies x1 Ca2. 
Then, however, if aoCa2, we would have the contradiction 1 = al V a2 = (x1 * ao) V a2 E 

corn L. Thus ao@a2. 0 

An n-cycle, n 2 4, in L is a sequence (ao, al, . . . , an _ 1) of distinct non-distinguished 
commutators with aiCai+ 1 for each index i (mod n). An n-loop is an n-cycle such 
that @i&j for Ii-j1 f 1 (mod n). 

In other words, an n-cycle is a sequence of distinct non-distinguished commutators 
in which immediately adjacent commutators commute; in an n-loop, no other pairs 
of commutators commute. By Lemma 1.2, we see that oi+ 1 =ai *(~~+~=alVaj+~ 
(mod n) in an n-loop. It will assist the reader to follow our arguments by picturing 
a 5-100~ as a graph with respect to the commutativity relation, as in Fig. 1. 
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a2 

a3 

Fig. 1. 

Lemma 1.4. Assume that a, p E corn0 L with a #b’ implies a V/3 = 1. If (a,, al, a2, a3) 
is a 4-cycle, then aoCa2 and a,Ca3. In particular, L has no 4-100~s. 

Proof. If ao@a2, then al =a0 * a2=a3 by Lemma 1.2(5), which is a contradiction. 

Thus aoCa2. Similarly a,Ca3. 

Lemma 1.5. Assume that L satisfies condition A. Then any two distinct non- 
distinguished commutators belong to a 5-100~. Thus, if Icorn L( > 1, then any non- 
distinguished commutator is the commutator of two commutators. 

Proof. Let a, p E corn0 L with a #/3. If a@, put a0 = a, al =/3 and construct a2 as 

in the proof of Lemma 1.3. If a@, put a0 = a, a2 =p and al = a0 * a,. In either 

case a and p are contained in a sequence (x0, al, a2 with al E C(a,, a2) but ao@a2. 

Now by Lemma 1.3, there is a non-distinguished commutator a3 with alea but 

a2Ca3. In particular, a0 f a3. Moreover as (ao, a,, a2, a3) could not be a 4-100~ by 

Lemma 1.4, we have ao@a3. Put a4 = a0 * a3. It follows easily from Lemma 1.4, 

that (ao, al, (x2, a3, ad) is a Sloop. 

The second statement of this lemma follows from the remark preceding Lemma 

1.4. 0 

Lemma 1.6. Assume that L satisfies condition A. In a Woop (ao, al, a2, a3, a& 

a,! V al+ 1 = ai*[(a;Aai+I)*aj+3] (modn). 

Proof. For concreteness, we shall show that a;v a; = a0 * [(aor\ a,) * a3]. Let y = 

(a0 A al) * a3. The commutator y is a simpler lattice polynomial than is apparent. By 

Lemma 1.2(3), ahva;Va3=1; by Lemma 1.2(4) and (5), a~va;va;=(a;Va;)V 

(a; ~a;) = a2va4= 1; by Lemma 1.2(2) and (5) and the Foulis-Holland Theorem, 
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(~~A(Y~)V(Y3=[(aoAcw~)va~]va3=[(a~v~~)A(a~v~~)]va~=(~~A1)V~3=a~va3=1. 

Then by expanding y according to the definition of a commutator, we find that 
y=(q,Aa,)Va;. 

It is now easy to verify that y is not in our loop. Obviously a3V y= 1. By Lemma 
1.2(3), we have immediately that aoV y = 1 = al v y. Using the Foulis-Holland 
Theorem, we have also a2Vy=[a2V(aoAal)]Va~=[(a2Vao)A(a2Val)]Va~= 

1 VCY; = 1. Similarly a4V y = 1. It follows that y #ao, al, a2, a3, or a4. 
Now since (ao, y, a3, a4) is not a 4-100~ by Lemma 1.4, we see that ao@y. Similarly, 

since (aI, a2, a3, y) is not a 4-loop, we see that aI @“y. In particular a0 # a0 * y and 
a,#a, *y. By Lemma 1.2(2), we have 0<a~Iao*ySa~Vy’=a~V[(a~Va;)Aa3]I 

a;Va;. By symmetry, we have also O<a;Ia, *ylaAVa;. If ao*y#al *y, then 
1 =(ao*y)v(al *y)saiva; and so ai=a, Ecom,L. Then, however, 1 =aiva,E 
corn L, which is a contradiction. Thus a& a; 5 a0 * y = al * y 5 aA v a;, and our argu- 
ment is completed. 0 

Lemma 1.7. Assume that L satisfies condition A. If a, BE corn0 L with a+/3, then 
a’VP’Ecom, L. 

Proof. If a@?, then a/v/3’= a */3 by Lemma 1.2(4). Thus we may assume that aC/3. 
By the proof of Lemma 1.5, there is a 5-100~ (ao, al, a2,a3,a4) with a0 =a and 
al=j3. Then by Lemma 1.6, a’V~‘=a~Va~=ao*[(aoAal)*a3]. 0 

Lemma 1.8. Let L be an orthomodular lattice of height 3. These conditions are 
equivalent: 

(1) 1 Ecom L. 
(2) There are atoms a and b with a * b = 1. 
(3) L is non-modular. 

Proof. Assume 1 E corn L. Then there are elements X, y E L with x *_Y =x’ *y = 
x *y’=x’ *y’= 1. Either x or x’ is an atom and either y or y’ is an atom. Thus we 
have established (1) implies (2). Clearly (2) implies (1). Assume (3) holds. Then we 
have the pentagon sublattice of L given in Fig. 2 (cf. [4, p. 331). 

Fig. 2. 
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We may assume that a is an atom by applying the orthocomplementation if 

necessary. Now avb=l and a’Vb’=(ar\b)‘=l. We claim that avb’=l=a’vb as 

well. Since a’ and b’ are coatoms, this is clear unless a = 6’. However, if a = b’, then 

we would have the nonsense: b<c but b’Ac=ar\c=O. So avb’= 1 =a’vb. Then 

by expanding a * b according to its definition, we find a * b = 1. Thus (3) implies (2). 

Finally, assume that (2) holds. Since L has height 3, if it is a horizontal sum, then 

it is clearly non-modular. So we may assume that L is not a horizontal sum; in par- 

ticular, then, no atom of L is also a coatom. Consider any coatom c> b. Then 

1 =a*b<aVb. Moreover, age; for otherwise 1 =avb<c. It follows that aAc=O 
since a is an atom. We have produced the sublattice of Fig. 2, which shows that L 
is non-modular. Thus (2) implies (3). El 

This lemma permits us to identify the commutators in an orthocomplemented 

projective plane 17. Since 17is a modular orthomodular lattice of height 3, 1 $ corn 17. 

No atom of n is a commutator by Lemma 1.1(5). The coatoms of n, however, are 

clearly commutators. Thus the commutators of 17 are precisely the coatoms. More- 

over, it is easy to see that for two lines a and p of 17, (Y *fi= 0 if the point a’ lies 

on the line /3, and a */3 is the line determined by the points cr’ and /3’ otherwise. 

Theorem 1.9. Let L be an orthomodular lattice. These conditions are equivalent: 
(1) L satisfies condition A and Icorn Lj > 1. 

(2) Let ZT= {a, o’: a E corn L}; then 1 $ corn L and I7 is a subalgebra of L which 
is a projective plane. 

(3) The subalgebra generated by the commutators of L is a projective plane, and 
every commutator of L is a commutator of this subalgebra. 

Proof. Assume (1) holds. By (l), 117126. By lemma 1.7, 17 is a subalgebra of L. 
Condition d implies that 17 contains no chains of length greater than 3. Let a E 

corn0 L. Since each non-distinguished commutator belongs to a 5-loop, 17 contains 

commutators fi, y with c&p and a@. This remark has two consequences. First, 

Q’< p implies that Z7 contains a chain of length 3 and hence n has height 3. Second 

a& implies a $ C(n). Thus C(n) contains no non-distinguished elements of 17 and 

hence 17 is irreducible. Finally, by Lemma 1.8, 1 $ corn L implies that 17 is modular. 

Now assume (2) holds. Clearly 17 is the subalgebra generated by corn L. Thus the 

subalgebra generated by corn L is a projective plane. Let a E corn0 L. If a were an 

atom of l7, then a’ would be a coatom of n. But then 1 = aVcr’~com L. Thus a 

is a coatom of the projective plane n and hence (Y E corn 17. Thus corn 17= corn L. 
Now assume (3) holds. Let r(com L) be the subalgebra generated by corn L. Then 

by Lemma 1.8, r(com L) being modular implies 1 $ corn r(com L) = corn L. Since 

an ortho-complemented projective plane contains infinitely many commutators (all 

the coatoms), we see that Icorn Ll > 1. Now let a, p E corn0 L with a#/3. Then a 

and p are coatoms of Z(com L), and so a VP = 1. Thus L satisfies condition d . 0 
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2. Commutator-finite orthomodular lattices 

In this section we focus on commutator-finite orthomodular lattices in the light 
of Theorem 1.9. In Proposition 2.1 we show that, because of Baer’s Theorem [l] 
to the effect that there are no finite orthocomplemented projective planes, there is 
a paucity of commutator-finite orthomodular lattices satisfying condition d. This 
proposition essentially says that a commutator-finite orthomodular lattice satisfies 
condition d if and ony if it has no more than one non-distinguished commutator. 

Proposition 2.2 states that any element dominating all the non-distinguished com- 
mutators is central, provided L has no Boolean horizontal summand. Given the pro- 
viso, this generalizes [3, Corollary 21. We then characterize orthomodular lattices 
not excluded by the proviso in terms of the cornmutants of non-distinguished com- 
mutators. 

Theorem 2.4 gives equivalent ways of saying part (2) of condition d in a com- 
mutator-finite orthomodular lattice in which the join of the commutators is 1. One 
of these equivalent conditions is that corn0 L be totally unordered. These are 
precisely the conditions under which we can prove that 1 is a commutator. Finally, 
an example shows that these conditions appear to be best possible. 

Proposition 2.1. Those commutator-finite orthomodular lattices satisfying condi- 
tion A consist of Boolean algebras and of nontrivial direct products of Boolean 
algebras with nontrivial horizontal sums of Boolean algebras. 

Proof. By [l], there are no finite orthocomplemented projective planes. So by 
Theorem 1.9, /corn, Lj I 1. If corn L = {0}, then L is Boolean [3]. Otherwise corn L = 
{O,a} with O<a<l. Then ~EC(L) by [3, Corollary 21 and so L~[O,rx’]x[O,a]. 
Since a is a maximal commutator, [O,a’] is a Boolean lattice by [3, Corollary 61, 
since a is a minimal nonzero commutator, [0, a] is a nontrivial horizontal sum of 
Boolean lattices by [3, Proposition 71. 0 

A comparability chain from {z, z’} to {x,x’} is a sequence y,, yl, . . . , y, EL \ { 0, 1 } 

withy,=zorz’andy,=xorx’, andyi_,~yiory,_,2yiforeachi=l,...,n. The 
integer n is called the length of the chain. If y,=z, we say that the path is based 
at z. Note that if there is a chain of length n based at z’ to {x,x’}, then there is a 
chain of length n based at z to {x,x’}. Eric Schreiner [6, Theorem 1.5.61 has proved 
essentially the following: L cannot be written as a horizontal sum if and only if for 
all x, z E L \ (0, l} with x# z, there exists a comparability chain from {z, z’} to {x,x’}. 

Proposition 2.2. If L is an orthomodular lattice with no Boolean horizontal sum- 
mand, and if y 5 z for all y E corn0 L, then z E C(L) and [0, z’] is a Boolean factor 
ofL. 

Proof. If L is a horizontal sum, say L = L1 oL2 then there exists cr; E Li fl corn0 L, 
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i= 1,2 (else some Li is a Boolean algebra) and SO 1 = al VazI.z, i.e. Z= 1 E C(L). 

Thus we may assume that L is not a horizontal sum. Let x E L. Suppose x&c. Let 

yo, y,, ... > y, be a comparability chain based at z to {x,x’} of minimal length. Then 

n>l and z=yo~y1zy2 or z=yory15y2. In either case z*yz<l; so z*y2Iz, i.e. 
zCy2 so y, # x,x’. Hence n > 2. 

We claim that z *y3 = 1. Suppose not, say .z~y~>O; then z~zAy3 Sy3 initiates 
a shorter path, contradicting the minimality of the given path. Hence z *y3 = 1. 

Since zCy2Cy3, we have (Y~AZ) *.Y~=.Y~A(z *y3)=~2A 1 =y2; SO ~25~~ and Z= 

Yo, Y2, Y3, * *. 9 y, is a shorter path than the original, which is a contradiction. Hence 

xCz. Thus ZE C(L). 
Now let y 5 z’. Then x * y I z 5 y’ implies xCy. Thus y 5 z’ implies y E C(L) so that 

[O,z’] is a Boolean factor of L. 0 

It follows from [3, Corollary 21 that, whenever z> y for all yecorn L, [O,z’] is 
a Boolean factor of L. Proposition 2.2 can be regarded as a generalization of this 

result for those orthomodular lattices which have no Boolean algebra as a horizontal 

summand. The following remark characterizes these structures. 

Proposition 2.3. An orthomodular lattice L has no Boolean horizontal summand 
if and only if L = IJ {C(a): a E corn0 L}. 

Proof. Assume that L is the horizontal sum of a Boolean subalgebra B and a sub- 

algebra L,. Then corn0 L C_ L1, and so the non-distinguished elements of B fail to 

commute with any non-distinguished commutators. Thus L # U (C(a): a E corn0 L}. 
Conversely, assume that L has no Boolean horizontal summand. Let us consider 

first the case in which L is non-Boolean and L is not itself a horizontal sum. Since 

L is non-Boolean, there must exist nonzero commutators. If 1 where the only nonzero 

commutator, then L would be a horizontal sum of Boolean subalgebras by [3, Pro- 

position 71. Thus corn0 L is non-empty. Let x E L. If x E C(L), then x E C(a) for each 

a E corn0 L. Thus we may assume that x6 C(L). Let x=x0,x1, . . . ,x, be a compara- 

bility chain from {x,x’} to {x,,xA} of minimal length with respect to the property: 

x@x~. Clearly n 2 2. If n = 2, then O<x *x2 <x1 or xi and we are finished since 

xCx *x2. If n > 2, then by the minimality of the chain, we see that xCx,_ r; hence, 

x * (x, _ I Ax,) =x, _ 1 A (x *x,). If x *x, < 1, then it is a non-distinguished commuta- 

tor commuting with x. If x*x,, = 1, then x * (x,_ 1 AX,) =x, _ 1 has this property. 

There is another case to consider. Suppose L is a horizontal sum of non-Boolean 

subalgebras L,, which are not themselves horizontal sums. Then x E L implies x E Li 
for some index i. Then the preceding paragraph shows that XE C(a) for some 

a E corn0 Li c corn0 L. q 

Theorem 2.4. Let L be a commutator-finite orthomodular lattice with v corn L = 1. 

These are equivalent: 
(1) corn0 L is totally unordered. 



(2) The join of distinct non-distinguished commutators of L is the unit of L. 
(3) If a,& y,6EcomOL with a+/3 and y#S, then avP=yvS. 
(4) Ifa,/3,yEcomOL with a#P, then yIav/?. 

Proof. We prove that (1) implies (2) by induction on Icome LI. (2) is vacuously 

satisfied if Icome LI <2. Assume that the result holds for all such lattices having 

fewer than n non-distinguished commutators. Let 2 I Icorn LI = n with V corn L = 1 

and come L totally unordered. Let a#/J be in corn0 L. Suppose that aVp< 1. Either 

L is not a horizontal sum or av/? is in a unique horizontal summand L, of L. Since 

the rest of this argument takes place in L1 we may assume that L, = L, i.e. that L 
contains no horizontal summand. By Proposition 2.2 and the fact that V corn L = 1, 

Icorn [0, avp] / <n (otherwise [O, (avp)‘] would be a non-trivial Boolean factor). 

Since the other induction hypotheses clearly obtain, [O,avP] satisfies (2). Since 

corn0 L is totally unordered and com[O, aV/?] G corn L we may conclude that avfle 
com[O, aV/?]. By Theorem 1.9, [0, aVp] contains a finite orthocomplemented pro- 

jective plane, the subalgebra generated by the commutators of [0, avb], contradict- 

ing Baer’s theorem. Thus aVp= 1 and L satisfies (2). Hence (1) implies (2). 

Clearly (2) implies (3) and (3) implies (4). Thus we need prove only that (4) implies 

(1). We may assume that Icorn Ll r2 and that L is not a horizontal sum since 

corn0 L is totally unordered if and only if com,(L;) is totally unordered for each 

horizontal summand L; of L. Let a, /3 E corn0 L with a #p. By (4) and Proposition 

2.2, [O,(aV~)‘]cC(L).Since~comL=l,(aV~)’=OsothataV~=l.Since~<l, 

we have aSj3. Thus come L is totally unordered. I7 

Corollary 2.5. Assume that L is a commutator-finite orthomodular lattice with 
V corn L = 1. If corn0 L is totally unordered, then 1 E corn L. 

Proof. We may assume that L has at least 2 elements. Since V corn L = 1, L is not 

a Boolean algebra and L has no Boolean factor. Suppose that 1 $ corn L. Then L 
satisfies condition d by Theorem 2.4. Thus, by Proposition 2.1, L is a horizontal 

sum of Boolean algebras so that 1 l com L, which is a contradiction. Therefore 

IEcomL. Cl 

By [3, Theorem 141, Corollary 2.5 implies that 1 E corn L for every irreducible 

commutator-finite orthomodular lattice in which corn0 L is totally unordered. Fig. 3 

depicts the Greechie diagram [4] for an irreducible commutator-finite OML in 

which 1 is not a commutator. Dichtl [2] first observed in print that this structure 

which we shall call the Dichtl triangle Q, corresponds to an orthomodular lattice. 

The Hasse diagram for the poset of its commutators is given in Fig. 4. These facts 

have been checked by us as well as by an extensive computer program developed 

by Miller 151. 



G. Bruns et al. 

Fig. 3. The Dichtl Triangle Dt Fig. 4. corn(Q). 

The maximal commutators of Dt are of the form x*y where x and y are atoms 
on distinct lines of the triangle and are not vertices of the triangle; whereas the 
minimal non-zero commutators are of the form x *y where x is an atom of some 
line of the triangle but not a vertex and y is the (unique) atom on the circular block 
which is on no line of triangle. There appears to be no reasonable conjecture which 
generalizes Corollary 2.5 and is not refuted by the Dichtl triangle - unless it in- 
volves forbidden configurations. 
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