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Introduction

Let L be a finite-dimensional Lie algebra over a figldf characteristic zero and let
U (L) be its enveloping algebra with quotient division ribgL). Let P be a commutative
Lie subalgebra of.. In [O2] the necessary and sufficient condition®mvas given in order
for D(P) to be a maximal (commutative) subfield B{L). In particular, this condition is
satisfied if P is a commutative polarization (CP) with respect to any regyilar L* and
the converse holds if is ad-algebraic. The purpose of this paper is to study Lie algebras
admitting these CP’s and to demonstrate their widespread occurrence.
First we have the following characterisatiorlifis completely solvableP is a CP ofL
if and only if there exists a descending chain of Lie subalgebras

L=L,>---DLjy1DL;>---DLy=P

such that dinl; = j with increasing index, i.ei(L;) =i(Lj+1) + 1, j: p,....,n —1
(Theorem 1.11). In low dimension this phenomenon appears frequently. In fact, in a case
by case study of indecomposable nilpotent Lie algebras of dimension at most seven we
discover that Lie algebras without CP’s are rather exceptional: 1 (out of 9) in dimension at
most 5; 3 (out of 22) in dimension 6 and 26 (out of 130) in dimension 7. These will be listed
in Section 3, in which we also prove that non-abelian Lie algebras having a nhondegenerate,
invariant bilinear form do not admit any CP (Theorem 3.2).

Supposek is algebraically closed. Then for a Lie algelltao admit a CPP has the
following advantage: irU (L) the primitive ideals/ (f), with regular f € L*, can all be
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constructed using the same polarizat®yrsincel (f) is the kernel of the (twisted) induced
representationr =ind™ (f|p, L) [D, 10.3.4]. If in additionP is an ideal ofL (a so called
CP-ideal ofL) then the representatienis irreducible (in the completely solvable caBe
even turns out to be a Vergne polarization). Also, the semi-cefut@v (L)) of U(L) is
contained inU (P) (Corollary 4.4). Moreover, a standard technique using Grassmannians
shows that ifL is solvable with a CP, then it also has a CP-ideal (Theorem 4.1).

In Section 5, we look for CP-ideals in some Frobenius Lie algebras (i.e. Lie algebras
of index zero [O1]). For instance, late L be a principal nilpotent element of a semi-
simple Lie algebrd. with centralizerP. Then the normalizeF of P is a Frobenius Lie
algebra by a recent result of Panyushev [P2], in whitlis a CP-ideal (Theorem 5.7).
Next, letA be a finite dimensional associative algebra dverith a unit. A becomes a Lie
algebrag for the Lie brackefa, b] = ab — ba,a,b € A andV = A becomes g-module
by left multiplication. Consider the semi-direct prodiict g & V. Then the following are
equivalent (Proposition 5.6):

(1) Ais a Frobenius algebra.

(2) L is a Frobenius Lie algebra.

(3) Vis aCP-ideal of..

(4) D(V) is a maximal subfield oD(L).

A similar result can be obtained A is a finite dimensional left symmetric algebra
(Example 5.4) or ifA is a finite dimensional simple Novikov algebra overchark) =
p>2.

CP-ideals also occur naturally in the nilradiéélof any parabolic Lie subalgebra of a
simple Lie algebrd. of type A, or C,. As a bonus we obtain an explicit formula for the
indexi(N) of N (Theorem 6.2).

Finally, Section 7 deals with some CP-preserving extensions.

1. Preliminariesand general results

Let L be a Lie algebra over a field of characteristic zero with basig, ..., x,. Let
f € L* and consider the alternating bilinear foBy on L sending(x, y) into f([x, y]).
For any subsef of L we denote byd or A/ the subspace

{xeL|f(lx,al)=0foralla e A}.

We also putL(f) = L+ andi(L) = minger« dimL(f), the index ofL. Note thatL (f) is
a Lie subalgebra of containing the centeZ (L) of L. We recall from [D, 1.14.13] that

i(Ly=dimL — I’ankR(L)([xi’ x.,']),

where R(L) is the quotient field of the symmetric algebsdL) of L. In particular,
dimL —i(L) is an even number.
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Furthermoref is called regular if dinl.(f) =i(L). It is well-known that the seL?‘eg
of all regular elements at* is an open dense subsetlof for the Zariski topology.

Definition 1.1[D, 1.12.7]. A Lie subalgebr& of L is called a polarization w.r.if € L* if
f(P, P])=0and dimP = %(dimL +dimL(f)), in other wordsP is a maximal totally
isotropic subspace af (equipped withBy). If in addition P is commutative thery is
regular by the following observation.

Lemma 1.2 (see Theorem 14 of [O2].et P be a commutative Lie subalgebra bf
h1,...,h, abasis ofP andxs,...,x, a basis ofL. Then the following conditions are
equivalent

(@) dimpP = %(dimL +i(L)), i.e., P is a CP(commutative polarizatigrof L w.r.t. each
[ € Lieg

(b) P =P/ w.rt. somef € L* (such anf is necessarily regulgr

(c) rankyry([hi, x;]) =dimL —dimP.

Lemma 1.3. Let P and M be Lie subalgebras of. such thatP ¢ M C L. Then the
following conditions are equivalent

(1) PisaCP ofL.
(2) PisaCPofM andi(M)=i(L) +dimL —dimM.

Under these conditions the following hold
fe€Llieg = flumeMpy

Proof. (1) = (2). Take anyf € Ljs, ThenP = P/. Putg = f|y € M*. W.rt. B, we
have:

PS={xeM|g(x,P])=0}={xeM| f(lx,P)=0}=MNP/ =MNP=P.
HenceP is a CP ofM andg € M,y by Lemma 1.2. In particular,
2(dimM +i(M)) =dimP = 3(dimL +i(L)).

Consequently,(M) =i(L) +dimL —dimM.
(2) = (1). P is commutative and

dimP =

F(dimM +i(M)) = 3(dimM +i(L) +dimL — dim M)
= 3(dimL +i(L)).

Hence,PisaCPofL. O

The following is a direct application of [D, Lemma 1.12.2].
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Lemma 1.4. Let M be a Lie subalgebra of. of codimension one. Lef € L* and put
g = flm € M*. Then we distinguish two cases

(i) If L(f) Cc M thenL(f) is a hyperplane in (g).
(i) If L(f) ¢ MthenM(g)=L(f)N M is ahyperplaneir_(f).

Remark 1.5. In [O2] we introduced the notion of the Frobenius semiradicdl) of a Lie
algebraL, namely

F(Ly= ) L.

feLiy
This is a characteristic ideal df containing the centeZ (L) of L. It seems to play a

natural role in the study of commutative polarizations. For instanéedtimits a CPP,
thenF (L) C P and hence is commutative [O2, p. 710].

Proposition 1.6. Let M be a Lie subalgebra of. of codimension onef € L* and
g = flu € M*. Then we have

(1) eitheri(M)=i(L)+21ori(M)=i(L)—1,;

felL; geMy, .
@ {i(M) Si+1 © {L(f) M
felLr g € My, .
) {L(f) em {i(M) -1

@) iM)y=i(L)+1 & F(L)C M;
(5) Supposeé(M)=i(L)+ 1andletP be a Lie subalgebra off. Then

PisaCPofL <« PisaCP ofM;

(6) suppose(M)=i(L)— 1.If H is a CP(respectively a CP-idepbf L, thenH N M is
a CP(resp. a CP-ideglof M anddim(H N M) =dimH — 1.

Proof. (1) Choosep € Lyyqsuch thaty = ¢|y € Mygq. Suppose.(¢) C M then
i(M)=dimM(y)=dimL(p) +1=i(L)+1

by (i) of Lemma 1.4. On the other hand fifp) ¢ M then
i(M)y=dimM(y)=dimL(p) —1=i(L)—1

by (ii) of Lemma 1.4.
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(2) (=) Supposd.(f) ¢ M. By (ii) of Lemma 1.4
i(M)<dimM(g) =dimL(f) —1=i(L) — 1.
Contradiction. Thereforé (f) c M. Hence,
i(M)—1=i(L)=dimL(f)=dimM(g) — 1

by (i) of Lemma 1.4. Henc&(M) =dimM (g), i.e.,g € Mgy
(<) By (i) of Lemma 1.4L(f) C M implies that

i(L) <dimL(f)=dimM(g) —1=i(M) — 1.

So,i(M) > i(L) + 1. By (1), i(M) =i(L) + 1 and thereforeé (L) = dimL(f), i.e.,
[ €Lfeg
(3) (=) L(f) ¢ M implies that

i(M) <dimM(g) =dimL(f) —1=i(L) —1

by (ii) of Lemma 1.4. Hence, by (1)(M) =i (L) — 1 which forces (M) = dimM (g), i.e.,
8 € Mreg.
(<) Sincei(M) #i(L) + 1itfollows from (2) thatL(f) ¢ M. Hence,

i(L)—1=i(M)=dimM(g) =dimL(f) —1

by (ii) of Lemma 1.4. Consequently, dib(f) =i(L), i.e., f € Lieg.

(4) (=) Follows from (2).

(<) Choosef € Ligg such thatg = f|u € Mg ThenL(f) C F(L) C M. Using (2)
it follows thati (M) =i (L) + 1.

(5) Clearly,i(M) =i(L) + dimL — dim M. Now use Lemma 1.3.

(6) Suppose (M) =i(L) — 1. Hence, by Lemma 1. ¢ M. Then dim{lH N M) =
dimH — 1. HN M is abelian and

dim(H N M) = 3(dimL +i(L)) — 1= 3(dimM +i(M)).
Consequentlyd N M is a CP (resp. a CP-ideal) . O

Examples1.7.

(1) Let E be a nonzero endomorphism of ardimensional vector spacg over k.
Consider the Lie algebra = kE @ V with Lie bracketd E, v] = Ev and in whichV is a
commutative idealL is solvable and(L) =n — 1. Clearly,i(V) =n=i(L)+ 1 andV is
a CP-ideal ofL by (5) of Proposition 1.6.

(2) Let L be a Frobenius Lie algebra (i.é(L) = 0) andM a Lie subalgebra of. of
codimensionone. ThenqM) =1 (=i(L) +1).

(3) Let M be a Lie subalgebra of codimension one in a non-abelian Lie aldetnith
F(L)=L. Then,i(M) =i(L) — 1 andL does not have any CP’s (by Proposition 1.6
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and Remark 1.5). For instance, letbe the diamond Lie algebra with basis:, y, z and
nonvanishing brackets, x] = —x[¢, y] = y and[x, y] = z. Clearly,i(L) =2 andM =
[L,L]={x,y,z) is an ideal of codimension one ihwith i(M) =1. Putf =x* e L?‘eg
andg = flu € M*. Then,L(f) = (y,z) C M, i(M) =i(L) —1 andg ¢ My, Also,
P1=(y,z)isaCP ofM. But there is no CR of L such thatP N M = P; (in fact L does
not admit any CP sinc&(L) = L). See also Theorem 3.2 and (2) of Examples 3.3.

Definition 1.8. A Lie algebraL is called square integrable f£(f) = Z(L) for some
felL* ie.i(L)y=dmZ(L).

In the nilpotent case these Lie algebras are precisely the Lie algebras of simply
connected Lie groups admitting square integrable representations [MW, pp. 450-453].

Proposition 1.9. Let L be a Lie algebra having an element L such that its centralizer
M = C(u) has codimension one ih. Then we have

) iM)=i(L)+ 1
(i) L hasaCP ifandonly i has a CP.
(iii) If L is square integrable then so M.

Remark 1.10. Note thatC () is an ideal of codimension one ffif eitheru is a noncentral
semi-invariant ofL (i.e., for a suitable. € L*\{0}: [x,u] =A(x)u,x € L) or [u, L] is a
one dimensional subspace of the centék) (such arn: always exists if.. is nilpotent and
dimZ(L) =1 <dimL). In that situation, ifL has a CP-ideal then the same holdsddn).

Proof of the proposition. (i) Take x € L\C(u) and choosef € L* such thatf| is
regular and such that([x, u]) # 0. ThenC (u) = u/ (since both have the same dimension
andC(u) c uf). ThenL(f) = L' c u/ = M. It follows by (2) of Proposition 1.6 that
i(M)=i(L)+1andf € Loy

(ii) First, let P be a commutative Lie subalgebradf. Then,

PisaCPofL ifandonlyif PisaCP ofM
by (5) of Proposition 1.6. Next, l&® be a CP ofL such thatP ¢ M. Then dimP N M) =
dimP — 1 andu ¢ P N M (otherwis€lu, P] =0 and thusP C C(u) = M).
Finally, Py = (P N M) & ku is a CP ofM since it is commutative and

dimP;=dimpP = %(dimL +i(L)) = %(dimM+i(M)).

(iii) Clearly, Z(L) c C(u) = M andu € Z(M)\Z(L). Hence,Z(L) @ ku C Z(M).
Therefore,

i(M)>dimZM)>dimZ(L)+1=i(L) + 1.

As i(M) = i(L) + 1 we may conclude that(M) = dimZ(M), i.e. M is square
integrable. O
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Theorem 1.11. Let P be a commutative Lie subalgebra of a completely solvable Lie
algebraL. Then the following conditions are equivalent

(1) Pisa CP(resp. CP-ideglof L.
(2) There exists a descending series of Lie subalgefresp. ideal}of L.

L=L,D>---DLjy1DL;jD>---DL,=P
dimL; = j, with increasing indeXi.e.,i(L;) =i(Lj+1) + 1).

Proof. Let P be a Lie subalgebra (resp. ideal)lof P (resp.L) acts on the quotient space
L/P. Application of Lie’s theorem to this action shows the existence of Lie subalgebras
(resp.ideals).; of L suchthatl =L, >---D L, =P withdimL; = j.

(1) = (2). Now supposeP is a CP ofL. Then, by Lemma 1.3P is also a CP for each
Lj and

i(L)=i(L)+n—j)=i(L)+(n—G+D)+1=i(L;+)+1

(2) = (1) By induction onj we show thatP is a CP ofL;. This is trivial for j = p.
Next, letj > p+ 1. ThenP isa CP ofL ;_; and also ofL ; sincei(L;_1) =i(L;)+ 1 by
(5) of Proposition 1.6. O

Corollary 1.12. Let L be a completely solvable Frobenius Lie algebra of dimengion
having a CPP. ThenL can be obtained from the-dimensional abelian Lie algebr&
with n successive extensions as described in Thedréih

Lemma 1.13. Let P be a CP(resp. a CP-idedl of a Lie algebralL, A an ideal of L
contained inP and f € Li,q such thatf (A) =0. ThenP/A is a CP(resp. a CP-ideglof
the Lie algebral./A and

i(L/A)=i(L) —dimA.
Proof. Let ¢:L — L/A be the quotient homomorphism. A&A) = 0 there is ag €

(L/A)* such thatg o ¢ = f. Clearly, P/A is an abelian Lie subalgebra (resp. ideal) of
L/A. It suffices to show thatP/A)$ = P/A.

(P/A) = {p(x) € L/A|5(lp(x). o(P)]) =0.x € L}
= ¢({xeL1f(ix, P)=0}) =¢(P") =¢(P)=P/A

as P/ = P. So, by Lemma 1.2P/A is a CP (resp. CP-ideal) df/A andg (L/A);"eg.
Therefore, dinP/A = 3(dimL/A +i(L/A)) and

i(L/A) = 2dimP/A —dimL/A =2(dimP —dimA) — (dimL — dim A)
= (2dimP —dimL) —dimA =i(L) —dimA. O



136 A.G. Elashvili, A.I. Ooms / Journal of Algebra 264 (2003) 129-154

2. CP'sin squareintegrable nilpotent Lie algebras
The following lemma is easy to verify.

Lemma 2.1. Supposd. is a direct product of Lie algebrad. = L1 x L. Then we have
the following

(1) i(L)=i(L1) +i(L2) andZ(L) = Z(L1) x Z(L2).
(2) L is square integrable if and only if the same holds fqrand L.
(3) L has a CP(resp. CP-ideglif and only if the same holds fdt; and L.

Proposition 2.2. Let L be a square integrable nilpotent Lie algebra ow@&rof dimension
n at most seven. Theh admits a CP-ideal.

Proof. By Lemma 2.1 we may assume thatis indecomposable. In particular, <
dimZ(L)=i(L) <dimL.

We now distinguish the following cases:

(1)i(L)=1.Them is 3, 5, or 7. Lein be the maximum dimension of all abelian ideals
of L. Then by [Mo, p. 161] and [O2, p. 706] we have the following inequalities:

F(Ven+1-1)<m < 3(dimL +i(L)) =3(n+1).

This implies thatn = %(dimL +i(L)) in casen = 3,5, or 7, showing the existence of a
CP-ideal inL.

(2)i(L) =2. Thenn = 6 (the case: = 4 does not occur sinck is indecomposable).
We select from Morozov'’s classification of 6-dimensional nilpotent Lie algebras those that
are indecomposable, square integrable and of index 2; infeach ., eg} is a basis of_.
The numbering is Morozov’s [Mo, p. 168].

[er,e2]l =es5, [e1,e3l=es, [e2,ea] =es,

[e1,e3] =es5, [e1,eal=es, [e2,e4]l=e5, [e2,e3l=yes, y #O,

[er,e2]l =es, [e1,e3]l=es4, [e1,eal=es5, [e2,e3]=es5,

[
[
[
[

[e1,e3]l =es, [e1,eal =es5, [e2,e3]=ceg,

[e1,e2]l =e3+e5, [e1,e3]l=es, [e2,es5]=ceg,

© © N o g A

[e1,e2] =e3, [e1,e3]=ea, [e1,e5]=ce5, [e2,e3]=ecs,
10. [e1,e2]l=e3, [e1,e3]l=es, [e1,eal=ep, [e2,es4] =es5,
[ez,e3]l=yes, ¥y #0,

11 [e1,e2]l =e3, le1,e3sl=es, ler,eal=e5, [e2,e3]=es.

In each one of thesa? = (e3, ¢4, ¢5, ¢g) is a CP-ideal, since® is an abelian ideal and
dimP =4= 3(dimL +i(L)).
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(3)i(L) =3. Thenn =7 (the case = 5 does not occur sinck is indecomposable).

We have the following possibilities according to Seeley’s classification of 7-dimensional
nilpotent Lie algebras. We maintain the same notation as in [See]. In particular
{a,b,c,d,e, f,g} is a basis ofL. In each case we exhibit a commutative idéalof
dimension 5= 3(dimL +i(L))).

In the following 3 Lie algebras we tak = (a,d, ¢, f, g).

37g: la,bl=e, [b,cl=f, [c.d]l=g,
37c: la,bl=e, [b,cl=f, lc,dl=e, [b,d]l=g¢g,
37p: la,bl=e, [b,dl=g, I[c,dl=e, [a,cl=]F.

In the following 3 we takeP = (c,d, e, f, g).

3,574 la,bl=c, la,cl=e, la,dl=g, [b,d]l=/,
3,5 7g: la,bl=c, la,cl=e, la,dl=g, [b,c]l=/,
3,5 7¢: la,bl=c, la,cl=e, [a,dl=g, I[b,cl=f, [b,dl=e. O

Remark 2.3. Among the Lie algebras described in Proposition 2.2 there is one which is
characteristically nilpotent, namely2, 4, 5, 7y with basis{a, b, ¢, d, e, f, g} and nonzero
bracketsia,b]=c, [a,c]=d, [a,d]l =g, [a,e]l= [, [a, f1=g,[b,c]=ce, [b,d] = [,
[b,el=E&g,[b, fl=g,[c,dl=g,[c,e]=—g with & #£0, 1[See, p. 493]. In this case take
P={d,e, f, g).

3. Liealgebraswithout CP'S

First we want to show that the restriction on the dimension in Proposition 2.2 cannot be
removed.

Examples 3.1.

(i) Let L be the 8-dimensional Lie algebra owewith basis{es, ..., eg} and nonvanishing
brackets:[e1, e2] = es5, [e1,e3] = ep, [e1, e4] = e7, [e1, e5] = —eg, [e2, €3] = es,
[e2, e4] = e, [e2, e6] = —e7, [e3, ea] = —es5, [e3, e5] = —e7, [ea, es] = —es.

L is characteristically nilpotent [DLIL is also square integrable of index 2, but it does
not admit a CP-ideal (and not any CP’s either, see Section 4).

Proof. Supposd. has a CP-ideaP. So, P is a 5-dimensional abelian ideal bf Now
take the linear functionaf = e3 € L*, which is regular. PUA = keg C Z(L). This is

a 1-dimensional ideal of contained inP and f(A) =0. By Lemma 1.130 = P/A
isa CP-ideal of./A. Clearly,L/A is a 7-dimensional nilpotent Lie algebra of index 1,
with basisx1 =e1 + A,...,x7=e7+ A. S0, Q is a 4-dimensional abelian ideal of
L/A. One verifies that there are u € k, not both zero such tha® is generated
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by Ax1 + uxa, x5, xg, x7. Then P is generated bye1 + e, es, e, €7, eg. But this
contradicts the fact that is commutative, since

[Le1 + pes, es] = —Areg and [Aey+ pes, eg] = —jies.

(i) Let V be a vector space ovérwith basises, ..., e,; n > 2. Take the vector space
A%V with basise;j = ¢; Ae;, i < j. Next, consider the Lie algebra

2
L=ve /\V

with nonvanishing bracke{s;, e;]1 =¢;;, i < j. Clearly,[L, L] = /\2 V=Z().So,
L is 2-step nilpotent of dimension+ %n(n -1 = %n(n +1). Letx,ye V. Thenit
is easy to see that
[x,y]=0 < x,yare linearly dependent ovér (%)
Next, we take: to be even. Then, rapk;)([e;, ;1) = n. This implies that
i(L)=dimL —n=3n(n—1) =dimZ(L),
i.e., L is square integrable.
Finally, taken = 4. Then dimL = 10, dimZ(L) = i(L) = 6 and 3(dimL + i(L)) = 8.
But, because ofx), L has no 8-dimensional abelian Lie subalgebra contaifi(ig), i.e.,

L has no CP’s. The same holds for all evel 4, using a similar argument.

Theorem 3.2. Let L be a Lie algebra having a nhondegenerate, invariant bilinear férm
ThenF (L) = L. In particular, L does not admit a CP unlegsis abelian.

Proof. Takey € L and consider the map, sending eaclx € L into b(x, y). Clearly,
¢y € L* and the magy: L — L* sendingy into ¢, is an isomorphism of-modules.

Consequentlyy andg, have the same stabilizer iy i.e., C(y) = L(g,).
Next, put2 = ¢~ *(Ljg). Then,

F(Ly= Y L(H=) Llg)=) CW»)

f€Lfeg yeR2 yes2

Clearly, F(L) containss$2, which is an open dense subsetlofor the Zariski topology
sincey is a linear isomorphism. Consequentf(L) =L. O

Examples 3.3.

(1) L semi-simple (tak® to be the Killing form ofL).
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(2) The diamond Lie algebra with basisx, y, z and nonvanishing brackefs x] = —x,
[z, y] =y and[x, y] = z. Let b be the symmetric bilinear form with nonzero entries
b(t,z) =1andb(x, y)=—1.

(3) Let g5 be the 5-dimensional nilpotent Lie algebra owewith basisxs, ..., xs and
nonvanishing brackefs, x2] = x3, [x1, x3] = x4, [x2, x3] = x5.
Let b be the symmetric bilinear form with nonzero entries:

b(x1,x5) =b(x3,x3) =1 and b(xp, x4) =—1.

(4) Let gg be the 6-dimensional 2-step nilpotent Lie algebra with basjs. ., xg and
nonvanishing bracke{s, x2] = xg, [x1, x3] = x4, [x2, x3] = x5.
Let b be the symmetric bilinear form with nonzero entries:

b(x1,x5) =b(x3,x6) =1 and b(xz,x4)=-1

(see [B1, p. 133)).

(5) Consider the semi-direct produkt= sl(2, k) & W, whereW, is the 3-dimensional
irreducible sl(2, k)-module. L also admits a nondegenerate, invariant, symmetric
bilinear form.

Proposition 3.4. Among all the different types of indecomposable nilpotent Lie algebras
overC of dimensiom: < 7, only the following30 Lie algebras do not have a CP

(1) n =5: g5 (see(3) of Examples.3).

2) n = 6: From Morozov’'s classificatiofiMo, p. 168] the Lie algebras3(=Z gs), 21
and22.

(3) n = 7: From Seeley’s classificatidisee]: 2 5, 7x; 2, 5, 71; 2, 4, Tp; 2, 4, Tg;
2,4, 76,2, 4, Ty, 2,4, 75,2, 4, 7x;2,4, 70,2, 4, 7,2, 3,5, 7¢; 2, 3, 5, 7p;
2,3, 4,5 75,2, 3, 4,5, 7¢;2, 3,45, 7p;2, 3, 4,5, 7r; 2, 3, 4,5, 7g;
1,35 75,6=1;1 3, 4,5 74;1, 2, 4,5, 7¢c;1, 2, 4,5, 7p; 1, 2, 4,5, 7Ty;
1,2 4,5 7x;1,2, 4,5, 7.;1, 2, 4,5 7y,E=1;1, 2,3, 4,5, 7/, £=0.
Note that the infinite families fail to have a CP only for exceptional values of the
parameter.

Proof. This is done case by case, considering only the ones that are not square integrable
(Proposition 2.2). Usually, CP’s are easy to spot by looking at the multiplication table. To
prove that a Lie algebrd has no CP’s is more difficult however. This can be achieved

by using Proposition 1.9 or by showing th&tL) is not commutative. For instance,
takeL =1, 2, 4, 5, 75, & = 1. See Remark 2.3 for its Lie brackets. One verifies that
F(L)={a—b,c,d,e, f, g), which is not commutative. O

Remark 3.5. Having a CP is not preserved under degeneration (for a definition we refer to
[GO1] or [GO2]). Indeedgs, which has no CP’s (see 3 of Examples 3.3), is a degeneration
of the Lie algebrais with basisxi, ..., xs over C and nonzero brackefsi, x2] = x3,

[x1, x3] = x4, [x1, xa] = x5 and[x2, x3] = x5 for which (x3, x4, x5) is a CP. On the other



140 A.G. Elashvili, A.I. Ooms / Journal of Algebra 264 (2003) 129-154

hand, the Lie algebrgs with the same basis and nonzero bracKats x2] = x3 and
[x1, x3] = x4 admits a CP (namelyxy, x3, x4, x5)) and is a degeneration g [GO1,
p. 323].

4. CP-ideals

These are by far the most interesting CP’s. The following shows that they occur as often
as ordinary CP’s, at least in the solvable case.

Theorem 4.1. Let L be solvable and algebraically closed. Lein be the maximum
dimension of all abelian ideals df. Clearly, m < 3(dimL + i(L)) [02, p. 706] Then
the following are equivalent

(1) L admits a CP.
(2) L admits a CP-ideal.
(3) m=idimL +i(L)).

Proof. It suffices to show thatl) = (2), since(2) = (1) and (2) < (3) are clear. Let

G be the adjoint algebraic group df, i.e., the smallest algebraic subgroup of Aut
such thatL (G) contains ad. [D, 1.1.14]. Clearly, ad. and hence its algebraic hull(G)

are solvable (since they have the same derived algebra [Ch, p. 173], which is nilpotent).
ThereforeG is a solvable connected group. Next put %(dimL +i(L)). Then the set

C of all CP’s is a nonempty (by assumption) closed subset of the GrassmaniiianGgr

which is an irreducible and complete algebraic variety [D, 1.11.8-9]. H&nhds also
complete. NowG acts morphically or€, mapping each CPf ong(H), g € G. By Borel's
theoremG has a fixed poinP in C [Bo, p. 242]. Sog(P) = P forall g € G. In particular,
adx(P) c P forall x € L. ConsequentlyP is a CP-ideal of.. O

Remark 4.2. (a) The numbem is an important characteristic of a Lie algebra, often used
in classifications.

(b) It is now easy to see that the 8-dimensional Lie algebra (i) of 3.1 has no CP’s (go
over to the algebraic closure bfand use Theorem 4.1).

Theorem 4.3. Let P be an ideal of a Lie algebréa and let P be a polarization of. with
respect to somg € L*. Then we have

(1) If f € Ligq then P is solvable(in fact P” = 0). If in addition L is Frobenius or
nilpotent of index one, theA is a CP-ideal ofL.

(2) If k is algebraically closed ang € Ly, then the induced representatiow(f|p, L)
is simple.

(3) If L is completely solvable theh is a Vlergne polarization. In particulamd(f|p, L)
is absolutely simple.

Proof.
(1) Takex € L andy, y’ € P, then
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F([x. . y1]) = £ ([Ix. ¥1.Y']) + f([y. [x. ¥']]) =0 sinceP is an ideal

andf ([P, P])=0.

Hence[y, y'] € L(f). Therefore,P’ =[P, P] C L(f). This implies thatP” = 0 since
L(f)isabelianby[D, 1.11.7]. Now, suppogds Frobenius,i.ei(L) =0.ThenL(f) =0
which forceqd P, P] = 0. Onthe other hand,  is nilpotent of index 1, then dirh(f) = 1.
We may assume thgt+#£ 0. Clearly,[ P, P] # L(f) sincef ([P, P]) =0andf (L(f)) #0
[BC, p. 89]. So, we conclude thgP, P] =0.

(2) By [RV, p. 395] or [D, 10.5.7] there exists a solvable polarizatidrof L w.r.t. f
such thatH N P is a solvable polarization a? w.r.t. f|p and such that the twisted induced
representation ind( f |y, L) is simple. First we observe that

dimH = 3(dimL + dimL(f)) =dimP. (o)
Similarly,
dim(H N P) = 3(dim P +dimP(f|p)) = dim P

sinceP(flp)={xe P | f(lx,P])=0}=P. It followsthatHN P =P, i.e., P C H.
Hence, by(e), we see thaP = H.

Consequently, ind(f|p, L) is simple. Finally, in@ (f|p, L) =ind(f|p, L) because?
is anideal ofL [D, 5.2.1].

(3) L being completely solvable, we can find a flag of ideals. of

L=L,>--D>L,>---DL1D>Lo=(0)

such thatL , = P wherep =dim P. Put f; = f|, andP; = Zi</ L;(f;). ThenP, is the
so called Vergne polarization w.r.t. this flag afi¢c L* [BGR, 9.4]. We claim thaP = P,.
Clearly,

Li(fy={rxeLi| f(lx,Li]) =0} =L;n L.

In particular,L,(f,) = L, N Ly = PN P+ = P since P = P~ w.rt. f € L*. This
implies thatP C P,. On the other hand considér; (f;). If j < p,thenL;(f;) CL; C
L,=P.If j>p,thenP =L, C L; implies thatL;(f;) =L; mLJ# cLJ# cpPt=r.
ConsequentlyP, =3/ _1 L;(f))CP. O

Corollary 4.4. Let P be a CP-ideal of a Lie algebra and take anyf € Lf,q. Then,

(1) If k is algebraically closed, theimd(f|p, L) is simple.
(2) If L is completely solvable, theR is a Vergne polarization w.r.tf and any flag of
ideals containingP. In particular, ind(f|p, L) is absolutely simple.
(3) () Sz(U(L)) c U(P) and Sz(D(L)) C D(P) whereSz(U (L)) = @, U(L), is the
semi-center ot/ (L). Similarly for Sz(D(L)). This generalizefD, 6.1.6].
(b) PUtA(L)={A e L*|U(L), #0}andL, = ﬂAEA(L) keri. Then,P C L.
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Proof. (1) and (2) follow directly from Theorem 4.3.

(3) Letu € U(L);, be any semi-invariant with weighte A(L), i.e.,[x, u] = A(x)u for
allxeL.

Now, takex € P. Thenadx(L) C P and (adx)? = 0 sinceP is a commutative ideal
of L. So,adx is nilpotent. This implies that(x) = 0 and[x, u] = 0. Consequently, € L »
which shows (b) and alsoe C(U(P)) = U(P). ThereforeSz(U (L)) C U(P). Similarly
for Sz(D(L)) € D(P) (sinceC(D(P)) =D(P)). O

Remark 4.5. The previous corollary does not hold for arbitrary CP'sIofFor example,
let L be the 2-dimensional Lie algebra over an algebraically closedfielidh basisx, y
and nonzero brackét, y] = y. L is Frobenius ang’ € L* with f(x) =0andf(y)=1is
regular. ClearlyP = kx is a CP ofL w.r.t. f € L*. Butind™(f|p, L) is not simple [BGR,
p. 95]. Also,y is a semi-invariant of. buty ¢ U (P).

The following, which we recall from [O2, p. 708], describes how CP-ideals naturally
arise in certain semi-direct products.

Proposition 4.6. Let g be a Lie algebra with basiéxs, ..., x,} and letV be ag-module
with basis{vy, ..., v,} with dimg < dimV. For eachf € V* we put

g(f)={xeg| fxv)=0forallve V}

the stabilizer of f. Consider the semi-direct produét =g & V in which [x, v] = xv,
x € g, v eV andinwhichV is an abelian ideal. Then the following are equivatent

(1) D(V) (= R(V)) is a maximal subfield ab(L).
(2) V is a CP-ideal ofL.

(3) i(L)=dimV —dimg.

(4) ranKQ(v)(e,'v.,') = dimg.

(5) g(f) =0forsomef € V*.

Remark 4.7. If k is algebraically closedy a simple Lie algebra, acting irreducibly dn,
then the conditions of the proposition are satisfied if and only if glimdimV [AVE,
p. 196].

The following shows that if a Lie algebia admits a CP-ideal then its structure comes
close to that of the semi-direct product considered in Proposition 4.6.

Corollary 4.8. Let V be a commutative ideal df. Clearly, the Lie algebrgg = L/V acts
on V. Consider the semi-direct produtt = g & V. Then,

VisaCPofL <« VisaCPofL;.

In that casej(L1) =i(L).
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Proof. Letg € L* and putf = g|y € V*. Then, we claim thag(f) = V&/V. Indeed,

x=x+Veg(f) <& [f(x,VD=0
< f(x,V))=0
<  g(x, VD=0
& xeV8 & xeV8/v.

We now proceed with the proof
(=)dimV = %(dimL +i(L)).Also, V8 =V for someg € L* by Lemma 1.2. Hence,
g(f) =0. By Proposition 4.6/ is a CP ofL1 and

i(L1) =dimV —dimg=dimV — (dimL —dimV) =2dimV —dimL =i(L).

(<) By Proposition 4.6g(f) = 0 for somef € V*. Next, choose; € L* such that
f=glv.Then,V8/V =g(f) =0. So,V& =V which by Lemma 1.2 implies that is a
CPofL. O

5. CP-idealsin certain FrobeniusLie algebras

Let L be a Frobenius Lie algebra with a CP-id€alTake anyf € Ly, and assume that
k is algebraically closed. Theh( f) = 0 by [O1, p. 42]. So, by Corollary 4.4 ind|p, L)
is a faithful irreducible representation of(L). Next, letxs, ..., X, ¥1, ..., v b€ @ basis
of L such thatys, ..., y, is a basis ofP. Then det[x;, y;1) € S(P) is a nonzero semi-
invariant under the action of Alit[O1, p. 28]. Itis also known that Frobenius Lie algebras
give rise to constant solutions for the classical Yang—Baxter equation [BD].

The following is a special case of Proposition 4.6.

Corollary5.1. Letg be a Lie algebra and a g-module such thatimg = dim V. Consider
the semi-direct produdt = g & V. Then the following are equivalent

(1) R(V) is a maximal subfield ab(L).
(2) Vis a CP-ideal ofL.

(3) L is Frobenius.

(4) g(f)=0forsomef e V*.

Example5.2. Let g be Frobenius and lét = g be the adjoint representation.

Example 5.3. The above condition is satisfied §f is reductive over an algebraically
closed fieldk and V* is a prehomogeneoysmodule (i.e.V* has an oper-orbit) with

dimg = dim V. These modules have been studied extensively by the Japanese school since
1977 [SK,KKTI].
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Example 5.4. Let A be a left-symmetric algebra (LSA), i.e., a finite dimensional vector
space provided with a bilinear produttx A — A, (a, b) — ab which satisfies

a(bc) — (ab)c = b(ac) — (ba)c (%)

for all a,b,c € A. There is an extensive literature on LSAS, see for example [H,Seq].
Vinberg used LSA's to classify convex homogeneous cones [V]. A left-symmetric algebra
is Lie-admissable. This means thatbecomes a Lie algebra, which we denoteghyor

the Lie brackefa, b] =ab — ba, a, b € A. Using (x) we observe that

la,blc = (ab)c — (ba)c = a(bc) — b(ac).
Therefore, A becomes g-module, which we denote by, for the bilinear map
gx V-V, (x,v)—xv.

Now, supposet contains a nonzero elemefite A which is not a right zero divisor oA.
Let V* be the dual module of . Identifying the moduld/** with V, we may considef to
be an element ofv *)*. Clearly, the stabilizeg(f) = {x € g | xf = 0} = 0 by assumption.

Finally, using Corollary 5.1 we may conclude that the semi-direct produety @ V*
is a Frobenius Lie algebra in whidh* is a CP-ideal.

Remark 5.5. In characteristicp > 2 a similar result can be obtained # is a finite
dimensional simple Novikov algebra and whéreis a certain irreducibled-module.

We recall that a nonassociatikealgebra is said to be a left Novikov algebraAf is

left symmetric, satisfying the identityzb)c = (ac)b for all a, b, c € A. In characteristic
zero E. Zelmanov showed that finite dimensional simple Novikov algebras are all one-
dimensional [Z]. Recently simple Novikov algebras and their irreducible modules have
been determined by Osborn and Xu [Os,X].

We now focus on a special case, which provides an interesting link between Frobenius
algebras and Frobenius Lie algebras.

Proposition 5.6. Let A be a finite dimensional associative algebra okewith a unit
element. A becomes a Lie algebgafor the Lie bracket[a, b] = ab — ba, a,b € A,
andV = A becomes g-module by left multiplication. Consider the semi-direct product
L =g @ V. Then the following conditions are equivalent

(1) A is a Frobenius algebra.

(2) L is a Frobenius Lie algebra.

(3) Vis a CP-ideal ofL.

(4) R(V) is a maximal subfield ab(L).
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Proof. In view of Corollary 5.1 it suffices to show that (1) is equivalent wittf) = 0 for
somef € V*. So, takef € V*. Then

g(f)={ac Al flab)=0forallbe Al.

Clearly, g(f) = 0 if and only if the bilinear mapA x A — k, (a,b) — f(ab) is
nondegenerate, i.e4, is a Frobenius algebra [CR, Theorem 61.3h

Finally, we devote our attention to certain Frobenius Lie subalgebras of a semi-simple
Lie algebra.

Theorem 5.7. Let L be a semi-simple Lie algebra of ranloverk, k algebraically closed,
and letx be a principal nilpotent element df (i.e. the centralizelC(x) of x in L has
dimensiorr). Then the normalizeF of C(x) in L is a solvable Frobenius Lie subalgebra
of L in whichC(x) is a CP-ideal.

Proof. It is well known thatC (x) is abelian [K]. ClearlyC(x) is an ideal ofF. In 1991
R. Brylinski and B. Kostant showed that difn= 2r and thatF'/C(x), and hence als#, is
solvable [BK]. Recently, D. Panyushev proved tiais Frobenius [P2, Theorem 5.5]10

6. CP-idealsin thenilradical of parabolic Lie subalgebrasof asimple Liealgebra

Theorem 6.1. Let B be a Borel subalgebra of a simple Lie algelltaoverk, k algebrai-
cally closed, of rank and letN be the nilradical ofB. Then,

(1) N admitsa CP< L is of typeA, or C,. In these2 casesN has a CP-idealP, which
is an ideal ofB.
(2) P isalso a CP-ideal o in caseL is of typeC,, r > 1.

Proof. The information ori(N), i(B) in Table 1 is obtained from [E1,E2]. Also, we know
thati (N) +i(B) =r [P2, 1.5].

The idea is to compare the maximum dimensiorof abelian Lie subalgebras of,
computed by Malcev [Ma, p. 216] with the numb?(rdimN +i(N)). ThenN contains a
CP if and only if these numbers coincide. According to the table this occurs precigely if
is of type A, or C,.

Furthermore, we know from [PR, Table 1] that in both typgs ér C,) B has a maximal
abelian idealP of dimension% (dimN +i(N)). Clearly P ¢ N. ThereforeP is a CP-ideal
of N. This can also be deduced from Theorem 4.1.

(2) Using Lemma 1.3 we see tha&tis also a CP-ideal oB if and only if

i(N)=i(B)+dimB —dimN <« i(N)—i(B)=r
& i(B)=0 (sincei(N)+i(B)=r).

and this happens whdnis of typeAj(=Cy) orC,,r > 2. O
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Table 1
dimnN i(N) i(B)  3(dimN +i(N)) m
Aoy t>1 t(2t+1) t t t(t+1) t(t+1)
Axyp1 120 (+D@@+1) t+1 ¢ (t+ 1?2 (t+ 1?2
B3 9 3 0 6 5
By r=4 r2 r 0 %r(r—l—l) %r(r—l)—i—l
Cy r>=2 r2 r 0 %r(rJrl) %r(r+1)
Dy 132 2 (2t — 1) 2 0 22 12t — 1)
Dyy1 122 22t +1) 2 1 21 +1) 12t +1)
Eg 36 4 2 20 16
E7 63 7 0 35 27
Eg 120 8 0 64 36
Fy 24 4 0 14
Go 6 2 0 4

Theorem 6.2. Let L be a simple Lie algebra ovét, k algebraically closed, of typd, or
C,, = a parabolic Lie subalgebra af. Then the nilradicalV of = admits a CP-idealP.
Furthermore,

(1) supposeL is of type A, and = of type (p1,...,pm). Puitn =r +1and p =
p1+---+ pe, 1< € < m, such that Zle pi — 5| is as small as possible. Then,

1 m
i(N)=2p(n—p) — 5<n2—2p?>;

i=1

(2) supposd. is of typeC,, r > 2, andr of type(pa, ..., pm). Puté =[m/2], then

1 4
i(N)=3 3 pi(pi +1).
i=1

Remark 6.3.

(a) The first formulais new. A recursive formula f@V) was already established in [E1].
A different proof for the second formula can also be found in [E1].

(b) (Made by the referee) A. Joseph already gave a formulg #y in an arbitrary simple
Lie algebra, using a maximal subset of strongly orthogonal positive roots [J, (ii) of
Proposition 2.6]. Being applied t4, or C,, Joseph’s formula gives the above explicit
expressions.

Proof. (1) LetL =slI(V) whereV is anrn-dimensional vector space overBy [B2, p. 187]
we can find a flag” of subspaces of :

{(O}=FCF1C---CFy=V, Fa%F
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n-p

Fig. 1.

such thatr (respectively its nilradicaN) consists of all endomorphismse L such that
xF; C F; (respxF; C F;—1) for 1 <i <m. Putp; =dim(F;/F;_1) thens is said to be of
type (p1, - .-, pm)- Next, choose a basig, ..., ¢, of V compatible with the flag- (i.e.,
e1,...,ep, € F1\Fy, etc.). ThenN can be considered to be the Lie algebra of matrices of
the form as shown in Fig. 1.

We may assume, as is the case in Fig. 1, thatn /2 (x). In particular,p + p¢4+1 > n/2.
As usual we denote b;; then x n matrix whose jth entry is 1 and other entries are zero.
Let P be the subspace & generated by alE;; with 1 <i < p; p+1<j<n.So,P
consists of matrices of the for M) whereM is any p x (n — p) matrix. It is easy to
see thatP is an abelian ideal o. We claim thatP is a CP ofN. Let f € N* be defined
by f(Epn—p+1) =---= f(E1) =1 and zero on all otheE;;. We want to show that
P/ = P. Therefore we take € P/. We write

)CZZ)»,']‘E,']‘ +y

i<j

whereE;; e N\P, A;j € k andy € P. We need to demonstrate that eagly, = 0. There
are two cases to distinguish:

() jos<p.Thenip<jo<pands=mn+1) —ip>m+1) —p>p. HenceEj, € P
and

0= f(lx, Ejps]) = Z)\ijf([Eij, Ejos]) + f([y. Ejos])

i<j
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= Z)»ijf(ajjoEis —8siEjoj)

i<j
= Z Aijo S (Eig) — Z)\ij(Ejoj) = Ligjo
i<jo j>s

(f(Ej,;) =0sincejo+ j>io+s=n+1).
(i) io> pandjo> p1+---+ pe + pey1 > n/2. By definition of p:

n n
(p1+~'+pe+pe+1)—§>——l?«

2
Hence

joz(p1+-+pit+tpey)+1lzn—p+ 1

So,t=m+1) — jo< p<ipandE;, € P. Therefore

0 = f(IErigx1) = Y %ij f (IEsio Eij1) + f ({Erio» ¥1)

i<j
= Z)»ij SfBigi Etj — 81 Eiig)
i<j
= Z Aigj f(Ej) — Z)Litf(Eiio) = Xigjo
Jj>io i<t

(f(Eii,) =0sincei +ig<t+ jo=n+1).

In both casesx = y € P. So, P/ ¢ P. ConsequentlyP/ = P as the other inclusion is
obvious by the commutativity of.
By Lemma 1.2 we may conclude th&t is a CP of N and f € Ny Finally, from

dimp = %(dimN +i(N)) we obtain:
1 m
i(N)=2dimP —dimN =2p(n — p) — _(nz_ Zl’tz)
2 i=1

(2) LetL =sp(V) whereV is a vector space ovérof dimensiom = 2r provided with
a nondegenerate alternating bilinear fasmV x V — k. There exists an isotropic flag

{O=FpCcFh C---CF,=V,

i.e., Fl.L = F,—; for 0 <i < m such thatr (respectively its nilradicaN) consists of all
x € L such thatc F; C F; (resp.x F; C Fi—1) for 1<i <m. Putp; =dim(F;/F;—1) then
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Fig. 2.

it follows that p; = p,4+1—; for 1 <i < m. Following [B2, p. 200] we can find a Witt basis
of V:

€1,...,€r, €_r,...,0-1

compatible with the given flag and such tipde;, e_ ;) = §;;.
We now identify eachx € L with its matrix with respect to this basis, i.e.,

T
~“\C D
where A, B,C, D arer x r matrices such thaB = B, C = C, D = —A, where the
transformation” is the transpose relative to the second diagonat. ¢f N thenx is of
the form as shown in Fig. 2.
If m = 2¢+ 1 then we put1 = 5 p11 (pes1 is evensined I, p; =n = 2r andp; =
Pm+1—i)- If m = 2¢ then we put1 = 0. is determined by the sequenge, .. ., ps; r1).
Note thatr = Zle pi +r1. Next, letP be the subspace of of matrices of the fornqg g)

whereB is anr x r matrix such tha = B and with zerary x r1 submatrix in the bottom
left corner. Clearly,

Xejre; =Ei—j+Ej—i, 1<i<r—ryi<j<r

form a basis of? which is an abelian ideal a¥ and dimP = 3[(+% — r?) + (r — r1)]. We
enlarge this basis to a basis8@fby adjoining some vectors of the type

Xej—e; = Eij —E_j i, 1<].
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From Fig. 2 we see that

1
dlmN_E(” _ZPZ_V1)+dImP (V —}’1 ——Zpl+ (r—rl)

i=1

Next, let f € N* be defined byf (X2:,) =1 for 1<i <r —rq and zero on all other basis
vectors ofN. We want to show thaP/ = P. For this purpose we takee P/ which we
can write as

X = Z)\'i.]'XS,'—Sj +ya
i<j

whereX., ., € N, A;j ek andy € P. Fix any Ay, s <t with X _., € N. This implies
thats <r —r1, 1 <r.HenceX,, 1., € P. Therefore,

0= f( X, X€5+€t Z)"l]f & —¢&j> £5+£,]) +f([yvxss+£,])

i<j

= Z)&ijf(ajsxsi-i-s, + aths,--i-ss)

i<j

=Y hisf Kerve) + Y dirf Keire,) =04 Aot

i<s i<t
(f (Xg;4e,) =0sincei <s <t).

It follows thatx = y € P. So,P/ c P. ConsequentlyP/ = P as the other inclusion is
obvious. By Lemma 1.2 we may conclude tifats a CP ofNV and f € Ny Finally,

i(N) = 2dimP —dimN

1g 1
= (rz—rlz)—i—(r—rl)—(r2—r12)+52pi2—E(r—rl)
i=1

1 2
= E(;pl (r_rl)) 22pz(pz+l) O

i=1

7. CP-preserving extensions

Proposition 7.1. Let M be a finite dimensional Lie algebra ovérand letd € DerM
be a derivation such thad(Z(M)) # 0. Consider the extensioh = M & kd in which
[d,x]=d(x),x e M.

Then we have

() i(M)=i(L)+ 1.
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(i) L hasaCP ifandonly i has a CP.
(iii) If L is square integrable, then so M.

Remark 7.2. Example (3) of 1.7 shows that the condition@#wcannot be removed.

Proof. Takeu € Z(M) such thatd(u) # 0. ClearlyM = C(u). Now the assertions follow
directly from Proposition 1.9. O

Proposition 7.3. Let M be a finite dimensional Lie algebra ovérand fix z, a non-
zero central element o#/. Let S be a 2r-dimensional vector space, provided with a
nondegenerate alternating bilinear forg: S x § — k. Consider the Lie algebrd. =

M @ S containingM as an ideal and in whiclix, s] =0 and[s, t] = ¢(s, )z for x € M,

s,t € S. Then we have

(i) H=S & kzis aHeisenberg Lie algebra.

(i) i(L)y=i(M)andZ(L)=Z(M).
(iif) M is square integrable if and only if is square integrable.
(iv) If M allows a CP(resp. a CP-ideglthen the same holds fdr.

Proof. (i) It is easy to verify thatl is a Lie algebra. There exists @€ Lf4 such that

flm € Mjsgand £ (z) # 0. We may assume tht(z) = 1 (by replacingf by %f). Then
forall s,z €S o

By(s,t) = f([s,1]) = (s, ).

From the assumption ap, S N S+ =0 and we can find a basis, ...,s,; 71, ..., of S
such that for all, j:

@(si, ;) =0=0(t,t;) and ¢(s;,tj) =35;;.

This implies[s;,s;1=0=1[#;,t;]1 and[s;,t;]1 = §;;z for all i, j. ConsequentlyH is a
Heisenberg Lie algebra.

(ii) First, we notice thaty = S*. Indeed, M c S+ since f([M, S]) = 0. For the other
inclusion, taker € S+, which we decompose as=m + s with m € M ands € S. Then,
s=x—meSNSt={0). Hencex =m € M. As M = S+ we deduce from [D, 1.12.4]
that

M(flm)=MNMt=snst+ L+ =L(f).
Taking dimensionsyieldg M) = i (L). Clearly, the elements &f (M) commute with those
of M andS. Hence,Z(M) C Z(L). Conversely, take € Z(L) which we can decompose

asx =m+s withm e M ands € S. Foralls’ € S:

[s,s'1=[x —m,s']=[x,s]—[m,s']1=0
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and hence als@(s,s’) = f([s,s']) = 0 which implies thats = 0 and sox = m €
MNZ(L)CZ(M).

(iii) This follows at once from (ii).

(iv) SupposeP; isa CP ofM. PutP, =ks1 +--- + ks, andP = P1 & P>. ThenP is a
CP of L sinceP is commutative and

dimP =dim Py +dim P, = 3(dimM +i(M)) + S dimS = 3 (dimL +i(L)).
Finally, if Py is an ideal ofM thenP is an ideal ofL since
(M, P1=[M, P1]+[M, P2]=[M,Pi]JCPACP

and

[tj, P] = [tj, Pl +[tj, P2l =[t, P2]

= Zk[tj,si]zkz CZM)CPLCP. O

1

Proposition 7.4. Let A be ann-dimensional commutati@associativg Frobenius algebra
overk and M anm-dimensional Lie algebra ové.

Consider the Lie algebra = A ®; M forwhich[a®x,ad’'® y] =ad’ ®[x, yl,a,a’ € A
andx, y € M. Then we have

(i) M is square integrable if and only i is square integrable.
(i) M is Frobenius if and only i is Frobenius.
(i) If M allows a CP(resp. a CP-ideglthen the same holds fdr.

Proof. (i) From [F, pp. 241-243] we know thatL) = n.i(M). On the other hand,
Z(L)=AQ®; Z(M) and so din¥Z (L) =n.dimZ(M). Thereforej (L) =dimZ(L) if and
only if i(M) =dimZ(M).

(i) This follows from (i) and its proof.

(iii) Let P be a CP (resp. a CP-ideal) 8f. ThenQ = A ®; P is a commutative Lie
subalgebra (resp. ideal) éfand

dimQ = n.dimP =n.3(dimM +i(M))
= 3(n.dmM +n.i(M)) = 3(dimL +i(L)). O
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