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Introduction

Let L be a finite-dimensional Lie algebra over a fieldk of characteristic zero and le
U(L) be its enveloping algebra with quotient division ringD(L). LetP be a commutative
Lie subalgebra ofL. In [O2] the necessary and sufficient condition onP was given in orde
for D(P) to be a maximal (commutative) subfield ofD(L). In particular, this condition is
satisfied ifP is a commutative polarization (CP) with respect to any regularf ∈ L∗ and
the converse holds ifL is ad-algebraic. The purpose of this paper is to study Lie alge
admitting these CP’s and to demonstrate their widespread occurrence.

First we have the following characterisation ifL is completely solvable:P is a CP ofL
if and only if there exists a descending chain of Lie subalgebras

L= Ln ⊃ · · · ⊃ Lj+1 ⊃ Lj ⊃ · · · ⊃ Lp = P

such that dimLj = j with increasing index, i.e.,i(Lj ) = i(Lj+1) + 1, j : p, . . . , n − 1
(Theorem 1.11). In low dimension this phenomenon appears frequently. In fact, in
by case study of indecomposable nilpotent Lie algebras of dimension at most sev
discover that Lie algebras without CP’s are rather exceptional: 1 (out of 9) in dimens
most 5; 3 (out of 22) in dimension 6 and 26 (out of 130) in dimension 7. These will be
in Section 3, in which we also prove that non-abelian Lie algebras having a nondege
invariant bilinear form do not admit any CP (Theorem 3.2).

Supposek is algebraically closed. Then for a Lie algebraL to admit a CPP has the
following advantage: inU(L) the primitive idealsI (f ), with regularf ∈ L∗, can all be
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constructed using the same polarizationP , sinceI (f ) is the kernel of the (twisted) induce
representationσ = ind∼(f |P ,L) [D, 10.3.4]. If in additionP is an ideal ofL (a so called
CP-ideal ofL) then the representationσ is irreducible (in the completely solvable caseP
even turns out to be a Vergne polarization). Also, the semi-centerSz(U(L)) of U(L) is
contained inU(P) (Corollary 4.4). Moreover, a standard technique using Grassman
shows that ifL is solvable with a CP, then it also has a CP-ideal (Theorem 4.1).

In Section 5, we look for CP-ideals in some Frobenius Lie algebras (i.e. Lie alg
of index zero [O1]). For instance, letx ∈ L be a principal nilpotent element of a sem
simple Lie algebraL with centralizerP . Then the normalizerF of P is a Frobenius Lie
algebra by a recent result of Panyushev [P2], in whichP is a CP-ideal (Theorem 5.7
Next, letA be a finite dimensional associative algebra overk with a unit. A becomes a Lie
algebrag for the Lie bracket[a, b] = ab− ba, a, b ∈ A andV = A becomes ag-module
by left multiplication. Consider the semi-direct productL= g⊕V . Then the following are
equivalent (Proposition 5.6):

(1) A is a Frobenius algebra.
(2) L is a Frobenius Lie algebra.
(3) V is a CP-ideal ofL.
(4) D(V ) is a maximal subfield ofD(L).

A similar result can be obtained ifA is a finite dimensional left symmetric algeb
(Example 5.4) or ifA is a finite dimensional simple Novikov algebra overk, char(k) =
p > 2.

CP-ideals also occur naturally in the nilradicalN of any parabolic Lie subalgebra of
simple Lie algebraL of typeAr or Cr . As a bonus we obtain an explicit formula for t
indexi(N) of N (Theorem 6.2).

Finally, Section 7 deals with some CP-preserving extensions.

1. Preliminaries and general results

Let L be a Lie algebra over a fieldk of characteristic zero with basisx1, . . . , xn. Let
f ∈ L∗ and consider the alternating bilinear formBf onL sending(x, y) into f ([x, y]).
For any subsetA of L we denote byA⊥ orAf the subspace{

x ∈L | f ([x, a])= 0 for all a ∈A}.
We also putL(f )= L⊥ andi(L)= minf∈L∗ dimL(f ), the index ofL. Note thatL(f ) is
a Lie subalgebra ofL containing the centerZ(L) of L. We recall from [D, 1.14.13] that

i(L)= dimL− rankR(L)
([xi, xj ]),

whereR(L) is the quotient field of the symmetric algebraS(L) of L. In particular,
dimL− i(L) is an even number.



A.G. Elashvili, A.I. Ooms / Journal of Algebra 264 (2003) 129–154 131

e

Furthermore,f is called regular if dimL(f )= i(L). It is well-known that the setL∗
reg

of all regular elements ofL∗ is an open dense subset ofL∗ for the Zariski topology.

Definition 1.1 [D, 1.12.7]. A Lie subalgebraP of L is called a polarization w.r.t.f ∈ L∗ if
f ([P,P ])= 0 and dimP = 1

2(dimL+ dimL(f )), in other wordsP is a maximal totally
isotropic subspace ofL (equipped withBf ). If in addition P is commutative thenf is
regular by the following observation.

Lemma 1.2 (see Theorem 14 of [O2]).Let P be a commutative Lie subalgebra ofL;
h1, . . . , hm a basis ofP and x1, . . . , xn a basis ofL. Then the following conditions ar
equivalent:

(a) dimP = 1
2(dimL+ i(L)), i.e.,P is a CP(commutative polarization) of L w.r.t. each

f ∈L∗
reg.

(b) P = Pf w.r.t. somef ∈L∗ (such anf is necessarily regular).
(c) rankR(L)([hi, xj ])= dimL− dimP .

Lemma 1.3. Let P andM be Lie subalgebras ofL such thatP ⊂ M ⊂ L. Then the
following conditions are equivalent:

(1) P is a CP ofL.
(2) P is a CP ofM andi(M)= i(L)+ dimL− dimM.

Under these conditions the following hold:

f ∈L∗
reg ⇒ f |M ∈M∗

reg.

Proof. (1)⇒ (2). Take anyf ∈ L∗
reg. ThenP = Pf . Putg = f |M ∈M∗. W.r.t. Bg we

have:

Pg = {x ∈M | g([x,P ])= 0
}= {x ∈M | f ([x,P ])= 0

}=M ∩Pf =M ∩ P = P.
HenceP is a CP ofM andg ∈M∗

reg by Lemma 1.2. In particular,

1
2

(
dimM + i(M))= dimP = 1

2

(
dimL+ i(L)).

Consequently,i(M)= i(L)+ dimL− dimM.
(2)⇒ (1). P is commutative and

dimP = 1
2

(
dimM + i(M))= 1

2

(
dimM + i(L)+ dimL− dimM

)
= 1

2

(
dimL+ i(L)).

Hence,P is a CP ofL. ✷
The following is a direct application of [D, Lemma 1.12.2].
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Lemma 1.4. Let M be a Lie subalgebra ofL of codimension one. Letf ∈ L∗ and put
g = f |M ∈M∗. Then we distinguish two cases:

(i) If L(f )⊂M thenL(f ) is a hyperplane inM(g).
(ii) If L(f ) �⊂M thenM(g)= L(f )∩M is a hyperplane inL(f ).

Remark 1.5. In [O2] we introduced the notion of the Frobenius semiradicalF(L) of a Lie
algebraL, namely

F(L)=
∑
f∈L∗

reg

L(f ).

This is a characteristic ideal ofL containing the centerZ(L) of L. It seems to play a
natural role in the study of commutative polarizations. For instance ifL admits a CPP ,
thenF(L)⊂ P and hence is commutative [O2, p. 710].

Proposition 1.6. Let M be a Lie subalgebra ofL of codimension one,f ∈ L∗ and
g = f |M ∈M∗. Then we have:

(1) eitheri(M)= i(L)+ 1 or i(M)= i(L)− 1;

(2)

{
f ∈ L∗

reg
i(M)= i(L)+ 1

⇔
{
g ∈M∗

reg
L(f )⊂M ;

(3)

{
f ∈ L∗

reg
L(f ) �⊂M ⇔

{
g ∈M∗

reg
i(M)= i(L)− 1

;

(4) i(M)= i(L)+ 1 ⇔ F(L)⊂M;
(5) Supposei(M)= i(L)+ 1 and letP be a Lie subalgebra ofM. Then

P is a CP ofL ⇔ P is a CP ofM;

(6) supposei(M)= i(L)− 1. If H is a CP(respectively a CP-ideal) ofL, thenH ∩M is
a CP(resp. a CP-ideal) ofM anddim(H ∩M)= dimH − 1.

Proof. (1) Chooseϕ ∈ L∗
reg such thatγ = ϕ|M ∈M∗

reg. SupposeL(ϕ)⊂M then

i(M)= dimM(γ )= dimL(ϕ)+ 1= i(L)+ 1

by (i) of Lemma 1.4. On the other hand, ifL(ϕ) �⊂M then

i(M)= dimM(γ )= dimL(ϕ)− 1= i(L)− 1

by (ii) of Lemma 1.4.
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(2) (⇒) SupposeL(f ) �⊂M. By (ii) of Lemma 1.4

i(M)� dimM(g)= dimL(f )− 1= i(L)− 1.

Contradiction. ThereforeL(f )⊂M. Hence,

i(M)− 1= i(L)= dimL(f )= dimM(g)− 1

by (i) of Lemma 1.4. Hencei(M)= dimM(g), i.e.,g ∈M∗
reg.

(⇐) By (i) of Lemma 1.4L(f )⊂M implies that

i(L)� dimL(f )= dimM(g)− 1= i(M)− 1.

So, i(M) � i(L) + 1. By (1), i(M) = i(L) + 1 and thereforei(L) = dimL(f ), i.e.,
f ∈L∗

reg.
(3) (⇒) L(f ) �⊂M implies that

i(M)� dimM(g)= dimL(f )− 1= i(L)− 1

by (ii) of Lemma 1.4. Hence, by (1),i(M)= i(L)−1 which forcesi(M)= dimM(g), i.e.,
g ∈M∗

reg.
(⇐) Sincei(M) �= i(L)+ 1 it follows from (2) thatL(f ) �⊂M. Hence,

i(L)− 1= i(M)= dimM(g)= dimL(f )− 1

by (ii) of Lemma 1.4. Consequently, dimL(f )= i(L), i.e.,f ∈L∗
reg.

(4) (⇒) Follows from (2).
(⇐) Choosef ∈ L∗

reg such thatg = f |M ∈M∗
reg. ThenL(f )⊂ F(L) ⊂M. Using (2)

it follows thati(M)= i(L)+ 1.
(5) Clearly,i(M)= i(L)+ dimL− dimM. Now use Lemma 1.3.
(6) Supposei(M) = i(L)− 1. Hence, by Lemma 1.3H �⊂M. Then dim(H ∩M) =

dimH − 1.H ∩M is abelian and

dim(H ∩M)= 1
2

(
dimL+ i(L))− 1= 1

2

(
dimM + i(M)).

Consequently,H ∩M is a CP (resp. a CP-ideal) ofM. ✷
Examples 1.7.

(1) Let E be a nonzero endomorphism of ann-dimensional vector spaceV over k.
Consider the Lie algebraL= kE ⊕ V with Lie brackets[E,v] = Ev and in whichV is a
commutative ideal.L is solvable andi(L)= n− 1. Clearly,i(V )= n= i(L)+ 1 andV is
a CP-ideal ofL by (5) of Proposition 1.6.

(2) LetL be a Frobenius Lie algebra (i.e.,i(L)= 0) andM a Lie subalgebra ofL of
codimension one. Theni(M)= 1 (= i(L)+ 1).

(3) LetM be a Lie subalgebra of codimension one in a non-abelian Lie algebraL with
F(L) = L. Then,i(M) = i(L) − 1 andL does not have any CP’s (by Proposition 1
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and Remark 1.5). For instance, letL be the diamond Lie algebra with basist, x, y, z and
nonvanishing brackets[t, x] = −x[t, y] = y and [x, y] = z. Clearly, i(L) = 2 andM =
[L,L] = 〈x, y, z〉 is an ideal of codimension one inL with i(M)= 1. Putf = x∗ ∈ L∗

reg
and g = f |M ∈ M∗. Then,L(f ) = 〈y, z〉 ⊂ M, i(M) = i(L) − 1 andg /∈ M∗

reg. Also,
P1 = 〈y, z〉 is a CP ofM. But there is no CPP of L such thatP ∩M = P1 (in factL does
not admit any CP sinceF(L)= L). See also Theorem 3.2 and (2) of Examples 3.3.

Definition 1.8. A Lie algebraL is called square integrable ifL(f ) = Z(L) for some
f ∈L∗, i.e.,i(L)= dimZ(L).

In the nilpotent case these Lie algebras are precisely the Lie algebras of s
connected Lie groups admitting square integrable representations [MW, pp. 450–45

Proposition 1.9. LetL be a Lie algebra having an elementu ∈ L such that its centralize
M = C(u) has codimension one inL. Then we have

(i) i(M)= i(L)+ 1.
(ii) L has a CP if and only ifM has a CP.
(iii) If L is square integrable then so isM.

Remark 1.10. Note thatC(u) is an ideal of codimension one ofL if eitheru is a noncentra
semi-invariant ofL (i.e., for a suitableλ ∈ L∗\{0}: [x,u] = λ(x)u, x ∈ L) or [u,L] is a
one dimensional subspace of the centerZ(L) (such anu always exists ifL is nilpotent and
dimZ(L)= 1< dimL). In that situation, ifL has a CP-ideal then the same holds forC(u).

Proof of the proposition. (i) Take x ∈ L\C(u) and choosef ∈ L∗ such thatf |M is
regular and such thatf ([x,u]) �= 0. ThenC(u)= uf (since both have the same dimens
andC(u) ⊂ uf ). ThenL(f ) = Lf ⊂ uf =M. It follows by (2) of Proposition 1.6 tha
i(M)= i(L)+ 1 andf ∈L∗

reg.
(ii) First, letP be a commutative Lie subalgebra ofM. Then,

P is a CP ofL if and only if P is a CP ofM

by (5) of Proposition 1.6. Next, letP be a CP ofL such thatP �⊂M. Then dim(P ∩M)=
dimP − 1 andu /∈ P ∩M (otherwise[u,P ] = 0 and thusP ⊂ C(u)=M).

Finally,P1 = (P ∩M)⊕ ku is a CP ofM since it is commutative and

dimP1 = dimP = 1
2

(
dimL+ i(L))= 1

2

(
dimM + i(M)).

(iii) Clearly, Z(L) ⊂ C(u) = M andu ∈ Z(M)\Z(L). Hence,Z(L) ⊕ ku ⊂ Z(M).
Therefore,

i(M)� dimZ(M)� dimZ(L)+ 1= i(L)+ 1.

As i(M) = i(L) + 1 we may conclude thati(M) = dimZ(M), i.e. M is square
integrable. ✷
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Theorem 1.11. Let P be a commutative Lie subalgebra of a completely solvable
algebraL. Then the following conditions are equivalent:

(1) P is a CP(resp. CP-ideal) ofL.
(2) There exists a descending series of Lie subalgebras(resp. ideals) ofL.

L= Ln ⊃ · · · ⊃ Lj+1 ⊃ Lj ⊃ · · · ⊃ Lp = P
dimLj = j , with increasing index(i.e., i(Lj )= i(Lj+1)+ 1).

Proof. LetP be a Lie subalgebra (resp. ideal) ofL. P (resp.L) acts on the quotient spac
L/P . Application of Lie’s theorem to this action shows the existence of Lie subalge
(resp. ideals)Lj of L such thatL= Ln ⊃ · · · ⊃ Lp = P with dimLj = j .
(1)⇒ (2). Now supposeP is a CP ofL. Then, by Lemma 1.3,P is also a CP for eac

Lj and

i(Lj )= i(L)+ (n− j)= i(L)+
(
n− (j + 1)

)+ 1= i(Lj+1)+ 1.

(2)⇒ (1) By induction onj we show thatP is a CP ofLj . This is trivial for j = p.
Next, letj � p+ 1. ThenP is a CP ofLj−1 and also ofLj sincei(Lj−1)= i(Lj )+ 1 by
(5) of Proposition 1.6. ✷
Corollary 1.12. Let L be a completely solvable Frobenius Lie algebra of dimension2n
having a CPP . ThenL can be obtained from then-dimensional abelian Lie algebraP
with n successive extensions as described in Theorem1.11.

Lemma 1.13. Let P be a CP(resp. a CP-ideal) of a Lie algebraL, A an ideal ofL
contained inP andf ∈ L∗

reg such thatf (A)= 0. ThenP/A is a CP(resp. a CP-ideal) of
the Lie algebraL/A and

i(L/A)= i(L)− dimA.

Proof. Let ϕ :L→ L/A be the quotient homomorphism. Asf (A) = 0 there is ag ∈
(L/A)∗ such thatg ◦ ϕ = f . Clearly,P/A is an abelian Lie subalgebra (resp. ideal)
L/A. It suffices to show that(P/A)g = P/A.

(P/A)g = {
ϕ(x) ∈ L/A | g([ϕ(x),ϕ(P )])= 0, x ∈ L}

= ϕ
({
x ∈L | f ([x,P ])= 0

})= ϕ(Pf )= ϕ(P )= P/A
asPf = P . So, by Lemma 1.2P/A is a CP (resp. CP-ideal) ofL/A andg ∈ (L/A)∗reg.

Therefore, dimP/A= 1
2(dimL/A+ i(L/A)) and

i(L/A) = 2 dimP/A− dimL/A= 2(dimP − dimA)− (dimL− dimA)

= (2 dimP − dimL)− dimA= i(L)− dimA. ✷
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2. CP’s in square integrable nilpotent Lie algebras

The following lemma is easy to verify.

Lemma 2.1. SupposeL is a direct product of Lie algebras; L = L1 × L2. Then we have
the following:

(1) i(L)= i(L1)+ i(L2) andZ(L)=Z(L1)×Z(L2).
(2) L is square integrable if and only if the same holds forL1 andL2.
(3) L has a CP(resp. CP-ideal) if and only if the same holds forL1 andL2.

Proposition 2.2. LetL be a square integrable nilpotent Lie algebra overC, of dimension
n at most seven. ThenL admits a CP-ideal.

Proof. By Lemma 2.1 we may assume thatL is indecomposable. In particular, 1�
dimZ(L)= i(L) < dimL.

We now distinguish the following cases:
(1) i(L)= 1. Thenn is 3, 5, or 7. Letm be the maximum dimension of all abelian ide

of L. Then by [Mo, p. 161] and [O2, p. 706] we have the following inequalities:

1
2

(√
8n+ 1− 1

)
�m� 1

2

(
dimL+ i(L))= 1

2(n+ 1).

This implies thatm= 1
2(dimL+ i(L)) in casen= 3,5, or 7, showing the existence of

CP-ideal inL.
(2) i(L)= 2. Thenn = 6 (the casen = 4 does not occur sinceL is indecomposable)

We select from Morozov’s classification of 6-dimensional nilpotent Lie algebras thos
are indecomposable, square integrable and of index 2; in each{e1, . . . , e6} is a basis ofL.
The numbering is Morozov’s [Mo, p. 168].

4. [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = e6,

5. [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e5, [e2, e3] = γ e6, γ �= 0,

6. [e1, e2] = e6, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5,

7. [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6,

8. [e1, e2] = e3 + e5, [e1, e3] = e4, [e2, e5] = e6,

9. [e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e2, e3] = e6,

10. [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e5,

[e2, e3] = γ e6, γ �= 0,

11. [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6.

In each one of these,P = 〈e3, e4, e5, e6〉 is a CP-ideal, sinceP is an abelian ideal an
dimP = 4= 1(dimL+ i(L)).
2
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of
(3) i(L)= 3. Thenn= 7 (the casen= 5 does not occur sinceL is indecomposable).
We have the following possibilities according to Seeley’s classification of 7-dimens

nilpotent Lie algebras. We maintain the same notation as in [See]. In part
{a, b, c, d, e, f, g} is a basis ofL. In each case we exhibit a commutative idealP of
dimension 5(= 1

2(dimL+ i(L))).
In the following 3 Lie algebras we takeP = 〈a, d, e, f, g〉.

3 7B : [a, b] = e, [b, c] = f, [c, d] = g,
3 7C : [a, b] = e, [b, c] = f, [c, d] = e, [b, d] = g,
3 7D: [a, b] = e, [b, d] = g, [c, d] = e, [a, c] = f.

In the following 3 we takeP = 〈c, d, e, f, g〉.

3,5,7A: [a, b] = c, [a, c] = e, [a, d] = g, [b, d] = f,
3,5,7B : [a, b] = c, [a, c] = e, [a, d] = g, [b, c] = f,
3,5,7C: [a, b] = c, [a, c] = e, [a, d] = g, [b, c] = f, [b, d] = e. ✷

Remark 2.3. Among the Lie algebras described in Proposition 2.2 there is one whi
characteristically nilpotent, namely 1,2,4,5,7N with basis{a, b, c, d, e, f, g} and nonzero
brackets:[a, b] = c, [a, c] = d , [a, d] = g, [a, e] = f , [a,f ] = g, [b, c] = e, [b, d] = f ,
[b, e] = ξg, [b,f ] = g, [c, d] = g, [c, e] = −g with ξ �= 0,1 [See, p. 493]. In this case tak
P = 〈d, e, f, g〉.

3. Lie algebras without CP’S

First we want to show that the restriction on the dimension in Proposition 2.2 cann
removed.

Examples 3.1.

(i) LetL be the 8-dimensional Lie algebra overk with basis{e1, . . . , e8} and nonvanishing
brackets:[e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7, [e1, e5] = −e8, [e2, e3] = e8,
[e2, e4] = e6, [e2, e6] = −e7, [e3, e4] = −e5, [e3, e5] = −e7, [e4, e6] = −e8.
L is characteristically nilpotent [DL].L is also square integrable of index 2, but it do
not admit a CP-ideal (and not any CP’s either, see Section 4).

Proof. SupposeL has a CP-idealP . So,P is a 5-dimensional abelian ideal ofL. Now
take the linear functionalf = e∗7 ∈ L∗, which is regular. PutA= ke8 ⊂Z(L). This is
a 1-dimensional ideal ofL contained inP andf (A)= 0. By Lemma 1.13Q= P/A
is a CP-ideal ofL/A. Clearly,L/A is a 7-dimensional nilpotent Lie algebra of index
with basisx1 = e1 + A, . . . , x7 = e7 + A. So,Q is a 4-dimensional abelian ideal
L/A. One verifies that there areλ,µ ∈ k, not both zero such thatQ is generated
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by λx1 + µx4, x5, x6, x7. ThenP is generated byλe1 + µe4, e5, e6, e7, e8. But this
contradicts the fact thatP is commutative, since

[λe1 +µe4, e5] = −λe8 and [λe1 +µe4, e6] = −µe8.

(ii) Let V be a vector space overk with basise1, . . . , en; n � 2. Take the vector spac∧2
V with basiseij = ei ∧ ej , i < j . Next, consider the Lie algebra

L= V ⊕
2∧
V

with nonvanishing brackets[ei, ej ] = eij , i < j . Clearly,[L,L] =∧2
V = Z(L). So,

L is 2-step nilpotent of dimensionn+ 1
2n(n− 1)= 1

2n(n+ 1). Let x, y ∈ V . Then it
is easy to see that

[x, y] = 0 ⇔ x, y are linearly dependent overk. (∗)

Next, we taken to be even. Then, rankR(L)([ei, ej ])= n. This implies that

i(L)= dimL− n= 1
2n(n− 1)= dimZ(L),

i.e.,L is square integrable.

Finally, taken = 4. Then dimL = 10, dimZ(L) = i(L) = 6 and 1
2(dimL + i(L)) = 8.

But, because of(∗), L has no 8-dimensional abelian Lie subalgebra containingZ(L), i.e.,
L has no CP’s. The same holds for all evenn� 4, using a similar argument.

Theorem 3.2. LetL be a Lie algebra having a nondegenerate, invariant bilinear formb.
ThenF(L)= L. In particular,L does not admit a CP unlessL is abelian.

Proof. Take y ∈ L and consider the mapϕy sending eachx ∈ L into b(x, y). Clearly,
ϕy ∈ L∗ and the mapϕ :L→ L∗ sendingy into ϕy is an isomorphism ofL-modules.
Consequently,y andϕy have the same stabilizer inL, i.e.,C(y)= L(ϕy).

Next, putΩ = ϕ−1(L∗
reg). Then,

F(L)=
∑
f∈L∗

reg

L(f )=
∑
y∈Ω

L(ϕy)=
∑
y∈Ω

C(y)

Clearly,F(L) containsΩ , which is an open dense subset ofL for the Zariski topology
sinceϕ is a linear isomorphism. Consequently,F(L)= L. ✷
Examples 3.3.

(1) L semi-simple (takeb to be the Killing form ofL).
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(2) The diamond Lie algebra with basist, x, y, z and nonvanishing brackets[t, x] = −x,
[t, y] = y and[x, y] = z. Let b be the symmetric bilinear form with nonzero entr
b(t, z)= 1 andb(x, y)=−1.

(3) Let g5 be the 5-dimensional nilpotent Lie algebra overk with basisx1, . . . , x5 and
nonvanishing brackets[x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5.
Let b be the symmetric bilinear form with nonzero entries:

b(x1, x5)= b(x3, x3)= 1 and b(x2, x4)=−1.

(4) Let g6 be the 6-dimensional 2-step nilpotent Lie algebra with basisx1, . . . , x6 and
nonvanishing brackets[x1, x2] = x6, [x1, x3] = x4, [x2, x3] = x5.
Let b be the symmetric bilinear form with nonzero entries:

b(x1, x5)= b(x3, x6)= 1 and b(x2, x4)=−1

(see [B1, p. 133]).
(5) Consider the semi-direct productL = sl(2, k)⊕W2, whereW2 is the 3-dimensiona

irreducible sl(2, k)-module.L also admits a nondegenerate, invariant, symme
bilinear form.

Proposition 3.4. Among all the different types of indecomposable nilpotent Lie alge
overC of dimensionn� 7, only the following30 Lie algebras do not have a CP:

(1) n= 5: g5 (see(3) of Examples3.3).
2) n = 6: From Morozov’s classification[Mo, p. 168] the Lie algebras3(∼= g6), 21

and22.
(3) n = 7: From Seeley’s classification[See]: 2, 5, 7K ; 2, 5, 7L; 2, 4, 7D ; 2, 4, 7E ;

2, 4, 7G; 2, 4, 7H ; 2, 4, 7J ; 2, 4, 7K ; 2, 4, 7Q; 2, 4, 7R; 2, 3, 5, 7C ; 2, 3, 5, 7D ;
2, 3, 4, 5, 7B ; 2, 3, 4, 5, 7C ; 2, 3, 4, 5, 7D ; 2, 3, 4, 5, 7F ; 2, 3, 4, 5, 7G;
1, 3, 5, 7S, ξ = 1; 1, 3, 4, 5, 7H ; 1, 2, 4, 5, 7C ; 1, 2, 4, 5, 7F ; 1, 2, 4, 5, 7H ;
1, 2, 4, 5, 7K ; 1, 2, 4, 5, 7L; 1, 2, 4, 5, 7N, ξ = 1; 1, 2, 3, 4, 5, 7I , ξ = 0.
Note that the infinite families fail to have a CP only for exceptional values o
parameterξ .

Proof. This is done case by case, considering only the ones that are not square int
(Proposition 2.2). Usually, CP’s are easy to spot by looking at the multiplication tabl
prove that a Lie algebraL has no CP’s is more difficult however. This can be achie
by using Proposition 1.9 or by showing thatF(L) is not commutative. For instanc
takeL = 1, 2, 4, 5, 7N , ξ = 1. See Remark 2.3 for its Lie brackets. One verifies
F(L)= 〈a − b, c, d, e, f, g〉, which is not commutative. ✷
Remark 3.5. Having a CP is not preserved under degeneration (for a definition we re
[GO1] or [GO2]). Indeed,g5, which has no CP’s (see 3 of Examples 3.3), is a degener
of the Lie algebrah5 with basisx1, . . . , x5 over C and nonzero brackets[x1, x2] = x3,
[x1, x3] = x4, [x1, x4] = x5 and[x2, x3] = x5 for which 〈x3, x4, x5〉 is a CP. On the othe
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hand, the Lie algebraj5 with the same basis and nonzero brackets[x1, x2] = x3 and
[x1, x3] = x4 admits a CP (namely〈x2, x3, x4, x5〉) and is a degeneration ofg5 [GO1,
p. 323].

4. CP-ideals

These are by far the most interesting CP’s. The following shows that they occur as
as ordinary CP’s, at least in the solvable case.

Theorem 4.1. Let L be solvable andk algebraically closed. Letm be the maximum
dimension of all abelian ideals ofL. Clearly,m � 1

2(dimL + i(L)) [O2, p. 706]. Then
the following are equivalent:

(1) L admits a CP.
(2) L admits a CP-ideal.
(3) m= 1

2(dimL+ i(L)).

Proof. It suffices to show that(1)⇒ (2), since(2)⇒ (1) and (2)⇔ (3) are clear. Let
G be the adjoint algebraic group ofL, i.e., the smallest algebraic subgroup of AuL
such thatL(G) contains adL [D, 1.1.14]. Clearly, adL and hence its algebraic hullL(G)
are solvable (since they have the same derived algebra [Ch, p. 173], which is nilp
ThereforeG is a solvable connected group. Next putp = 1

2(dimL+ i(L)). Then the se
C of all CP’s is a nonempty (by assumption) closed subset of the Grassmannian Gr(L,p),
which is an irreducible and complete algebraic variety [D, 1.11.8-9]. HenceC is also
complete. NowG acts morphically onC, mapping each CPH ong(H), g ∈G. By Borel’s
theorem,G has a fixed pointP in C [Bo, p. 242]. So,g(P )= P for all g ∈G. In particular,
adx(P )⊂ P for all x ∈L. Consequently,P is a CP-ideal ofL. ✷
Remark 4.2. (a) The numberm is an important characteristic of a Lie algebra, often u
in classifications.

(b) It is now easy to see that the 8-dimensional Lie algebra (i) of 3.1 has no CP
over to the algebraic closure ofk and use Theorem 4.1).

Theorem 4.3. LetP be an ideal of a Lie algebraL and letP be a polarization ofL with
respect to somef ∈L∗. Then we have

(1) If f ∈ L∗
reg then P is solvable(in fact P ′′ = 0). If in addition L is Frobenius or

nilpotent of index one, thenP is a CP-ideal ofL.
(2) If k is algebraically closed andf ∈L∗

reg, then the induced representationind(f |P ,L)
is simple.

(3) If L is completely solvable thenP is a Vergne polarization. In particular,ind(f |P ,L)
is absolutely simple.

Proof.
(1) Takex ∈L andy, y ′ ∈ P , then
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x, [y, y ′]])= f ([[x, y], y ′])+ f ([y, [x, y ′]])= 0 sinceP is an ideal

andf ([P,P ])= 0.
Hence,[y, y ′] ∈L(f ). Therefore,P ′ = [P,P ] ⊂ L(f ). This implies thatP ′′ = 0 since

L(f ) is abelian by [D, 1.11.7]. Now, supposeL is Frobenius, i.e.,i(L)= 0. ThenL(f )= 0
which forces[P,P ] = 0. On the other hand, ifL is nilpotent of index 1, then dimL(f )= 1.
We may assume thatf �= 0. Clearly,[P,P ] �= L(f ) sincef ([P,P ])= 0 andf (L(f )) �= 0
[BC, p. 89]. So, we conclude that[P,P ] = 0.

(2) By [RV, p. 395] or [D, 10.5.7] there exists a solvable polarizationH of L w.r.t. f
such thatH ∩P is a solvable polarization ofP w.r.t.f |P and such that the twisted induc
representation ind∼(f |H ,L) is simple. First we observe that

dimH = 1
2

(
dimL+ dimL(f )

)= dimP. (•)

Similarly,

dim(H ∩ P)= 1
2

(
dimP + dimP(f |P )

)= dimP

sinceP(f |P ) = {x ∈ P | f ([x,P ]) = 0} = P . It follows thatH ∩ P = P , i.e.,P ⊂ H .
Hence, by(•), we see thatP =H .

Consequently, ind∼(f |P ,L) is simple. Finally, ind∼(f |P ,L)= ind(f |P ,L) becauseP
is an ideal ofL [D, 5.2.1].

(3)L being completely solvable, we can find a flag of ideals ofL:

L= Ln ⊃ · · · ⊃ Lp ⊃ · · · ⊃ L1 ⊃ L0 = (0)

such thatLp = P wherep = dimP . Putfi = f |Li andPj =∑i�j Li(fi). ThenPn is the
so called Vergne polarization w.r.t. this flag andf ∈L∗ [BGR, 9.4]. We claim thatP = Pn.
Clearly,

Li(fi)=
{
x ∈ Li | f

([x,Li])= 0
}= Li ∩L⊥

i .

In particular,Lp(fp) = Lp ∩ L⊥
p = P ∩ P⊥ = P sinceP = P⊥ w.r.t. f ∈ L∗. This

implies thatP ⊂ Pn. On the other hand considerLj (fj ). If j � p, thenLj (fj ) ⊂ Lj ⊂
Lp = P . If j > p, thenP = Lp ⊂ Lj implies thatLj (fj ) = Lj ∩ L⊥

j ⊂ L⊥
j ⊂ P⊥ = P .

Consequently,Pn =∑n
j=1Lj (fj )⊂ P . ✷

Corollary 4.4. LetP be a CP-ideal of a Lie algebraL and take anyf ∈ L∗
reg. Then,

(1) If k is algebraically closed, thenind(f |P ,L) is simple.
(2) If L is completely solvable, thenP is a Vergne polarization w.r.t.f and any flag of

ideals containingP . In particular, ind(f |P ,L) is absolutely simple.
(3) (a) Sz(U(L)) ⊂ U(P) andSz(D(L)) ⊂D(P) whereSz(U(L)) =⊕

λ U(L)λ is the
semi-center ofU(L). Similarly forSz(D(L)). This generalizes[D, 6.1.6].

(b) Put∧(L)= {λ ∈ L∗ |U(L)λ �= 0} andL∧ =⋂λ∈∧(L) kerλ. Then,P ⊂ L∧.
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Proof. (1) and (2) follow directly from Theorem 4.3.
(3) Letu ∈ U(L)λ be any semi-invariant with weightλ ∈ ∧(L), i.e.,[x,u] = λ(x)u for

all x ∈ L.
Now, takex ∈ P . Thenadx(L) ⊂ P and(adx)2 = 0 sinceP is a commutative idea

of L. So,adx is nilpotent. This implies thatλ(x)= 0 and[x,u] = 0. Consequently,x ∈L∧
which shows (b) and alsou ∈ C(U(P))=U(P). Therefore,Sz(U(L))⊂U(P). Similarly
for Sz(D(L))⊂D(P) (sinceC(D(P))=D(P)). ✷
Remark 4.5. The previous corollary does not hold for arbitrary CP’s ofL. For example
let L be the 2-dimensional Lie algebra over an algebraically closed fieldk with basisx, y
and nonzero bracket[x, y] = y.L is Frobenius andf ∈L∗ with f (x)= 0 andf (y)= 1 is
regular. Clearly,P = kx is a CP ofL w.r.t.f ∈L∗. But ind∼(f |P ,L) is not simple [BGR,
p. 95]. Also,y is a semi-invariant ofL buty /∈U(P).

The following, which we recall from [O2, p. 708], describes how CP-ideals natu
arise in certain semi-direct products.

Proposition 4.6. Let g be a Lie algebra with basis{x1, . . . , xm} and letV be ag-module
with basis{v1, . . . , vn} with dimg � dimV . For eachf ∈ V ∗ we put

g(f )= {x ∈ g | f (xv)= 0 for all v ∈ V }
the stabilizer off . Consider the semi-direct productL = g ⊕ V in which [x, v] = xv,
x ∈ g, v ∈ V and in whichV is an abelian ideal. Then the following are equivalent:

(1) D(V ) (=R(V )) is a maximal subfield ofD(L).
(2) V is a CP-ideal ofL.
(3) i(L)= dimV − dimg.
(4) rankR(V )(eivj )= dimg.
(5) g(f )= 0 for somef ∈ V ∗.

Remark 4.7. If k is algebraically closed,g a simple Lie algebra, acting irreducibly onV ,
then the conditions of the proposition are satisfied if and only if dimg < dimV [AVE,
p. 196].

The following shows that if a Lie algebraL admits a CP-ideal then its structure com
close to that of the semi-direct product considered in Proposition 4.6.

Corollary 4.8. LetV be a commutative ideal ofL. Clearly, the Lie algebrag = L/V acts
onV . Consider the semi-direct productL1 = g⊕ V . Then,

V is a CP ofL ⇔ V is a CP ofL1.

In that case,i(L1)= i(L).
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Proof. Let g ∈L∗ and putf = g|V ∈ V ∗. Then, we claim thatg(f )= V g/V . Indeed,

x̄ = x + V ∈ g(f ) ⇔ f ([x̄, V ])= 0

⇔ f ([x,V ])= 0

⇔ g([x,V ])= 0

⇔ x ∈ V g ⇔ x̄ ∈ V g/V .

We now proceed with the proof
(⇒) dimV = 1

2(dimL+ i(L)). Also,V g = V for someg ∈L∗ by Lemma 1.2. Hence
g(f )= 0. By Proposition 4.6V is a CP ofL1 and

i(L1)= dimV − dimg= dimV − (dimL− dimV )= 2 dimV − dimL= i(L).

(⇐) By Proposition 4.6,g(f ) = 0 for somef ∈ V ∗. Next, chooseg ∈ L∗ such that
f = g|V . Then,V g/V = g(f )= 0. So,V g = V which by Lemma 1.2 implies thatV is a
CP ofL. ✷

5. CP-ideals in certain Frobenius Lie algebras

LetL be a Frobenius Lie algebra with a CP-idealP . Take anyf ∈ L∗
reg and assume tha

k is algebraically closed. ThenI (f )= 0 by [O1, p. 42]. So, by Corollary 4.4 ind(f |P ,L)
is a faithful irreducible representation ofU(L). Next, letx1, . . . , xm, y1, . . . , ym be a basis
of L such thaty1, . . . , ym is a basis ofP . Then det([xi, yj ]) ∈ S(P ) is a nonzero semi
invariant under the action of AutL [O1, p. 28]. It is also known that Frobenius Lie algeb
give rise to constant solutions for the classical Yang–Baxter equation [BD].

The following is a special case of Proposition 4.6.

Corollary 5.1. Letg be a Lie algebra andV a g-module such thatdimg= dimV . Consider
the semi-direct productL= g⊕ V . Then the following are equivalent:

(1) R(V ) is a maximal subfield ofD(L).
(2) V is a CP-ideal ofL.
(3) L is Frobenius.
(4) g(f )= 0 for somef ∈ V ∗.

Example 5.2. Let g be Frobenius and letV = g be the adjoint representation.

Example 5.3. The above condition is satisfied ifg is reductive over an algebraical
closed fieldk andV ∗ is a prehomogeneousg-module (i.e.V ∗ has an openg-orbit) with
dimg= dimV . These modules have been studied extensively by the Japanese scho
1977 [SK,KKTI].
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Example 5.4. Let A be a left-symmetric algebra (LSA), i.e., a finite dimensional ve
space provided with a bilinear productA×A→A, (a, b)→ ab which satisfies

a(bc)− (ab)c= b(ac)− (ba)c (∗)

for all a, b, c ∈ A. There is an extensive literature on LSA’s, see for example [H,S
Vinberg used LSA’s to classify convex homogeneous cones [V]. A left-symmetric alg
is Lie-admissable. This means thatA becomes a Lie algebra, which we denote byg, for
the Lie bracket[a, b] = ab− ba, a, b ∈A. Using(∗) we observe that

[a, b]c= (ab)c− (ba)c= a(bc)− b(ac).

Therefore,A becomes ag-module, which we denote byV , for the bilinear map

g× V → V, (x, v)→ xv.

Now, supposeA contains a nonzero elementf ∈A which is not a right zero divisor ofA.
LetV ∗ be the dual module ofV . Identifying the moduleV ∗∗ with V , we may considerf to
be an element of(V ∗)∗. Clearly, the stabilizerg(f )= {x ∈ g | xf = 0} = 0 by assumption

Finally, using Corollary 5.1 we may conclude that the semi-direct productL= g⊕ V ∗
is a Frobenius Lie algebra in whichV ∗ is a CP-ideal.

Remark 5.5. In characteristicp > 2 a similar result can be obtained ifA is a finite
dimensional simple Novikov algebra and whereV is a certain irreducibleA-module.
We recall that a nonassociativek-algebra is said to be a left Novikov algebra ifA is
left symmetric, satisfying the identity(ab)c = (ac)b for all a, b, c ∈ A. In characteristic
zero E. Zelmanov showed that finite dimensional simple Novikov algebras are al
dimensional [Z]. Recently simple Novikov algebras and their irreducible modules
been determined by Osborn and Xu [Os,X].

We now focus on a special case, which provides an interesting link between Fro
algebras and Frobenius Lie algebras.

Proposition 5.6. Let A be a finite dimensional associative algebra overk with a unit
element. A becomes a Lie algebrag for the Lie bracket[a, b] = ab − ba, a, b ∈ A,
andV = A becomes ag-module by left multiplication. Consider the semi-direct prod
L= g⊕ V . Then the following conditions are equivalent:

(1) A is a Frobenius algebra.
(2) L is a Frobenius Lie algebra.
(3) V is a CP-ideal ofL.
(4) R(V ) is a maximal subfield ofD(L).
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Proof. In view of Corollary 5.1 it suffices to show that (1) is equivalent withg(f )= 0 for
somef ∈ V ∗. So, takef ∈ V ∗. Then

g(f )= {a ∈A | f (ab)= 0 for all b ∈A}.
Clearly, g(f ) = 0 if and only if the bilinear mapA × A → k, (a, b) → f (ab) is
nondegenerate, i.e.,A is a Frobenius algebra [CR, Theorem 61.3].✷

Finally, we devote our attention to certain Frobenius Lie subalgebras of a semi-s
Lie algebra.

Theorem 5.7. LetL be a semi-simple Lie algebra of rankr overk, k algebraically closed
and letx be a principal nilpotent element ofL (i.e. the centralizerC(x) of x in L has
dimensionr). Then the normalizerF of C(x) in L is a solvable Frobenius Lie subalgeb
ofL in whichC(x) is a CP-ideal.

Proof. It is well known thatC(x) is abelian [K]. Clearly,C(x) is an ideal ofF . In 1991
R. Brylinski and B. Kostant showed that dimF = 2r and thatF/C(x), and hence alsoF , is
solvable [BK]. Recently, D. Panyushev proved thatF is Frobenius [P2, Theorem 5.5].✷

6. CP-ideals in the nilradical of parabolic Lie subalgebras of a simple Lie algebra

Theorem 6.1. LetB be a Borel subalgebra of a simple Lie algebraL overk, k algebrai-
cally closed, of rankr and letN be the nilradical ofB. Then,

(1) N admits a CP⇔ L is of typeAr or Cr . In these2 casesN has a CP-idealP , which
is an ideal ofB.

(2) P is also a CP-ideal ofB in caseL is of typeCr , r � 1.

Proof. The information oni(N), i(B) in Table 1 is obtained from [E1,E2]. Also, we kno
thati(N)+ i(B)= r [P2, 1.5].

The idea is to compare the maximum dimensionm of abelian Lie subalgebras ofN ,
computed by Malcev [Ma, p. 216] with the number1

2(dimN + i(N)). ThenN contains a
CP if and only if these numbers coincide. According to the table this occurs preciselL

is of typeAr orCr .
Furthermore, we know from [PR, Table 1] that in both types (Ar orCr ) B has a maxima

abelian idealP of dimension1
2(dimN + i(N)). ClearlyP ⊂N . ThereforeP is a CP-ideal

of N . This can also be deduced from Theorem 4.1.
(2) Using Lemma 1.3 we see thatP is also a CP-ideal ofB if and only if

i(N)= i(B)+ dimB − dimN ⇔ i(N)− i(B)= r
⇔ i(B)= 0 (sincei(N)+ i(B)= r).

and this happens whenL is of typeA1(= C1) orCr , r � 2. ✷
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Table 1

dimN i(N) i(B) 1
2 (dimN + i(N)) m

A2t t � 1 t (2t + 1) t t t (t + 1) t (t + 1)
A2t+1 t � 0 (t + 1)(2t + 1) t + 1 t (t + 1)2 (t + 1)2

B3 9 3 0 6 5
Br r � 4 r2 r 0 1

2r(r + 1) 1
2r(r − 1)+ 1

Cr r � 2 r2 r 0 1
2r(r + 1) 1

2r(r + 1)

D2t t � 2 2t (2t − 1) 2t 0 2t2 t (2t − 1)
D2t+1 t � 2 2t (2t + 1) 2t 1 2t (t + 1) t (2t + 1)

E6 36 4 2 20 16

E7 63 7 0 35 27

E8 120 8 0 64 36

F4 24 4 0 14 9

G2 6 2 0 4 3

Theorem 6.2. LetL be a simple Lie algebra overk, k algebraically closed, of typeAr or
Cr , π a parabolic Lie subalgebra ofL. Then the nilradicalN of π admits a CP-idealP .
Furthermore,

(1) supposeL is of typeAr and π of type (p1, . . . , pm). Put n = r + 1 and p =
p1 + · · · + p;, 1 � ;�m, such that|∑;

i=1pi − n
2 | is as small as possible. Then,

i(N)= 2p(n− p)− 1

2

(
n2 −

m∑
i=1

p2
i

)
;

(2) supposeL is of typeCr , r � 2, andπ of type(p1, . . . , pm). Put;= [m/2], then

i(N)= 1

2

;∑
i=1

pi(pi + 1).

Remark 6.3.

(a) The first formula is new. A recursive formula fori(N) was already established in [E1
A different proof for the second formula can also be found in [E1].

(b) (Made by the referee) A. Joseph already gave a formula fori(N) in an arbitrary simple
Lie algebra, using a maximal subset of strongly orthogonal positive roots [J, (
Proposition 2.6]. Being applied toAr orCr , Joseph’s formula gives the above expli
expressions.

Proof. (1) LetL= sl(V )whereV is ann-dimensional vector space overk. By [B2, p. 187]
we can find a flagF of subspaces ofV :

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fm = V, Fi−1 � Fi
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such thatπ (respectively its nilradicalN ) consists of all endomorphismsx ∈ L such that
xFi ⊂ Fi (resp.xFi ⊂ Fi−1) for 1 � i �m. Putpi = dim(Fi/Fi−1) thenπ is said to be of
type (p1, . . . , pm). Next, choose a basise1, . . . , en of V compatible with the flagF (i.e.,
e1, . . . , ep1 ∈ F1\F0, etc.). Then,N can be considered to be the Lie algebra of matrice
the form as shown in Fig. 1.

We may assume, as is the case in Fig. 1, thatp � n/2 (∗). In particular,p+p;+1> n/2.
As usual we denote byEij then×nmatrix whoseij th entry is 1 and other entries are ze
Let P be the subspace ofN generated by allEij with 1 � i � p; p + 1 � j � n. So,P
consists of matrices of the form

( 0 M
0 0

)
whereM is anyp × (n− p) matrix. It is easy to

see thatP is an abelian ideal ofN . We claim thatP is a CP ofN . Let f ∈N∗ be defined
by f (Ep,n−p+1) = · · · = f (E1n) = 1 and zero on all otherEij . We want to show tha
Pf = P . Therefore we takex ∈ Pf . We write

x =
∑
i<j

λijEij + y

whereEij ∈N\P , λij ∈ k andy ∈ P . We need to demonstrate that eachλi0j0 = 0. There
are two cases to distinguish:

(i) j0 � p. Theni0 < j0 � p ands = (n+ 1)− i0> (n+ 1)− p > p. Hence,Ej0s ∈ P
and

0 = f
([x,Ej0s])=∑λij f

([Eij ,Ej0s ])+ f ([y,Ej0s])

i<j
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s

=
∑
i<j

λij f (δjj0Eis − δsiEj0j )

=
∑
i<j0

λij0f (Eis)−
∑
j>s

λsjf (Ej0j )= λi0j0

(f (Ej0j )= 0 sincej0 + j > i0 + s = n+ 1).
(ii) i0>p andj0>p1 + · · · + p; + p;+1> n/2. By definition ofp:

(p1 + · · · + p; + p;+1)− n

2
� n

2
− p.

Hence

j0 � (p1 + · · · +p; + p;+1)+ 1 � n− p+ 1.

So,t = (n+ 1)− j0 � p < i0 andEti0 ∈ P . Therefore

0 = f
([Eti0, x])=∑

i<j

λij f
([Eti0,Eij ])+ f ([Eti0, y])

=
∑
i<j

λij f (δi0iEtj − δjtEii0)

=
∑
j>i0

λi0j f (Etj )−
∑
i<t

λit f (Eii0)= λi0j0

(f (Eii0)= 0 sincei + i0< t + j0 = n+ 1).

In both cases:x = y ∈ P . So,Pf ⊂ P . Consequently,Pf = P as the other inclusion i
obvious by the commutativity ofP .

By Lemma 1.2 we may conclude thatP is a CP ofN andf ∈ N∗
reg. Finally, from

dimP = 1
2(dimN + i(N)) we obtain:

i(N)= 2 dimP − dimN = 2p(n− p)− 1

2

(
n2 −

m∑
i=1

p2
i

)
.

(2) LetL= sp(V ) whereV is a vector space overk of dimensionn= 2r provided with
a nondegenerate alternating bilinear formϕ :V × V → k. There exists an isotropic flag

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fm = V,

i.e.,F⊥
i = Fm−i for 0 � i � m such thatπ (respectively its nilradicalN ) consists of all

x ∈ L such thatxFi ⊂ Fi (resp.xFi ⊂ Fi−1) for 1 � i �m. Putpi = dim(Fi/Fi−1) then
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is
Fig. 2.

it follows thatpi = pm+1−i for 1 � i �m. Following [B2, p. 200] we can find a Witt bas
of V :

e1, . . . , er , e−r , . . . , e−1

compatible with the given flag and such thatϕ(ei, e−j )= δij .
We now identify eachx ∈ L with its matrix with respect to this basis, i.e.,

x =
(
A B

C D

)
whereA,B,C,D are r × r matrices such thatB = B̂, C = Ĉ, D = −Â, where the
transformation̂ is the transpose relative to the second diagonal. Ifx ∈ N then x is of
the form as shown in Fig. 2.

If m= 2;+ 1 then we putr1 = 1
2p;+1 (p;+1 is even since

∑m
i=1pi = n= 2r andpi =

pm+1−i ). If m= 2; then we putr1 = 0. π is determined by the sequence(p1, . . . , p;; r1).
Note thatr =∑;

i=1pi+ r1. Next, letP be the subspace ofN of matrices of the form
( 0 B

0 0

)
whereB is anr × r matrix such thatB = B̂ and with zeror1 × r1 submatrix in the bottom
left corner. Clearly,

Xεi+εj =Ei,−j +Ej,−i , 1� i � r − r1; i � j � r.

form a basis ofP which is an abelian ideal ofN and dimP = 1
2[(r2 − r2

1)+ (r − r1)]. We
enlarge this basis to a basis ofN by adjoining some vectors of the type

Xεi−εj =Eij −E−j,−i , i < j.
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is

s

From Fig. 2 we see that

dimN = 1

2

(
r2 −

;∑
i=1

p2
i − r2

1

)
+ dimP = (r2 − r2

1

)− 1

2

;∑
i=1

p2
i +

1

2
(r − r1).

Next, letf ∈N∗ be defined byf (X2εi )= 1 for 1� i � r − r1 and zero on all other bas
vectors ofN . We want to show thatPf = P . For this purpose we takex ∈ Pf which we
can write as

x =
∑
i<j

λijXεi−εj + y,

whereXεi−εj ∈ N , λij ∈ k andy ∈ P . Fix anyλst , s < t with Xεs−εt ∈ N . This implies
thats � r − r1, t � r. HenceXεs+εt ∈ P . Therefore,

0 = f
([x,Xεs+εt ])=∑

i<j

λij f
([Xεi−εj ,Xεs+εt ])+ f ([y,Xεs+εt ])

=
∑
i<j

λij f (δjsXεi+εt + δjtXεi+εs )

=
∑
i<s

λisf (Xεi+εt )+
∑
i<t

λit f (Xεi+εs )= 0+ λst

(f (Xεi+εt )= 0 sincei < s < t).
It follows thatx = y ∈ P . So,Pf ⊂ P . Consequently,Pf = P as the other inclusion i

obvious. By Lemma 1.2 we may conclude thatP is a CP ofN andf ∈N∗
reg. Finally,

i(N) = 2 dimP − dimN

= (
r2 − r2

1

)+ (r − r1)− (r2 − r2
1

)+ 1

2

;∑
i=1

p2
i −

1

2
(r − r1)

= 1

2

(
;∑
i=1

p2
i + (r − r1)

)
= 1

2

;∑
i=1

pi(pi + 1). ✷

7. CP-preserving extensions

Proposition 7.1. Let M be a finite dimensional Lie algebra overk and let d ∈ DerM
be a derivation such thatd(Z(M)) �= 0. Consider the extensionL = M ⊕ kd in which
[d, x] = d(x), x ∈M.

Then we have

(i) i(M)= i(L)+ 1.
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a

]

e

(ii) L has a CP if and only ifM has a CP.
(iii) If L is square integrable, then so isM.

Remark 7.2. Example (3) of 1.7 shows that the condition ond cannot be removed.

Proof. Takeu ∈ Z(M) such thatd(u) �= 0. ClearlyM = C(u). Now the assertions follow
directly from Proposition 1.9. ✷
Proposition 7.3. Let M be a finite dimensional Lie algebra overk and fix z, a non-
zero central element ofM. Let S be a 2r-dimensional vector space, provided with
nondegenerate alternating bilinear formϕ :S × S → k. Consider the Lie algebraL =
M ⊕ S containingM as an ideal and in which[x, s] = 0 and [s, t] = ϕ(s, t)z for x ∈M;
s, t ∈ S. Then we have

(i) H = S ⊕ kz is a Heisenberg Lie algebra.
(ii) i(L)= i(M) andZ(L)=Z(M).
(iii) M is square integrable if and only ifL is square integrable.
(iv) If M allows a CP(resp. a CP-ideal) then the same holds forL.

Proof. (i) It is easy to verify thatL is a Lie algebra. There exists af ∈ L∗
reg such that

f |M ∈M∗
reg andf (z) �= 0. We may assume thatf (z)= 1 (by replacingf by 1

f (z)
f ). Then

for all s, t ∈ S

Bf (s, t)= f
([s, t])= ϕ(s, t).

From the assumption onϕ, S ∩ S⊥ = 0 and we can find a basiss1, . . . , sr ; t1, . . . , tr of S
such that for alli, j :

ϕ(si, sj )= 0= ϕ(ti, tj ) and ϕ(si , tj )= δij .

This implies [si , sj ] = 0 = [ti , tj ] and [si , tj ] = δij z for all i, j . Consequently,H is a
Heisenberg Lie algebra.

(ii) First, we notice thatM = S⊥. Indeed,M ⊂ S⊥ sincef ([M,S])= 0. For the other
inclusion, takex ∈ S⊥, which we decompose asx =m+ s with m ∈M ands ∈ S. Then,
s = x −m ∈ S ∩ S⊥ = {0}. Hence,x =m ∈M. AsM = S⊥ we deduce from [D, 1.12.4
that

M(f |M)=M ∩M⊥ = S ∩ S⊥ +L⊥ = L(f ).

Taking dimensions yieldsi(M)= i(L). Clearly, the elements ofZ(M) commute with those
of M andS. Hence,Z(M)⊂ Z(L). Conversely, takex ∈ Z(L) which we can decompos
asx =m+ s with m ∈M ands ∈ S. For alls′ ∈ S:

[s, s′] = [x −m,s′] = [x, s′] − [m,s′] = 0
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,

on the
useful
eived
and hence alsoϕ(s, s′) = f ([s, s′]) = 0 which implies thats = 0 and sox = m ∈
M ∩Z(L)⊂Z(M).

(iii) This follows at once from (ii).
(iv) SupposeP1 is a CP ofM. PutP2 = ks1 + · · · + ksr andP = P1 ⊕P2. ThenP is a

CP ofL sinceP is commutative and

dimP = dimP1 + dimP2 = 1
2

(
dimM + i(M))+ 1

2 dimS = 1
2

(
dimL+ i(L)).

Finally, if P1 is an ideal ofM thenP is an ideal ofL since

[M,P ] = [M,P1] + [M,P2] = [M,P1] ⊂ P1 ⊂ P

and

[tj ,P ] = [tj ,P1] + [tj ,P2] = [tj ,P2]
=
∑
i

k[tj , si] = kz⊂Z(M)⊂ P1 ⊂ P. ✷

Proposition 7.4. LetA be ann-dimensional commutative(associative) Frobenius algebra
overk andM anm-dimensional Lie algebra overk.

Consider the Lie algebraL=A⊗kM for which[a⊗x, a′⊗y] = aa′⊗[x, y], a, a′ ∈A
andx, y ∈M. Then we have

(i) M is square integrable if and only ifL is square integrable.
(ii) M is Frobenius if and only ifL is Frobenius.
(iii) If M allows a CP(resp. a CP-ideal) then the same holds forL.

Proof. (i) From [F, pp. 241–243] we know thati(L) = n.i(M). On the other hand
Z(L)= A⊗k Z(M) and so dimZ(L)= n.dimZ(M). Therefore,i(L)= dimZ(L) if and
only if i(M)= dimZ(M).

(ii) This follows from (i) and its proof.
(iii) Let P be a CP (resp. a CP-ideal) ofM. ThenQ = A⊗k P is a commutative Lie

subalgebra (resp. ideal) ofL and

dimQ = n.dimP = n.12
(
dimM + i(M))

= 1
2

(
n.dimM + n.i(M))= 1

2

(
dimL+ i(L)). ✷
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