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Let p be an odd prime and n a non-negative integer. Define T: en” + C”+* by 

~(~o,Z*,..., ~~)~(hbo~~~hbl~*~~~~~hb~~~) 

where h = exp(2wilp) and 1 s bi s p - 1. The map T induces a free action of 
on the sphere S2n+1 and the orbit space is the lens space which we denote by 

L(P;bo,bl,***,bn)- 

We are concerned here with determining when these lens spaces are framable, 
that is have stably trivial tangent bundles. Our first step is to reduce this probiem to 
algebra. 

Proposition. The lens space L (p; bo, . . . , bn) is franzable ifi n < p and 

b$+b:‘+-+bij=Omodp 

for j = 1,2 ,..., [n/2]. 

y applying a key lemma of 
conjectures) we obtain the follo 

is positive solution to the 
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n 

c x:‘=Omodp, j = 1,2,...&/2] 
i=O 

for fixed n or p from a more elementary viewp.oint. 
This paper war written while the third author was at the Institute de 

Mathematiques de 1’Universite de Get&e, Thanks are due to the Institute for their 
kind hospitality, and particularty to Michel Kervaire for ’ numerous profitable . 

conversations. AI1 of the authors are indebted to Charles Giffen for numerous 
helpful suggestions. 

1. Reduction to algels ra 

Associated With the principal Z/p bundle w : Szn+’ i L (p ; bO, bl, . . . , bn) one may 
form a complex line bundle y over L(p; b o, . . . , b,) by dividing out the diagonal 
action of Z/p on S*” ‘I x C where the generator of Z/p acts on C by multiplication 
by A. There are also the similarly defined line bundles where Z/p acts on C by 
multiplicwtion by h * which are just the comp!er: tensor powers y b. 

Lemma 1.1. The tangent bundle of LO, ; bo, bl, . . . , b,,) is stably isomorphic to 
re(ybo@ybl@ l l l @ y”m). 

Proof. Clearly T(S*“‘*)$R with Z/p action given by dT $ I is equivariantly 
isomorphic to SZn+’ x Cn+l with Z/p action given by T x T. Dividing out the action 
gives the result. 0 

Now let L”@)=L@;l,l,...,l)(n+l ones). 

Proposition 1.2. L(p ; bo, bl, . . . b bn) is frantable if re(yh$ y bl$ l 9 . @ y ‘n) is stably 
triGa ouer L n(p). 

Praef. For any (boy b 1v***,bn) the principal Z/P bundle 
W: S2n+1J L@;b,,b,,..., b,) is 2n + 1 universal. Thus there are maps (N.B. Not 
unique up to homotopy nor homotopy equivalences in general.) 

f: L(p;bo,*..,bn)+Ln(p) 

cL”(p)+L@;bo,...,b,)) 

such that (abusing notations) 

f*r = Y, g*r =y 

and the result follows from Lemma I .l. 0 

(L”(p)) is computed. Setting t? = re(y) - 2 the p torsion part of 
(L’(p)) is a direct sum of cyclic groups generated by 6=*,1< i s i(p - 1), where 
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if n = s@ - l)+ r, 0~ r <p - 1, the order of 5’ is p’+* for i s [$r] and p” for 
i > [$r]. 

Beatification is not a ring homomorphism. But one has (the * denotes complex 
conjugation) 

Y(8hr.Y” =bmltc)&Y” 

= (Y aw%3kr” 
= (y@y-‘)&y” = ya+Q)ya-1 

(*) re(r”) - 2 = Cb + terms of lower degree in 6 provided 1 G b s &I - 1). 

Lemma 1.3. If L (p ; bo, b,, . . . , b,) is fmmable then n < p. 

Proof. Since re(r”) = re((r *)“) = re(yp-“) and complex conjugation in the (i + 1)st 
coordinate induces a diff eomorphism 

L@;bo,..., b,)jL(p;bo,.*.,p-bi,..~,b,) 

we may as well suppose 1~ bi < $0, - 1). 
In order that (re(r b) - 2) + l l . + (re(r”) - 2) be zero in ]li;O(L” (p)) it is neces- 

sary that n + 1 = 0 mod p”, since from (*) it follows that for each b with 1 s b s 
f(p - 1) the number of copies of re(r “) - 2 must be divisible by p’. Since 
p”>s@-1)+r+1if~>1,and@-1)+r+1=Omodp impliesr=O,onemust 
have ngp-1. 0 

Remark. When n = p - 1, then one sees that y @ y @a l l $ y = py is stably trivial, 
sa that LP-‘(p) is framable. This was pointed out to us by Idar Hansen and provided 
‘Jne of the starting points of our inquiry. 

Lemma 1.4. Let 5 be an oriented vector bundle over a finite complex X, and suppose 
that : 

(a) dim X < 2p + 2, p an odd prime, and 
(b) fi’*(X; 2) has no q torsion for any odd prime 9 < p. 

If P(s)=0 then e-dime E (X) 1s a 2-torsion element. 

roof. Let 

T: BSO(~,...,Q+BSO 

be the m - 1 connective fibring over BSO and write 

i. m 

Suppose inductively we have constructe a lifting as in the diagram 
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/ I fm 7r’ 

X,4--BSO 
. 

where m c 2p t 2, k a 0 and f is a stable classifying map for e. Consider the lifting 
problem posed by the diagram 

BSO(m +l,...,a) 

1 
%l 

x fm -+ BSO(m, . . . ,m). 

If m f 0, 1,2,4 r-;od 8 then n,,, is a homotopy equivalence so fm lifts over 7~. If 
m = 1,2 mod 8 :hen v,,, is classified by a map 

BSO(nc, . . . , ++K(W,m) 

so that 2fm lifts over ?r,, say to j!*+l, whence we get a lift as in the diagram 

BSO(m + 1,. . . p) 

X ---g BSO. 
f 

If m = O(4) then n;, is classified by a map 

g,: BSO(m,...,w)+K(Z,m) 

such that 

where a,,, # 0 E 2 has a prime factorization involving only primes 9 < p [7]. 
Therefore 

a,fzg z(i) = 2b&&) =‘O 

whence Fig z(i) = 0 since a,,, is not 
Therefore f$,,, is null homotopic, 
follows that there is a lift as in the 

a zero divisor in H” [X ; 2) t;y condition (b). 
so j+m lifts over n,. Therefore inductively it 
diagram 

BSO(2p +2,...,9 

where k = card(n IO K n < 2p + 2 and n = 1,2(8)}. But by condition (a) dim X G 
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2p + 1 = connectivity of BSO(2p + 2 , . . . , Q)), where f is null homotopic, so 2Lf = 
n of is null homotopic and hence 2’(6 - dim [) = 0 E go(X). 0 

Pm 1.S !I& fens space L(p ; b,, bt, . . . , b,) is framable iff n < p and the 
Parzrrjagin classes of the b&ffe y”@ y ba @ l * c @ y bn 1 L “(p) are trivial. 

proof* If L(P;b,,..., b,J is framabie then y”@. . l @ybm 1 L”(p) is trivial so has 
vanishing Pontrjagin classes. Conversely if rb&, l l * $ y bm has vanishing Pontrjagin 
classes and n<p then by (1.4) re!y~&)***@yb*)JLndp) is 2 torsion in, 
itO(P But 

re(+@*.e@.ybm)-2(G+ l)EIm(R(L”(p)-,~O(L”(p))) 

and as &(L *(p)) has no 20torsion [5] it follows y %@I l . l @ y bm is stably trivial and 
thus L (p ; bo, . . . , b,) frames by Proposition 1.2. CI 

Recall that 

WWp);Wp)= E(u] @w 
where deg u = 1, deg t) = 2, flu = v. Moreover 

the bundle 
is an isomorphism. 

The total mod p Pontrjagin class of 

Y”~y”~~*~C3rbn J L”(p) 

is given by 

fi (l+ tW)E W(L”(p);Z/p) 
i-0 

and thus we obtain 

Cawollary 1.6. The lens space L (p ; bo, . . . , b, ) is framabfe ifl n < p and one of the 
following equivalent conditions holds : 

(1) (I+ b:v*)(l f b:v’)* l l (l+ 6:~~) = 1 in Z/p(v*]W+’ 

(2) b~~+b:‘+***+b~=Omodp, j = 1,2,...,[tn]. 

Proof. From the preceding discussion (1) is equivalent to the vanishing of the 
Pontrjagin class of re(yh@ l 0 l @ y ‘m) so applying Proposition 1.5 yields the result. 

The equivalence of (1) and (2) foIlows from Newton’s identity 

O=mu, -~~~~-,+***+(-I)m-lQm-,~,+(-l)m 

where 
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q = ith elementary symmetric function of bg, . . . , b: 

Qi =b;‘+b:‘+*~~+b:, 

and the fact that the coefficient of 0” in the polynomial of (1) is cri. Cl 

\ 

2. Elementary consequences 

By the results of the preceding section, ii is clear that given an odd prime p, a 

non-negative integer n < p, and integers bo, . . . , b, with 1 G bi 6 p - 1, one can 
determine with no theoretical dimculty whether or not the lens space 
L(p;bo,..., b,) is frama Ae. The interesting questions arise when one fixes n or p 
or both and asks whetht r a framable leps space exists for that n and p. 

Proposition 2.1. Let p i e an odd prime and E a primitive root mod p. If a I@ 
and b = (p - 1)/2a, then the lens spaces 

L@;Eb,&2b,. .,E(a-‘)b) 
and 

L (p ; 1, & b, 8 2b, . . . , & (2a-‘)b), 

of dimension 2a - 1 and 4a - 1 respectively are framable. 

Proof. Since E 2b has order Q mod p, one has the identities in Z/p[X]: 

and 

“r;I’(X-(gy)=X~ -1 
i=O 

*a-1 

n (X-&ib)2)=(Xa-1)2. 

i-0 

It follows that 

ad (l+ Eib)*V2) = 1+ (- l)o+1V2a = 1 in Z/p[V*]/(V”) 
i=O 

and 
*a-1 

n (1 + (Eib)*v2) = 1 + (- l)b+12V*” + P 
i=O 

= 1 in Z/p [ V’]/(V’“) 

and the result follows from Corollary 1.6. Cl 

mark. Taking a = idp-l)intheabove{l,~ ,..., ~*~-l)={1,2 ,... VP-l}. 
the lens space L (p ; 1,2,. . . , p - 1) of dimension 2p - 3 is framable. 

- q/2 

Hence 

Iary 2.2. For each integer n, there is a framable lens space L @ ; bo, . . . t b,) if 
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p = 1 mod tz + 1. Thus there 
infinite number of primes. 

are fram able spaces of dimension 2n + 1 for an 

Proof. Write p - 1 = M(n + l), take a = n c 1 if n + 1 is odd and a = $(n + 1) if 
n + 1 is even. In the first case 2a - 1 = 2n + 1, while in the second 4a - 1 = 

2n+l. 0 

From Proposition 1.5 (2) we easily deduce the following conexistence result. 

Corollary 2.3. Suppose p =lmod4,4(p-l)<n<p-1,andniseven. ‘Fhennf 
lens space L(p;bo,..., 6,)) of dimension 21% + 1 can frame. 

Proof. By a suitable choice of generator of Z/p we may of course suppose b. &= 1. 

By Proposition 1.5 (2) we then have for i = b(p - 1) 

l+bl (P-l)/* + . . . + b$‘-“n s () mod p 

if L(p;l,b,,..., 6,) frames. Since bP-* = 1 for any 0 # b E Z/p we must have 
b@-1)/2 = t 1 and therefore 

l&l&l~e* &MO modp, 

which is impossible, as there are an odd number, n + 1, of 2 1 in the sum and 
n+l<p. Cl 

3. A non elementary consequence 

In this section we apply a lemma of Deligne [l], which follows from his proof of 
the Weil conjectures, to obtain the following result. 

Theorem 3.1. Let n be a positive integer, then for all sufficiently large primes p there 
exists a 2n + 1 dimensional Zens space L(p ; bo, bl, . . . , 6,) that frames. 

This theorem follows immediately from the following arithmetical results by 
applying Propsoition 1.5 (2). 

Theorem 3.2. Let p be a prhe and denote by N the number of soluthzs to the system 
of congruences 

x~j+x:‘+~*.Cx2,‘~Ornodp, i = l,...,m 

satisfying 

x0, x 1, . . ..x.fOmodp. 

Then there exists a positive constant A, depending only on n and m such Aat 

IpI”N - (p - l)“+l( s A(p” - l)p(n+l,lz. 
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Corollary 3.3. ‘In the notations of Theorem 3.2 if m s f n then N > 0 for sufficiently 
large p. 

Proof. We have 

Iim P” N - 1 < Iim A P” 
I 

(fi+‘M2 
p-V&l 0, - l)n+’ I p-*fx? (p - ,)*+I p 

~A lim ,n’2-!)o = 0 

P- ‘O tP-l)n+l ’ 
whence lim,.AV = OR m 

The proof of Theorem 3.2 requires two lemmas: the first is due to Deligne [1, 
8.4-8.131, [6; 6.21 and thz second is’ an elementary consequence of the first. 

Lemma 3.4 (Deligne). Let p be a prime and g (x0,. . . , x,)) a polynomial with 
coefficients in Z/p of de ree d satisfying 

(a) (dp)= 1, 
(b) the homogenous component of degree d of g (x0,. . . , x,) defines a non- singular 

hypenurface of projective n-space. 
Then 

I 22 A B(q).....X”) < (d - l)n+‘pb+w 

o-aq),....x,~p-l I 
where A = exp 2rri/p. 0 

Lemma 3.5. Let p be a prime and g (x0,. . . , x,) a pd?lj?nomial with coefficients in Z/p 
of degree d satisfying \ 

(a) (dp) = 1, 

(b) the polynomial obtained from g kO, . . . , x,) iiy setting some proper subset of the 
variables equal to zero is of degree d and defines a non-singular hiperswrfuce of the 
appropriate projective space. 
Then there exists a constant A, depending only on d and n such that 

I c A g(+p....x,) 

l~*o,.....x,sp-I I 
s AP(n+‘)‘2* 

. This time the sum ranges over those 

roof. By induction on n. If n = 0 then 

and hence by Lemma 3.4 

n + 1 tuples satisfying x0,. . . , x, # 0.) 
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s (d - I)$+ 1 S tip’. 

Assume the result when the number of variables is less than n + 1 and conb;ider a 
polynomial as in the hypothesis. Let 9 denote the set of all subsets of (x0,. . . ,x,). 

For each w E 9 let 

B(*)= c A im(p....X”) 
. 

O-0. . . ..*##Cp-1 
Xi==OeSXIEW 

Then 

c A Il(x,....x,) = c wo 
OUX& . . ..x.cp-1 WGY 

Clearly 

If card it = k >O, then by the induction hypothev;is there exists a constant Cn 
depending onty on k and d such that 

Let C 

1 I3 (7r)l s cwp’n+l-k’R < cwp(n+l? 

= max w~~un~C~. Then 

I c A B(x(y..*x,) < I I c A g(xo..-..X”) 

tcxo. . . ..x.sp-1 OCX& . . ..x.sp-1 I 

+ “& IB(=)l s (d - l)n+‘pcn+*)n + (2’ - 1)Cp(“+ly2 
l?EY 

completing the induction. El 

_ Proof of Theorem 3.2. Let 

f( j x0, . . ..x.)=x(“‘+x:‘+g**+x~ 

and for a fixad n + 1 tuple (x0,. . . , xn) and a fixed j ~0 notice that 

P--l 

I 

0: if fi (x0, . . . , rc,)f:Omodp 
A ~~&J+...x,,) = 

P: if j”(Xo,...,X,)sOmodP 

where as usual h = exp 2nilp. 

if fi(xo,...,x,)SO@) 
for all j = l,...,wn 

otherwise. 

Thus we have 
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= lGxDI*; cp_l ( 2 A ~rf,(XO'".~X")C"'+'mfm(*o D... J”)* 

n 11,1&...,1,, ==o 

NOW thk: inner sum consists of p” terms. The term corresponding to tl = l l l = t,,, = 

0 is simply 1. The p m - 1 remaining terms are all of the form 

A g(xo,...;x,~ 

where g (x0,. . . , x,) is a polynomial satisfying the conditions of Lemma 3.4. Since 

c ,,,o,-1)“” 
IGcxa. . . ..x.sp-1 

we obtain 

jp”N -(p - .c$)‘+ll < (pm _ l)&,(n+l’n 

as required. 0 

4. Low dimensiornal esamples 

Noting that ail 1 and 3 dimensional Iens spaces are framable one first considers 
dimension 5. 

Proposition 4.1. There is a framable lens space L (p ; bo, b,, bz) of dimension 5 ifl 
p#5. 

Proof. For p = 5 and n = 2 Corollary 2.3 shows that no framable L (5; bo, bl, b2) 
exists. 

Forp=lmod&p#$ - 1 is a quadratic residue and letting a 2 = - 1 moo p one 
;las 

0=25+25a2=25+(3a)+(4a)’ 

whence L (p ; 5,3a, 4a) is framable. 
For p =3mod4, - 1 is not a quadratic residue mod p. Consider the set 

S ={u2+tr2(u,o GE/p”}. If OES then 

O=u2+v2 
gives 

-* I= (vIU)2 

which is not possible, so 0 e S. If S consists entirely of quadratic residues, then for 
any quadratic residue a2, a 2 + l2 E S so a2 -I- 1 is also a quadratic residue, which 
implies every element of x is a quadratic residue, which is impossible. Therefore 

contains a non-qu 2+v2, so L@;u,v,w) 
frames. R 
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Proposition 4.2. There is a framable lens space L @ ; b,, b,, bz, b3) of dimension 7 ifl 
pf3. 

Proof. Since n =3wemusthavep>3byLemma1.3.Forp=S,p=lmodn+l 
so a framable mod p lens space exists by Corollary 2.2. For p > 5, Proposition 4.1 
shows that there are u, v, w # mod p such that 

o=u2+v2+w2 
and so 

o=25u2+25v2+25w2 

= (3u)2 + (4u)‘+ (5v)2 + (SW)’ 

and so L (p ; 3u, 4u, 5v, SW ) frames. q 

Note. We are indebted to Charles Giffen for the very useful observation that 
32 + 42 = 52 even mod p. 

In dimension 9 the situation becomes a great deal more complicated. In order to 
have L@; bo, bl, b2, b3, b4) framable one must have p > 4. For p = 5, Lp-‘(p) = 
L4(5) is framable. By Corollary 2.2 there is a framable 9 dimensional lens space for 
p=lmod5. . 

Proposition 4.3. i;Cp = 1 mod 8 and there is a ZI # 0 E Z/p satisfying the conditions 
(a) v2 + 1 # 0 is a quadratic residue, 
(b) v4+ v2 + 1 # 0 is a fourth power, 

then there is a framabk lens space of dimension 9 for p. 

Proof. Since p = 1 mod 8 there is a v wifh v4 = - 1 mod p. Let 

u2= v2+1 

w4= v4+ v2+ 1. 

Then 
(~W)~+(V3W)2-i(y2U)~+v2+12=(v2W2-v2w2-U2+v2+1=0 

and 
(vwr+ (t.3w)4+ (v’ur+ v4+ 14= 

= -w 4-w4+u4+v4+14 

= -2(v4+v2+1)+(v2+l)2+v4+1 

5 0 

so L (p; 1, VW, v3w, v2u, v) is framabk . U 

For example, taking v =l,v2+l=2isasquare,andv4+v2+1=3.Thusif3is 
a ere is a framablle lens space. Gauss has characterized these 
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primes [3]. For p = 1 mod 8, p can be uniquely expressed in the form p = a2 + b2 
with u odd and b even, and 3 is a biquadratic residue iff b *= 0 mod 3. The smallest 
such primes are 193, 313, 433, 577, 601, 673, 769, 937, 1201, 1297, 1321. 

One can use other valuesof v also. For example when p = 89,30* = 32 + l2 and 
5*3 34+32+ 1. 

. 

Using a slightly sharper estimate than that of Lemma 3.4 [6; 6.11 one obtains that 
a framable 9 dimensional lens space exists for p e 973, Ad hoc calculations verify 
that for primes p 2’5 such examples exist except for 

p = 7, 13, 17 or 23, 

where no such exanpbzs are possible. 
In dimension 11 a framable lens space L (p ; bo, . . . , bs) exists if p = 1 mod 6 = 

5 + 1. We also have 

Proposition 4.4. If p = 1 mod 4, p > 5, then there is a framable 11 dimensional lens 
spaqe for p. J 

Proof. Consider first the case p = l(8). Then there is a v with v4 = - 1, so 

32 + (3v)‘+ (4v)2 + (5v3)2 + (Sv’)” = 

=(32+42-52)(1+ v’)=Omodp 
and 

34+(3v)4+44+(4v)4+(5v3)4~5v2)4= 

=34-34+44-44+54-54EOmodp 

so that L(p ; 3,3v, 4,4v, 5v3, 5v2) frames. 
For p = 1 mod 4 Gegenbauer [4] proves 

x4+y4+z4=Omodp 

is solvable with xyz f 0 modp if p # 5,17,29 or 41. So for p = 5 mod 8 p # 29, 
3u, in, w E Z/p x such that 

U4+v4+w4=0modp. 

Let 7j2= - 1 mod p. Then one finds L (p; 1, u, v, r), r)u, qv) frames. For p = 29 
L(29; 1,6,11,14,14) frames. Cl 

By Lemma 1.3 no framable lens space of dimension 11 can exist for p = 2,3 or 5. 
Using the methods of Deligne one finds thit a framable lens space of dimension 11 
exists for all primes p > 41, which leaves only p = I&23 to complete the determina- 
tion of which primes admit framable 11 dimensional lens spaces. For p = 11 none 
can exist and L (23; 11,5,8,8,11) is framable, 
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5. Composite moduli 

One can obviously, generalize the problem by letting Z/m act on S *,,+ ’ by means 
of 

T(z O,.. .,&)” (hbozf) ,..., Abnz,) 

where h = exp(2ni/m ) and (bi, m ) = 1 for each i. The resulting lens space will be 
denoted L (m ; bo, h, . . . , b,). Throughout, we write m = p;p? l l . p>; pl < pz < 

l . . < ps, ri 3 1, in it’s prime factorization. 

Proposition 5.1. L (m ; bo, . . . , b,) is frumuble if end only if 
a) bgJ+bij+-.m+bz= 0 (mod m ) for 1 s j G [n/2] and, 

b) 01 = 2, then n = 0,l or n = 3 and rl =z 1, OP if pl >2, then n < pl. 

Proof, If L(m;bo,..., b,,) is framable, then it’s covering space L (p 1 ; bo, . . . , b, ) is 
also framable. Thus, if pI = 2, n = 0,l or 3, and if pI > 2, n < pl. Since condition a) 
follows from the vanishing of the Pontrjagin classes, necessity is reduced to showing 
that L (4; bo, bI, bl, bj) cannot be framed, since for pl = 2, tr > 1 it is a covering 
space. 

Assuming m is even, framability requires n = 0,1 or 3, and for n = 0 or 1 all are 
framable. For n = 3, the mod 2 cohomology of L(m ; bo,. . . , b3) is the same as that 
of the standard lens space, with Steenrod operations, and so L = L (m ; bo, . . . , b3) is 
a Spin manifold. Letting 

r=L-*BSpin 

be a classifying map for the tangent bundle, the first and only obstruction to lifting 
to BO(8,. . . , a), hence framing L, is r*(x), where x E H4(BSpin; Z) = Z is a 
generator. Since the mod 2 reduction af the first Pontrjagin class et is w z, which 
vanishes for Spin bundles, and since 9, generates H4(BSpin; Z/p) for all odd p, it 
follows that t, 2% = @I for some s > 0. Letting y be the Hopf bundle over CP(m), 
one sees that y @ y is 3 Spin bundle and that @,(y @ y) = 2a2, CY E E2(CP(~); Z) 
the generator. Thus k2~ = PI. 

Now, if L jm ; bo, . . , , b3) frames and pl = 2, tl > I, so does L(4; bo, . . . , b3) which 
is diffeomorphic to L(4; 1, 1, 1,l) = L which has tangent bundle 47 (where 7 is 
induced by the map into CP(3)). Now 2y is a Spin bundle and the obstruction x (27) 
generates H4(L ; Z) s Z, and by additivity of the obstruction, T*(X) = 2x (27) is 
twice the generator, so is nonzero. Thus if m is even and n = 3, tl = 1. * 

To prove sufficiency, if m is even, !I = 3, note that 6; + l l l + bz = 0 mod m is 
equivalent to vanishing of 9,. Hence, s&e rl = 1,7*(x > E H4(L ; 
2. Since L (2; bo, . . . , b3) = RP(7) frames this obstruction dies in RP(7), but 
H4(L ; Z)+ H’(RP(7); Z) = Zz annihilates only t odd torsion. Thus 7 *(x) = 0 and 
L frames. 
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Finally, supposing m is odd and n i pl, the arguments in Section 1 carry over 
with only trivial modification, completing the proof of sufficiency. D 

As in the pzime case, there is no further theoretical difficulty in determining 
whether a given lens space frames. For fixed n and m, the existence of a framing 
reduces immediately to the case Z/p for p on odd prime. 

Proposition 5.2. There is 0 framable lens space L (m ; bo, . . . , b,) of dimension 
2n + 1 for Z/m if and only if: 

a) there is a framab lens space L @i ; b & . . . , b L) fat Z/p, for each odd pi dividing 
m, a&d 

b) if pl = 2, then 1.) = 0,l or n = 3 and rl = 1, or if p1>2 then n<p,-1 or 
n=pl-1 and rt=l. 

Proof. Since m = p;‘* l l p >, solvability of the system b$j + . . . + bz = 0 (mod m ) for 
I G j G [n/2] is equirvalent to solvability of b$+ . l l + bt= 0 (mod p:‘) for 1 G j < 
[n/2] for each d by an easy application oi the Chinese Remainder Theorem. 

For pr = 2, there is no difficulty in solving the system, so one need only consider 
odd primes. Thus, one supposes that the system bgj + l . l + bz = 0 mod p, 1 G j G 
[n/2], has a solution [bi f 0 mod p, of course) and seeks a solution mod p’. 

Supposethenthatonehasasystemb~j+~~~+b~=O(p”),s~l, lej+/2] 
with WO (p), and consider the system of equations obtained by replacing 
b 0, l l l 9 btnnl-~ by bi + tips 

and one 

(bo+ top”)2’ + @I+ t1p’)” + l l ’ + (b*,,*]-1+ t[n/*l-*pS)*j + b&2,+ l l l + b?= 

sgji+... + bz+ 2jp”[tobii-‘+ 9 9 l 6 tIn12]-lb$&] mod p ‘+I, 

then wishes to solve the system 

modp, 1 G j G [n/2]. The coefficients of ti form a Vandermonde determinant, and 
hence a solution can be found provided the b’s are distinct. By reordering the b ‘s, if 
needed, and using the obvious induction on s, we then see that a solution will exist 
provided the system 6 gj + . . . + bf = - 0 @) has a solution with [n/2] distinct 6’s. 

If one supposes 6 o,. . . , bi are distinct, and uj is the number of b’s equal to bj, one 
has 

ao+ar+o**+al = n + 1 

/2] - 1, the first i + 1 congruences have toe cients a nonsing 
Vandermonde determina;ilt, giving ai =Omodp foreachj.SinceO<aiGn+lcp, 
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each Uj is either 0 or p. Thus one a is p and the rest are zero, so the b’s are ail equal 
and n+l=p. 

This shows that if there is a framable lens space of dimension 2n + 1 for Z/p there 
is one for Z/p’ except when n = p - 1, where none exists for Z/p2. For the latter, 
some verification is required, but since al1 the 6’s are congruent mod p (or more 
precisely the b2’s) one may assume bi = l(p). The system 

v-1 -x (1+ rip)“’ =O @‘) 
i=O 

becomes 

2pj$ ti +P sOQJ2) 
i=O 

so 

2jpi ti = -101) 
i=O 

for each j, which has no solutions. Cl 
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