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Let p be an odd prime and n a non-negative integer. Define T: C**'— C™*' by
T(Zo, Ziyeeny Z,.) = (ADDZo,Ab'Zh ceey Ab"z,.)

where A = exp(2wi/p) and 1 <b, <p — 1. The map T induces a free actior of Z/p
on the sphere $**' and the orbit space is the lens space which we denote by
L(p;bo,bl,. ..,bu).

We are concerned here with determining when these lens spaces are framable,
that is have stably trivial tangent bundles. Our first step is to reduce this probiem to
algebra.

Proposition. The lens space L(p;bo,...,b,) is framable iff n <p and
bi+bi+--+b¥=0modp
forj=1,2,...,[n/2].

By applying a key lemma of Deligne (from his positive solution to the Weil
conjectures) we obtain the following global result.

Theorem. Let n be a positive integer. Then for all sufficiently large primes p there
exists @ 2n + 1 dimensional mod p lens space L(p;bo,b,,...,b,) tha: frames.

Much of the rest of the paper is concerned with the solvability of the system
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2x='-0modp, i=12,...,[n/2)

(i=0
for fixed n or p from a more elementary viewpoint.

‘This paper war written while the third author was at the Institute de
‘Mathématiques. del’ Umversnte de Gengve. Thanks are due to the Institute for their
kind hospitality, and partncularly to Michel Kervaire for numerous profitable
‘conversations. All of the authors are mdebted to Charles Giffen for numerous
helpful suggestions.

1. Reduction to algehra

Associated with the principal Z/p bundle 7: $***' | L(p; b, b, ..., bx) one may
form a complex line bandle y over L(p;b.,...,b.) by dividing out the diagonal
action of Z/p on S*" ! X C where the generator of Z/p acts on C by multiplication
by A. There are also the similarly defined line bundles where Z/p acts on C by
_multiplication by A® which are just the complex tensor powers y°.

Lemma 1.1. The tdngent bundle of L(p;bo,by,...,b.) is stably isomorphic to
re(y*®y" @& y™)

Proof. Clearly 7(S***')@R with Z/p action given by dT &1 is equivariantly
isomorphic to $°**' x C**! with Z/p action given by T x T. Dividing out the action
gives the result. [

Now let L"(p)=L(p;1,1,...,1) (n +1 ones).

Proposition 1.2. L(p; bo,b,,...,b,) is framable iff re(y* @ y> @ - - @ y>™) is stably
trivial over L™ (p). -’ '

Procf. For any (bo, by, .. ., bn) the principal Z/p bundle
w: 8" | L(p;bo,by,...,b) is 2n + 1 universal. Thus there are maps (N.B. Not
unique up to homotopy nor homotopy equivalences in general.)

f: L(p;bo,...,b.)—>L"(p)
g:L"(p)—=L(p;bo,...,b)

such that (abusing notations)
fr=v, g'v=v

and the result follows from Lemma 1.1. O

In [5] KO(L"(p)) is computed. Setting & = re(y)—2 the p torsnon part of
KO(L"(p)) is a direct sum of cyclic groups generated by ', 1 <i <}(p — 1), where
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if n=s(p—1)+r, 0<r<p -1, the order of ' is p**' for i <[ir] and p* for
i >[3r].

Realification is not a ring homomorphism. But one has (the * denotes complex
conjugation)

Y&y =(y»C)&cy*

=(y®Y*)®cy"
=(y®Y @y =y""®y""’

(*) re(y®)—2=a" + terms of lower degree in & provided 1 <b <i(p - 1).
Lemma 1.3. If L(p;bo,b,,...,b,) is framable then n <p.

Proof. Since re(y”) =re((y*)") = re(y*™") and corplex conjugation in the (i + 1)st
coordinate induces a diffeomorphism

L®;bo,....b.)=>LP;boy...,p —by...,bs)

we may as well suppose 1<b, <i(p - 1).

In order that (re(y%®)—2)+ - - - + (re(y*) — 2) be zero in KO(L"(p)) it is neces-
sary that n + 1=0mod p’, since from (*) it follows that for each b with 1<b =<
{(p —1) the number of copies of re(y”’)—2 must be divisible by p*. Since
p:>s(p-1)+r+1lifs>1,and (p —1)+r+1=0modp implies r = 0, one must
have nsp-1. O

Remark. When n =p — 1, then one sees that y @y @ - - @y = py is stably trivial,
sc that L?~(p) is framable. This was pointed out to us by Idar Hansen and provided
ane of the starting points of our inquiry.

Lemma 1.4. Let £ be an oriented vector bundle over a finite complex X, and suppose
that:
(a) dim X <2p +2, p an odd prime, and
(b) H**(X;Z) has no q torsion for any odd prime q <p.
If P(£) =0 then ¢ — dim £ €KO(X) is a 2-torsion element.
Proof. Let
a: BSO(m,...,©)—>BSO
be the m — 1 connective fibring over BSO and write
P =7*P € H*(BSO(m,...,);Z).

Suppose inductively we have constructed a lifting as in the diagram
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BSO(m, ..., )

fm ks
X — BSO

where m < 2p +2, k =0 and f is a stable classifying map for £ Consider the lifting
problem posed by the diagram

BSO(m +1,...,)

|-
fm
X ——>BSO(m,...,®).
If m#0,1,2,4r-0d 8 then ., is a homotopy equivalence so f, lifts over .. If
m = 1,2 mod 8 :hen .. is classified by a map
BSO(m,...,x)—>K(Z/2,m)
so that 2f, lifts over 1, say to f..., whence we get a lift as in the diagram
BSO(m +1,...,%)
fm*/‘ 1 w

X —— BSO.

2+
If m =0(4) then =, is classified by a map
gm: BSO(m,...,©)—>K(Z,m)
such that
Ang (i) = P miam

where a,.#0EZ has a prime factorization involving only primes q <p [7).
Therefore '

anfrg i) = 2P (€)= 0

whence f'.’!“g~ .’:‘.(_i) = (0 since a. is not a zero divisor in H™{X;Z) by condition (b).
Therefore fn.g. is null homotopic, so f, lifts over .. Therefore inductively it
follows that there is a lift as in the diagram

BSO(2p +2,...,®)

2N

X——-)BQO

where k = card{n IO <n =<2p+2 and n =1,2(8)}. But by condition (a) dim X <
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2p + 1= connectivity of BSO(2p +2,...,%), where f is null homotopic, so 2f =
w of is null homotopic and hence 2* (£ —dim¢£)=0€ KO(X). O

Proposition 1.5. The lens space L(p ;bo, b,,...,b.) is framable iff n < p and the
Pontrjagin classes of the bundle y*®y" @& - -®vy"> | L"(p) are trivial.

Proof. If L(p;b,,...,b.) is framable then y>@---@y® | L"(p) is trivial so has

vanishing Pontrjagin classes. Conversely if y*@- - - @ y* has vanishing Pontrjagin

classes and n<p then by (1.4) re(y>d---@y™>)| L"(p) is 2 torsion in
KO(L"(p)). But

re(y*®- - ©v*)~2(n +1) € Im{K(L" (p)—> KO(L"(p))}
and as K(L"(p)) has no 2-torsion [5] it follows y*@- - - @y is stably trivial and
thus L(p; bo, ..., b.) frames by Proposition 1.2. [
Recall that

Z/p[v]
(vn-fl)

where degu =1, deg v =2, Bu = v. Moreover
ﬁeven(Ln(p); z)_’ I_'Ievcn(Lu(p);z/p)

is an isomorphism.
The total mod p Pontrjagin class of the bundle

.Y%beu@...@-y". lL"(P)
is given by

H*L"(p);Z/p)=E[u] ®

[T a+biv’)e H* L @) 2ip)

i=0

and thus we obtain

Corollary 1.6. The (ens space L(p;bo,...,b.) is framable iff n < p and one of the
following equivalent conditions holds

(1) 1+ b33+ bivY)---(1+ b2’ =1 in Z/p[v*]/v""'
(2) b¥+b¥+---+b¥=0modp, j=1,2,...,[in].

Proof. From the preceding discussion (1) is equivalent to the vanishing of the
Pontrjagin class of re(y*@® - - - @ y™) so applying Proposition 1.5 yields the result.
The equivalence of (1) and (2) follows from Newton’s identity

0= mo,. — Olo,.rl +oe +(" I)m_lQm—l‘Tl +(— l)mQ"‘

where
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o; = ith elementary symmetric function of b3,...,b%
Q. = b3 +bi'+---+b7,
and the fact that the coefficient of v* in the polynomial of (1) is ov. [

2. Elementary consequences

By the results of the preceding section, ii is clear that given an odd prime p, a
non-negative integer n <p, and integers b,...,b, with 1<b, <p -1, one can
determine with no tieoretical difficulty whether or not the lens space
L(p;bo,...,b,) is framasle. The interesting questions arise when one fixes n or p
or both and asks wheth.r a framable lens space exists for that n and p.

Proposition 2.1. Let p e an odd prime and ¢ a primitive root mod p. If a |(p — 1)/2
and b = (p — 1)/2a, then the lens spaces

. b 2b (a—-1b
L(p;e®e®,. .,e“@™™)
and
. b 2b (2a-1b
L(p;1,e%¢e®,...,e® ™),

of dimension 2a — 1 and 4a — 1 respectively are framable.
Proof. Since £* has order ¢ mod p, one has the identities in Z/p[X]:

:l[;([: (X _(eib)2)= X‘a — 1
and

il;[) (X - Eib)Z) = (Xu _ 1)2

It follows that

H: (1+e®PV)=1+(-1)*"'V* =1in Zjp[VI/(V*?)

and
2a-1

[T A+ EPyo)=1+(=1)y"2v= + v
i=0

=1in Z/p[VI/(V*)

and the result follows from Corollary 1.6. [J

Remark. Taking a =i(p — 1)in the above{l,¢,...,** "} ={1,2,...,p — 1}. Hence
the lens space L(p;1,2,...,p — 1) of dimension 2p — 3 is framable.

Corollary 2.2. For each integer n, there is a framable lens space L(p; b, ..., b.) if
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p =1mod n + 1. Thus there are framable lens spaces of dimension 2n + 1 for an
infinite number of primes.

Proof. Write p—1=M(n+1), take a =n+1if n+1is odd and a =3i(n +1) if
n+1is even. In the¢ first case 2a —1=2n +1, while in the second 4a—-1=
2n+1. O

From Proposition 1.5 (2) we easily deduce the following ronexistence result.

Corollary 2.3. Suppose p =1mod4, i(p —1)<n <p —1, and n is even. Then nc
lens space L(p;bo,...,b.) of dimension 2n + 1 can frame.

Proof. By a suitable choice of generator of Z/p we may of course suppose b, = i.
By Proposition 1.5 (2) we then have for j =i(p — 1)
L+bfF ™+ +b? " =0modp

if L(p;1,b,,...,b.) frames. Since b*™'=1 for any 0#b €Z/p we must have
b? 2= +1 and therefore

1x1x1---*1=0 modp,

which is impossible, as there are an odd number, n +1, of =1 in the sum and
n+l<p. O

3. A non elementary consequence

In this section we apply a lemma of Deligne [1], which follows from his proof of
the Weil conjectures, to obtain the following result.

Theorem 3.1. Let n be a positive integer, then for all sufficiently large primes p there
exists a 2n + 1 dimensional lens space L(p; bo, b,,...,b.) that frames.

This theorem follows immediately from the following arithmetical results by
applying Propsoition 1.5 (2).

Theorem 3.2. Let p be a prirre and denote by N the number of solutions to the system
of congruences

xgi+xii+...+xﬁ’50modp, j=1,...,m
satisfying

Xo, X1, .-, Xa 7 0 mod p.
Then there exists a positive constant A, depending only on n and m such that

p"N - - "< AQ™ - Dp* 7.
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Coi'oilary 3.3. In the notations of Theorem 3.2 if m <in then N >0 for sufficiently
large p. :

Proof. We have

PR P" il et a Pl e
'l‘l_Elu (p_l)n-HN 1 $‘l’l‘_il;’l‘,A(p___l)n+1p

' ("= 1D (™) _
<A plln} (P - 1)n+l = 0’

whence lim,..N =». [J

The proof of Theorem 3.2 requires two lemmas: the first is due to Deligne [1,
8.4-8.13], [6; 6.2] and the second is an elementary consequence of the first.

Lemma 3.4 (Decligne). Let p be a prime and g(xo,...,x.) a polynomial with
coefficients in Z/p of degree d satisfying
@ (@p)=1, |
(b) the homogenous component of degree d of g (xo, . . ., X.) defines a non- singular
hypersurface of projective n-space.
Then

Ag(xﬂ ..... x,) < (d - 1)n+lp(n+|)12

where A = exp2mi/p. O

Lemma 3.5. Let p be a prime and g (xo, . .., x.) a polynomial with coefficients in Z/p
of degree d satisfying ‘

(3 (d,p)=1,

(b) the polynomial obtained from g(~,, ..., x.) by setting some proper subset of the
variables equal to zero is of degree d and defines a non-singular hypersurface of the
appropriate projective space.

Then there exists a constant A, depending only on d and n such that

A BGareee%n) SAp(”H"z

(N.B. This time the sum ranges over those n + 1 tuples satisfying x,, .. ..,x,.;é 0.)

Proof. By induction on n. If n =0 then

N\ ABCD = 8@ z )\ 860

O<x¢s<p-1 1sxo=p-1

and hence by Lemma 3.4
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,\s(xo),sl 2 A5G0

Osxqg=p -1

+ ,\8(0)
l 1€xp<p -1 ' '

< (d-1)pi+1=<dpl

185

Assume the result when the number of variables is less than n + 1 and consider a
polynomial as in the hypothesis. Let & denote the set of all subsets of {xo,...,x.}.

For each m € & let

B(") - 2 Ag(xn.....xn).
0%xg,... . Xn%Sp—1
220 En
Then ‘
’\g(xn.....xn):_ 2 B(‘ﬂ').
Oxg,... . XnEp~1 wEY
Clearly

B(ﬁ) = 2 A SGooxa)

1%x0....,XnEp—~1

If card # = k >0, then by the induction hypothesis there exists a constant C,

depending only on k and d such that
|B(w)| < Cp™'"" < Cp™"2.

Let C= maX e, n=0 C,. Then

Ag(xo,....xn), < Ag(’-o ..... x,)

1€xg,...,xp=p—1 I()‘xo....,x,.sp~l

+ 2 IB(w)|<(d—1)"*'p"*"2 + @ - 1)Cp®*M?
w #B

nEYS

completing the induction. [

_ Proof of Theorem 3.2. Let

fiGxos s x)=xf+ x40 +x7
and for a fixed n + 1 tuple (x,,...,x.) and a fixed j >0 notice that

p-1 {0: if fi(x0s...,%.)#0modp
Xp) =

4 =0

p: if f; (xo,...,%n)=0mod p

where as usual A = exp2wi/p. Hence

m P-1 pm: if fi (xo,..., %) =0(p)
[13 atitomn = forallj=1,...,m
i=1=0 0: otherwise.

Thus we have
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. 1,3 P—l
'pmN = A 4 (xp -9 %p)
1<xq,..., xpip--1 j=1 =0
p-1
- ( A Uf g (Xge-e o X, )ttt f, (Xghe s xn).
1sxg,...,xnGp~1 85,02, 8m =0
~ Now the inner sum consists of p™ terms. The term corresponding to ¢, =+ - = ¢, =

0 is simply 1. The p™ — 1 remaining terms are all of the form

PRI W)

where g (xo, . . ., X1 ) is a polynomial satisfying the conditions of Lemma 3.4. Since

1:_; (p —_ 1)n+1

1€x0,...,XxpSp~1
we obtain
lpmN — (p — -:s,)wl, < (pm - I)Ap"'“”z

as required. [

4. Low dimensional e-amples

Noting that all 1 and 3 dimensional lens spaces are framable one first considers
dimension $.

Proposition 4.1. There is a framable lens space L (p; bo, by, b2) of dimension 5 iff
p#5.

Proof. For p =5 and n =2 Corollary 2.3 shows that no framable L (5; bo, b;, b2)
exists.

Forp =1mod 4, p#35, — 1is a quadratic residue and letting a> = — 1 mod p one
nas

0=25+25a>=25+(3a)+ (4a)

whence L(p;5,3a,4a) is framable.

For p=3mod4, —1 is not a quadratic residue modp. Consider the set
S ={uz+vzlu,v EZ/p ). f0€ES then

0=u’+v?
gives

-1=(@/uy
which is not possible, so 0  S. If S consists entirely of quadratic residues, then for
any quadratic residue a? a*+1*€ S so a®+1 is also a quadratic residue, which
implies every element of Z/p ™ is a quadratic residue, which is impossible. Therefore

S contains a non-quadratic residue, say —w?=u’+v% so L(p;u,ov,w)
frames. [
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Proposition 4.2. There is a framable lens space L (p; ba, by, b1, b;) of dimension 7 iff
p#3.

Proof. Since n =3 we must have p >3 by Lemma 1.3. Forp =5, p=1modn +1
so a framable mod p lens space exists by Corollary 2.2. For p > 5, Proposition 4.1
shows that there are u,v, w# mod p such that

O0=u+v2+w?
and so
0= 25u2+2Sv’+ 25w?
=Q@Bu)+@u)+Go)Y+(Gw)

and so L(p;3u,4u,5v,5w) frames. [J

Note. We are indebted to Charles Giffen for the very useful observation that
3*+4*= 5% even mod p.

Ir dimension 9 the situation becomes a great deal more complicated. In order to
have L(p; bo, by, bz, b3, bs) framable one must have p >4. For p =5, L?7'(p)=
L*(5) is framable. By Corollary 2.2 there is a framable 9 dimensional lens space for
p=1modS5.

‘Proposition 4.3. ifp =1 mod 8 and there is a v # 0 € Z/p satisfying the conditions
(@) v®*+1#0 is a quadratic residue,
(b) v*+v*+1#0 is a fourth power,
then there is a framable lens space of dimension 9 for p.
Proof. Since p =1mod 8 there is a v with v*= —1med p. Let
ul=v+1
wi=ov'+pi+1,
Then
W)+ @Pw) Uy + 02+ 1= 0*w’ - v’w’-u’+0v’+1=0
and
w)*+ (Pw) + () + o+ 1=

= -~w'-w'+u‘+o'+1
= -2*+ v+ 1)+ (i +1) +0*+1
=0

so L(p;1,vw,v’w,v%u,v) is framablc. O

For example, taking v = 1, v+ 1 =2 is a square, and v*+ v>+1=3. Thusif 3 is
a biquadratic residue, there is a framable lens space. Gauss has characterized these
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primes [3]. For p =1mod8, p can be uniquely expressed in the form p = a*+ b*
with a odd and b even, and 3 is a biquadratic residue iff b'=0 mod 3. The smallest
such primes are 193, 313, 433, 577, 601, 673, 769, 937, 1201, 1297, 1321. ,
~ One can use other values'of v also. For example when p = 89, 302 =341 and
5 3 +3+1.

Usmg aslightly sharper estxmate than that of Lemma 3.4[6;6. 1] one obtains that
a framable 9 dimensional lens space exists for p . -73. Ad hoc calculations verify
that for primes p =5 such examples exist except for

p=17 13,17 or 23,

where no such examp!es are possible.
In dimension 11 a framable lens space L{p;b,,...,bs) exists if p =1mod 6=
5+1. We also have

Proposition 4.4. If p =1mod 4, p >S5, then thereis a framable 11 dimensional lens
space for p. .

Proof. Consider first the case p = 1(8). Then there is a v with v*= -1, so
F+@Bv)y+ @) + v+ (v =
=(3+4-5)(1+v?)=0modp
and »
3+ Bu)'+ 4+ @v)* + 5v¥) + 51 =
=3-3+4'-4'"+5-5"=0mod p
so that L(p;3,3v,4,4v,5v° 5v%) frames.
For p =1 mod 4 Gegenbauer [4] proves

x‘+y*4+z*=0modp

is solvable with xyz#0modp if p#5,17,29 or 41. So for p =5mod 8 p#29,
3u,v,w €Z/p™ such that

u*+v*+w*=0modp.

Let n°= —1modp. Then one finds L(p;1,u,v,n, nu,nv) frames. For p =29
L(29;1,6,11,14,14) frames. [J]

By Lemma 1.3 no framable lens space of dimension 11 can exist for p =2,3 or 5.
Using the methods of Deligne one finds that a framable lens space of dimension 11
exists for all primes p > 41, which leaves only p = 11, 23 to complete the determina-
tion of which primes admit framable 11 dlmensmnal lens spaces. For p = 11 none
can exist and L(23;11,5,8,8,11) is framable.
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5. Composite moduli

One can obviously, generalize the problem by letting Z/m act on $***' by means
of :

TtZo, ves ,Zn) = (Ab"Zo, .e .,A""z,.)

where A = exp(27i/m) and (b, m) =1 for each i. The resulting lens space will be
denoted L(m ;bo,by,...,b.). Throughout, we write m =pip%---p2; p,<p,<
+++<p,, i 21, in it’s prime factorization.

Proposition 5.1. L(m;b,,...,b,) is framable if and only if
a) b+ by¥+---+b¥=0(modm) for 1=<j=<[n/2] and,
b) if pr=2,thenn=0,10orn=3 and r,=: 1, or if p,>2, then n <p,.

Proof. If L(m;b,,...,b.) is framable, then it’s covering space L (p;; bo,...,b.) is
also framable. Thus, if p, =2, n =0, 1 or 3, and if p, > 2, n < p,. Since condition a)
follows from the vanishing of the Pontrjagin classes, necessity is reduced to showing
that L (4; b, by, b, bs) cannot be framed, since for p, =2, r:>1 it is a covering
space.

Assuming m is even, framability requires n = 0,1 or 3, and for n =0 or 1 all are
framable. For n = 3, the mod 2 cohomology of L (m ; by, . .., bs) is the same as that
of the standard lens space, with Steenrod operations, andso L = L(m ; b,, ..., bs)is
a Spin manifold. Letting

7 =L — BSpin

be a classifying map for the tangent bundle, the first and only obstruction to lifting
to BO(8,...,»), hence framing L, is 7*(x), where x € H*(BSpin;Z)=1Z is a
generator. Since the mod 2 reduction of the first Pontrjagin class @, is w3, which
vanishes for Spin bundles, and since @, generates H*(BSpin; Z/p) for all odd p, it
follows that +2°x = @, for some s > 0. Letting y be the Hopf bundle over CP(x),
one sees that y @y is a Spin bundle and that @,(y @ v) = 2a? a € H*(CP(»);Z)
the generator. Thus +=2x = 2. -

Now, if L{m ;bo, ..., bs) frames and p, =2, r, > 1, so does L (4; bo, . . ., bs) which
is diffeomorphic to L(4;1,1,1,1)=L which has tangent bundle 4y (where y is
induced by the map into CP(3)). Now 27 is a Spin bundle and the obstruction x (2v)
generates H4L;Z)=Z, and by additivity of the obstruction, 7*(x)=2x(2y) is
twice the generator, so is nonzero. Thus if m is even and n =3, ri=1.

To prove sufficiency, if m is even, 1 =3, note that bi+:--+bi=0modm is
equivalent to vanishing of ®,. Hence, sicce r, = 1, 7*(x) € HY(L ; Z) = Z,, has order
2. Since L(2;bo,...,bs)=RP(7) frames this obstruction dies in RP(7), but
H*(L ;Z)— H(RP(7); Z) = Z, annihilates only the odd torsion. Thus 7*(x) = 0 and
L frames.
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Finally, supposmg m is odd and n < p,, the arguments in Section 1 carry over
with only trivial modification, completing the proof of sufficiency. [

“As in the prime case, there is no further theoretical difficulty in determining
whether a given lens space frames. For fixed n and m, the existence of a framing
reduces 1mmed|ately to the case Z/p for p on odd prime.

Proposition 5.2, There is a framable lens space L(m;bo,...,b.) of dimension
2n +1 for Z/m if and only if:

a) there is a framable lens space L (p:; b, ..., b?) for Z/p, for each odd p dividing
m, and

b) if p1=2, then 1.=0,1 or n=3 and r,=1, or if p,>2 then n<p,-1 or
n=p,~land r,=1.

Proof. Since m =p; - - - p¥, solvability of the system b3+ -+ -+ b% =0 (mod m) for
1=<j=[n/2] is equivalent to solvability of b3+ -+ -+ bf’.""O (modpy) for 1<j =<
[n/2] for each i by an easy application ot the Chinese Remainder Theorem.

For p: = 2, there is no difficulty in solving the system, so one need only consider
odd primes. Thus, one supposes that the system b3+ -+ b¥=0modp, 1<j <
[n/2], has a solution (b;# 0 mod p, of course) and seeks a solution mod p".

Suppose then that one has a system b3+ ---+b¥=0 (p*), s =1, 1<j <[n/2)
with bi#0 (p), and consider the system of equations obtained by replacing
bo,..., b[,./zl-l by b + tip’

(bo+ top’)zj + (bl + t1p’)2' +oe (b[nlzl—l + t[nl2]—lp’)2i + b[z,'./zl + o4 bi’ =
= b(2)'+ ERR o b:“" 2jp’[tob(2)i—l +---4 ‘["/2)_1b[2,’;72‘]_|] mod ps*l

and one then wishes to solve the system

[bgi.;. oo b:l]

p s

mod p, 1<j <[n/2]. The coefficients of t, form a Vandermonde determinant, and
hence a solution can be found provided the b’s are distinct. By reordering the b’s, if
nesded, and using the obvious induction on s, we then see that a solution will exist

provided the system b3+ -+ b¥=0 (p) has a solution with [n/2] distinct b’s.

If one supposes b, ..., b; are distinct, and a; is the number of b’s equal to b, one
has

2j[tebd 1+ -+ + t(n/Z]—lblzv';;Zl]—l] = -

ao+a,+---+ai =n+1
aobi+- -+ ab?=0 (p)

abi" A+ .-+ gbA A =) (p)

and if i <[n/2]-1, the first i +1 congruences have coefficients a nonsingular
Vandermonde determinant, giving ¢; =0 mod p for each j. Since0<q, <n +1< P
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each g; is either 0 or p. Thus one a is p and the rest are zero, so the b’s are ail equal
andn+1=p.

This shows that if there is a framable lens space of dimension 2n + 1 for Z/p there
is one for Z/p* except when n = p — 1, where none exists for Z/p?. For the latter,
some verification is required, but since all the b’s are congruent mod p (or more
precisely the b*'s) one may assume b, = 1(p). The system

p-1
2 (1+tp) =0(p?)
i=0
becomes
p-1
2pi 2 t+p =007
SO

%S 4= -10)

i=0

for each j, which has no solutions. [J
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