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Abstract

We study the algebraic structure of a programming language with higher-order store, in the style of ML
references. Instead of working directly on the operational semantics of the language, we consider its fully
abstract game semantics defined by Abramsky, Honda and McCusker one decade ago. This alternative
description of the language is nice and conceptual, except on one significant point: the interactive behavior
of the higher-order memory cell is reflected in the model by a strategy cell whose definition remains
slightly enigmatic. The purpose of our work is precisely to clarify this point, by providing a neat algebraic
definition of the strategy. This conceptual reconstruction of the memory cell is based on the idea that
a general reference behaves essentially as a linear feedback (or trace operator) in an ambient category of
Conway games and strategies. This analysis leads to a purely axiomatic proof of soundness of the model,
based on a natural refinement of the replication modality of tensor logic.

Keywords: game semantics, general references, tensor logic, replication modality, compact-closed
categories, trace operator, memory access.

1 Introduction

Game semantics as an idealized compilation
The purpose of game semantics is to interpret programs as interactive strategies

playing against their environment. It is nice to think that game semantics provides in
this way an idealized compilation scheme, where the programs written in a high-level
language are translated as strategies expressed in the low-level language of automata
theory. This line of thought motivated already Berry and Curien to define their
model of the purely functional language PCF based on concrete data structures and
sequential algorithms – an early precursor of game semantics [7]. From that point
of view, it is important to investigate what features of (high-level) programming
languages can be compiled in game semantics, and what expressive power of the
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target (low-level) language is necessary in order to perform the translation. A typical
question is:

Does one need to equip the target language (seen as a game or as an automa-
ton) with a notion of state, in order to compile a programming language
admitting itself a notion of state?

In their seminal work on ground-type references in Idealized Algol, Abramsky and
McCusker answered to this question in the most unexpected way, see [4]. In order
to understand properly the unexpected nature of their answer, one needs to start
from the beginning – that is, the interactive description of the purely functional
programs discovered by Hyland and Ong a few years earlier. They established
that the functional programs written in the language PCF translate precisely as
innocent and well-bracketed strategies – where innocence and well-bracketedness are
conditions on strategies formulated in the framework of arena games [10].

Idealized Algol is an imperative extension of the language PCF with ground-
type memory cells, where boolean and integer values can be stored. In their work,
Abramsky and McCusker established that the imperative programs written in Ide-
alized Algol translate precisely as visible and well-bracketed strategies – where the
notion of visibility is formulated in the framework of arena games, and weakens the
notion of innocence defined by Hyland and Ong.

This result is remarkable because it demonstrates that one does not need to
refine the target language of functional languages (arena games) in order to translate
imperative programs: it it is sufficient to relax the original constraint (innocence)
into a weaker one (visibility.) In particular, the framework of arena games does
not carry any explicit notion of state. This “stateless approach” is inspired by the
“object-based” semantics of Idealized Algol developed in [24]. One main benefit of the
approach is to clarify in what sense a given programming feature is more expressive
than another one. In particular, the same type in PCF and in Idealized Algol
is interpreted as the same arena game in each interpretation: the only difference
between the two languages is the class of strategies playing on the arena game.

General references and game semantics
Abramsky, Honda and McCusker carried on in this line and established a similar

result for a call-by-value language with higher-order store, in the style of ML general
references. Recall that general references can store not only values of ground types
(i.e. integers, booleans) but also those of higher types (procedures, higher-order
functions, or references themselves). They provide a useful and powerful program-
ming construct: the ability to write, to read and to transmit higher-order informa-
tion through the store is essential not only for efficiency but also for clarity of the
program structures involving states. Thus, the definition of a fully abstract model
characterizing the programs written in this paradigm was an important achievement
of game semantics. The interested reader will find in [22] a recent application of the
model to an investigation of aspect-oriented programming.

Developing on their previous work, Abramsky, Honda and McCusker established
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that the imperative programs written with general references define precisely the
thread-independent and well-bracketed strategies of arena game. So, just as visibil-
ity weakens innocence and characterizes programs written with ground-type refer-
ences, thread-independence weakens visibility and characterizes programs written
with general references, see [2] for details.

This nice sequence of characterization theorems may be summarized in the fol-
lowing table:

purely functional programs � innocent and well-bracketed strategies

imperative programs
with ground-type references � visible and

well-bracketed strategies

imperative programs
with general references � thread-independent and

well-bracketed strategies

where we are careful to indicate with the sign � that the definability result holds in
all rigor for the compact (that is, finite) strategies of a given class.

Investigating the algebraic structure of general references
The purpose of this paper is to uncover a series of elementary algebraic structures

hidden in the arena game model of general references designed by Abramsky, Honda
and McCusker. Each ingredient is simple and conceptually clear, and we review
them in turn:

• first of all, one needs to relax linear logic into tensor logic in order to study arena
games, and to define the right kind of replication modality,

• then, the most primitive notion of general reference – called linear memory cell –
may be constructed by feedback using a trace operator,

• here, one recalls that there exists a canonical notion of trace operator in any
compact-closed category,

• so, we will work inside a compact-closed category of Conway games and well-
bracketed strategies,

• linear memory cells are much too primitive: hence, we will need the replication
modality ! of tensor logic in order to replicate them an infinite number of time,
and a notion of memory access in order to bundle this infinite number of linear
memory cells into the familiar notion of memory cell for general references.

Put all together, these five ingredients induce a purely axiomatic proof of soundness
for the model of general references defined by Abramsky, Honda and McCusker. We
review below these ingredients in turn.
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Tensor logic and replication modalities in game semantics
Tensor logic was introduced in [19] in order to regenerate the fruitful connection

between linear logic and game semantics. Tensor logic is simply obtained by relaxing
the involutive negation of linear logic into a general notion of tensorial negation.
The shortest way to describe the logic is to start from its categorical semantics. A
dialogue category is defined as a symmetric monoidal category C equipped with an
exponentiable object ⊥, called the tensorial pole of the dialogue category. Recall
that an object ⊥ is exponentiable when every functor

A �→ C(A ⊗ B,⊥) : Cop −→ Set

is representable by an object B � ⊥ and a bijection

φA,B : C(A ⊗ B,⊥) ∼= C(A, B � ⊥)

natural in A. The tensorial negation of the dialogue category C is then defined as
the functor

¬ : C −→ Cop

induced by the tensorial pole

¬A = A � ⊥.

Every such tensorial negation induces a self-adjunction, whose monad is called the
linear continuation monad of the dialogue category. Note that the dialogue category
is ∗-autonomous precisely when the unit of the monad

ηA : A −→ ¬¬A

is an isomorphism. One main reason for relaxing linear logic into tensor logic is
that this enables to define a general notion of replication modality for categories
of games and strategies. Indeed, such a category of games and strategies typically
defines a dialogue category C. A replication modality is then defined as a monoidal
adjunction between the dialogue category C and a cartesian category M

M
U

��⊥ C
F

��

this generalizing the usual notion of a replication modality in a model of linear
logic, see [6]. This notion of replication modality on tensor logic will become the
key ingredient of our algebraic account of general references. The reason is that an
explicit description of resources is necessary in order to describe how the memory cell
manages the various copies induced by the sequence of write and read operations.

References as feedback in traced monoidal categories
Traced monoidal categories were introduced by Joyal, Street and Verity as a uni-

form account for several constructions dealing with cyclic behaviours in mathematics
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and computer science – most notably braid closure in knot theory, trace operators
in linear algebra, and feedback in computer science, see [12] for details. Recall that
a traced symmetric monoidal category is a symmetric monoidal category (C,⊗, I, c)
equipped with a natural family of functions, called a trace operator,

TrXA,B : C(X ⊗ A, X ⊗ B) → C(A, B)

which is nicely depicted in string diagrams

which satisfies a series of coherence axioms reflecting topological properties of the
diagrammatic notation.

As far as we know, Milner was the first one to observe that linear feedback could
be used in order to interpret restriction in process calculi. Milner describes this basic
construction in the framework of action calculi, where he calls reflection the linear
feedback operator. This feedback operator enables him to describe the restriction
operator of arity

ν : ε → p

as the trace of the diagonal
δp : p → p ⊗ p

along the arity p, see [20].
Of course, we are interested in general references rather than channels, but the

mechanism transforming a global variable into a local one works in a very similar way.
In the usual monadic approach to effects, one interprets a programming language
in a category by distinguishing between the objects A describing a value, and the
objects TA describing computation of type A, where T is a given monad reflecting
the particular notion of effect considered. In the case of references, the relevant
monad is the state monad X �→ S � (S⊗X) which enables to interpret a program P

of type A → B as a morphism

A −→ S � (S ⊗ B)

taking a value of type A as input and producing a computation of type S � (S ⊗
B) as output. It follows from the definition of linear implication in a symmetric
monoidal category that this morphism may be seen alternatively as a morphism

f : S ⊗ A −→ S ⊗ B

This reformulation enables to see the monadic interpretation as the description of
an input/output system with a store accessible by the user. Now, imagine that the
trace of the morphism f along the object S is defined. In that case, we obtain a
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morphism
g : A −→ B

which behaves exactly like the original program P in which the state S is not global
anymore, but local. This is precisely the analogous to the restriction (or localization)
of Milner, where the channels are replaced by memory addresses.

Feedback in compact closed categories
We want to reconstruct the notion of general reference from the existence of a

linear feedback, or trace operator, in a symmetric monoidal category of interest.
One most natural way to obtain such a trace operator is to start from a compact
closed category.

Recall that a compact closed category [13] is a symmetric monoidal category C in
which every object A has a dual object. This means that for every object A, there
exists an associated object A∗ and two morphisms called unit ηA : I → A∗ ⊗A and
counit εA : A ⊗ A∗ → I, depicted in the language of string diagrams as

ηA : and εA : ,

satisfying the two zigzag identities

= and =

Every such compact closed category is equipped with a canonical trace operator
defined in the expected diagrammatic way.

So the second ingredient of our reconstruction of general references will be to
work in a compact closed category. More precisely, we will consider the full subcat-
egory Conway− of games starting by an Opponent move inside a compact closed
category Conway of Conway games. This subcategory is symmetric monoidal closed
and inherits a trace operator from the ambient compact closed category. In fact,
the category Conway− inherits its closed structure from an adjunction

Conway−

J

��
⊥ Conway

Neg

��

where Neg removes all the initial Player’s moves in the general Conway game. It
is worth mentioning that early discussions with Masahito Hasegawa on this specific
example enabled him to clarify the general categorical situation: he showed indeed
that every traced symmetric monoidal closed category embeds as a full co-reflective
subcategory in a compact closed category – typically defined by the Int construction,
see [9].
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Conway games and well-bracketed strategies
Since we are interested in defining a compact closed category of games and strate-

gies, it is natural to start from the first category of games and strategies ever consid-
ered in the literature: the category of Conway games defined in [11] which is indeed
compact closed. In fact, the starting point of our work is precisely the observation
that this category is very deeply related to the game model of general references
introduced by Abramsky, Honda and McCusker.

One missing ingredient in Conway games (however) is a notion of well-bracketing
which enables to constraint the strategies of arena games. Hence, we take advantage
of our recent construction of a compact closed category of Conway games and well-
bracketed strategies, see [19]. In fact, our construction goes much further than this,
since we are able to see the very notion of well-bracketing as an effect of linearity
conditions on games and strategies. Although this logical aspect of the construction
is fundamental, its role is very limited here. So, we will avoid discussing the details
of the construction. Let us simply mention that in order to define a notion of
bracketing on Conway games, while keeping the self-dual nature of Conway games,
one needs to replace the traditional notions of question and answer by the more
conceptual (and expressive) notions of query and response attached to the moves.
See [19] and [26] for details.

Memory access modality
It appears that the category of call-by-value games defined by Abramsky, Honda

and McCusker is isomorphic to a well-understood subcategory of the Kleisli category
induced by the replication modality on our category of bracketed games. In fact,
we could easily use their full abstraction result directly in order to obtain a full
abstraction result for our model. But this is not really our point, here. The only
novelty of our work is that the strategy cellA interpreting a memory cell of type A

is obtained in a nice and conceptual way in our formulation.
The existence of a trace operator and a tensorial negation on the category Conway−

enables to construct a very primitive notion of memory cell – called linear memory
cell because it can be written and read only once. The replication modality of tensor
logic enables then to replicate this linear memory cell in order to transform it into a
constant memory cell, where one may write only once, but may then read as many
times as desired.

The very last step is thus to construct a general memory cell. Here, we take
advantage of the presence of linearity in our model, which enables to capture the
difference between the copy management performed by a usual memory cell and by
a constant memory cell. This difference is nicely axiomatized by the existence of
two particular natural transformations

ξA,B : !(A ⊗ !B) −−→ !A ⊗ !B αA : A ⊗ !A −−→ !A

defining what we call a memory access modality. These two maps will enable us to
construct in basic little steps the familiar notion of memory cell:
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• the linear memory cell which can be written and read only once – its construction
requires the negation of tensor logic, and the compact closed structure of Conway
games,

• the constant memory cell which can be written only once, but read an infinite
number of times – this construction requires the replication modality of tensor
logic,

• the familiar memory cell which can be written and read an infinite number of times
– this construction requires the assumption that that the replication modality is
equipped with a memory access map.

Moreover, the resulting notion of memory cell coincides with the strategy cellA

defined by Abramsky, Honda and McCusker in the model of general references.

Bad variables in game semantics of states
One embarrassing point about this game-theoretic approach on references is that

one needs to extend the programming language with a bad variable constructor in
order to achieve the expected full abstraction result, characterizing programs as
visible (or thread-independent) well-bracketed strategies. This particular problem
is nicely explained and corrected in [18] and [21] for ground type references, by
refining the notion of arena game. The main idea is to constrain the use of read
and write moves by introducing new relations on plays and strategies to express
an aspect of uniformity characterizing the interaction of every memory cell strategy.
The main idea is that in absence of bad variables, each variable operation, whether
a Read or a Write, produces the same side-effects while it is being completed.

Confronted to this difficulty, and the wish to extend the original notion of refer-
ence with the ability to compare names, the temptation is high to escape from the
original framework. This may be done in two directions:

• shift to a monadic approach, where the strategies interpreting the imperative
programs are innocent, rather than visible or thread-independent. This is the
solution recently explored in [27] in a nominal setting,

• shift to a game model with an explicit notion of state in the game. This is the
solution recently advocated in [16] and [15].

We hope that our algebraic approach to general references will enable to regulate
the field, and to relate these apparently diverging approaches to game semantics.

Related works
There are not so many axiomatic approaches to programming languages based

on game semantics. Let us mention three of them however. Abramsky gave a
purely axiomatic proof of definability for PCF [1] followed by an axiomatic proof
of full completeness for models of ML polymorphic types, in collaboration with
Lenisa [3]. A few years later, Laird worked out an axiomatic proof of definability for
a language with higher-order store [14]. His construction starts from the definition of
an asymmetric tensor product on games, discussed with the first author a few years
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[V ar]
Γ, x : A � x : A

[Bool]
Γ � b : Bool

[Nat]
Γ � n : Nat

[Unit]
Γ � skip : Unit

[Abs]
Γ, x : α � M : β

Γ � λx.M : α → β
(x /∈ Γ) [App]

Γ � M : α → β Γ � N : α

Γ � MN : β

[Succ]
Γ � M : Nat

Γ � succ M : Nat
[Prec]

Γ � M : Nat
Γ � prec M : Nat

[If ]
Γ � M : Bool Γ � Mi : α(i = 1, 2)

Γ � ifzero M then M1 else M2 : α

[Pair]
Γ � Mi : αi(i = 1, 2)

Γ � 〈M1, M2〉 : α1 × α2
[Proj]

Γ � M : α1 × α2

Γ � πi(M) : αi(i = 1, 2)

[New]
Γ � newA : ref[A]

[MkV ar]
Γ � M : A → Unit Γ � M : Unit → A

Γ � mkvar MN : ref[A]

[Assign]
Γ � M : ref[A] Γ � N : A

Γ � M := N : Unit
[Deref ]

Γ � M : ref[A]

Γ � deref(M) : A

Fig. 1. Typing rules of IdeaML

before. This asymmetry is indeed an important ingredient underlying the interactive
behavior of higher-order store. In this paper, we prefer to derive the asymmetry from
the existence of a pair of left-to-right and right-to-left coercion strategies

¬¬A ⊗ ¬¬B
���� ¬¬(A ⊗ B)

reflecting the fact that the continuation monad ¬¬ is strong but not commutative.
Accordingly, the existence of a retraction

!A � !B � !(!A � B)

mentioned in [14] is very similar to our notion of memory access. It will be interesting
to understand how the logical and algebraic framework developed in this paper
enables to clarify these axiomatic approaches to higher order store.

2 A language with general references

Types and terms
In this section, we recall the call-by-value language with higher-order store con-

sidered by Abramsky, Honda and McCusker. We call this language IdeaML for
clarity’s sake. Its types are defined by the grammar below

A, B ::= Unit | Nat | A → B | A × B | ref[A]

The terms and typing rules of IdeaML are recalled in Figure 1, where Γ is a typing
context which associates a type to every variable. Note that the constructor mkvar
is here to compensate for the presence of bad variables. This problem, first identified
by John Reynolds [25], comes from terms of type ref[A] which do not have a memory
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(V, L, σ) ⇓ (V, L, σ)

M1 ⇓ V1 M2 ⇓ V2

〈M1, M2〉 ⇓ 〈V1, V2〉
M ⇓ 〈V1, V2〉

πi(M) ⇓ Vi(i = 1, 2)

N ⇓ V M ⇓ λx.V ′

MN ⇓ V ′[V/x]

M1 ⇓ V1 M2 ⇓ V2

mkvar M1 M2 ⇓ mkvar V1 V2

M ⇓ 0 M1 ⇓ V

ifzero M then M1 else M2 ⇓ V

M ⇓ n M2 ⇓ V (n 
= 0)

ifzero M then M1 else M2 ⇓ V

M ⇓ V

succ M ⇓ V + 1

M ⇓ V

prec M ⇓ V − 1 (newA, L, σ) ⇓ (l, L ∪ (l : A), σ)
l 
∈ L

(M, L, σ) ⇓ (l, L′, σ′) (N, L′, σ′) ⇓ (V, L′′, σ′′)
(M := N, L, σ) ⇓ (skip, L′′, σ′′(x �→ V ))

(M, L, σ) ⇓ (l, L′, σ′) σ′(l) = V

(deref(M), L, σ) ⇓ (V, L′, σ′)

M ⇓ mkvar V1 V2 N ⇓ V V1(V ) ⇓ skip

M := N ⇓ skip

M ⇓ mkvar V1 V2 V2(skip) ⇓ V

deref(M) ⇓ V

Fig. 2. Operational semantics of IdeaML

interpretation. The constructor mkvar allows to create bad variables from a term
of type A → Unit (the writing method) and from a term of type Unit → A (the
reading method).

Operational semantics
We also recall the operational semantics of the language. A configuration is

defined as a triple (M, L, σ) where M is a term, L is a set of memory locations, and
σ is a partial function, called memory state, which goes from locations to values of
the appropriate type. As in the original paper by Abramsky, Honda and McCusker,
we choose here a big step semantics. We thus need a notion of value, which are
terms of the form:

V ::= n | b | x | skip | λx.V | 〈V1, V2〉

When a configuration (M,L, σ) reduces to a value (V,L′, σ′), we note

(M, L, σ) ⇓ (V,L′, σ′)

For a more convenient notation, when the evolution of the memory state can be left
implicit, we adopt the convention that

M ⇓ V M ′ ⇓ V ′

M ′′ ⇓ V ′′

is an abbreviation for

(M,L, σ) ⇓ (V,L′, σ′) (M ′, L′, σ′) ⇓ (V ′, L′′, σ′′)
(M ′′, L, σ) ⇓ (V ′′, L′′, σ′′)
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Figure 2 describes inductively the operational semantics of our language.

3 Bracketed Conway games

The category Conway of bracketed Conway games was introduced in [19]. As we will
see, it is compact-closed, and its full subcategory Conway− of Opponent-starting
games is symmetric monoidal closed and traced – this providing the appropriate
model of tensor logic in order to perform our algebraic reconstruction of the arena
game model of IdeaML.

3.1 Conway games.

A Conway game A is an oriented rooted graph (VA, EA, λA) consisting of (1) a set VA

of vertices called the positions of the game; (2) a set EA ⊂ VA × VA of edges called
the moves of the game; (3) a function λA : EA → {−1,+1} indicating whether a
move belongs to Opponent (−1) or Proponent (+1). We note �A the root of the
underlying graph. A Conway game is said to be negative (resp. positive) when all
its move starting from the root belongs to Opponent (resp. Proponent).
A play s = m1 · m2 · . . . · mk−1 · mk of a Conway game A is a path s : �A � xk

starting from the root �A

s : �A
m1−−→ x1

m2−−→ . . .
mk−1−−−→ xk−1

mk−−→ xk

Two paths are parallel when they have the same initial and final positions. A play
is alternating when

∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).

We note PlayA the set of plays of a game A.

3.2 Bracketed Conway games.

A bracketed Conway game is defined as a Conway game equipped with

• a finite set QA(x) of queries for each position x ∈ VA of the game,
• a function λA(x) : QA(x) −→ {−1,+1} which assigns to every query in QA(x) a po-

larity which indicates whether the query is made by Opponent (−1) or Proponent
(+1),

• for each move x
m−→ y, a residual relation

[m] ⊂ QA(x) × QA(y)

satisfying:

r[m]r1 and r[m]r2 =⇒ r1 = r2

r1[m]r and r2[m]r =⇒ r1 = r2

P.-A. Melliès, N. Tabareau / Electronic Notes in Theoretical Computer Science 249 (2009) 377–405 387



The definition of residuals is then extended to paths s : x � y in the usual way –
by composition of relations. We then define

r[s] def= {r′ | r[s]r′} and [s]r def= {r′ | r′[s]r}.

We say that a path s : x � y:

• complies with a query r ∈ QA(x) when r has no residual after s — that is, r[s] = ∅,
• initiates a query r ∈ QA(y) when r has no ancestor before s — that is, [s]r = ∅.
We require that a move m only initiates queries of its own polarity, and only complies
with queries of the opposite polarity. In order to formalize that a residual of a query
is intuitively the query itself, we also require that two parallel paths s and t induce
the same residual relation: [s] = [t]. Finally, we require that there are no queries at
the root: QA(�) = ∅.

3.3 Resource function.

Extending Conway games with queries enables the definition of a resource function

κA = (κ+
A, κ−

A)

which counts, for every path s : x � y, the number κ+
A(s) (respectively κ−

A(s)) of
Proponent (respectively Opponent) queries in r ∈ QA(y) initiated by the path s —
that is, such that [s]r = ∅.

3.4 Dual.

Every bracketed Conway game A induces a dual game A∗ obtained simply by re-
versing the polarity of moves and queries.

3.5 Tensor product.

The tensor product A ⊗ B of two bracketed Conway games A and B is essentially
the asynchronous product of the two underlying graphs. More formally, it is defined
as:

• VA⊗B = VA × VB,

• its moves are of two kinds :

x ⊗ y →
⎧⎨
⎩

z ⊗ y if x → z in the game A

x ⊗ z if y → z in the game B,

• QA⊗B(x ⊗ y) = QA(x) � QB(y),

the polarities of moves and queries in the game A ⊗ B is inherited from games A

and B and the residual relation is defined pointwise.
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The unique bracketed Conway game 1 whose underlying Conway game is the
game with a unique position � and no move is the neutral element of the tensor
product. As usual in game semantics, every play s of the game A ⊗ B can be seen
as the interleaving of a play s|A of the game A and a play s|B of the game B.

3.6 Strategies.

A strategy σ of a bracketed Conway game A is defined as a non empty set of al-
ternating plays of even length such that (1) every non empty play starts with an
Opponent move; (2) σ is closed by even length prefix; (3) σ is deterministic, i.e. for
all plays s, and for all moves m, n, n′,

s · m · n ∈ σ ∧ s · m · n′ ∈ σ ⇒ n = n′.

We write σ : A → B to indicate that σ is strategy over the game A∗ ⊗ B.

3.7 Well-bracketed plays.

An alternating play s is well-bracketed (from the Player’s point of view) in the
game A when for every factorization s = s1 ·m · t · n · s2 with m an Opponent move
and n a Player move, one has

κ+
A(m · t · n) = 0 implies κ−

A(m · t · n) = 0

An alternating play s is well-bracketed (from the Opponent’s point of view) in the
game A when it is well-bracketed from the Player’s point of view in the dual game A∗.
An alternating play s is well-bracketed in the game A when it is well-bracketed from
the Player and the Opponent’s point of view.

3.8 Well-bracketed strategies.

A strategy σ is well-bracketed when all its plays s ∈ σ are well-bracketed (from
Player’s point of view).

3.9 Composition.

We define the composite of two strategies σ : A → B and τ : B → C in the usual
fashion based on “parallel composition plus hiding”. The proof that the composite of
two well-bracketed strategies is well-bracketed is far from immediate: the interested
reader will find in [19].

3.10 Identity morphism.

We define the identity morphism idA on a game A by the expected copycat strategy
on the game A∗⊗A, in the same way as André Joyal defined it in [11]. The copycat
strategy replies to any Opponent move in one of the component A∗ or A by the dual
move in the other component.
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3.11 The category of bracketed Conway games.

The category Conway has bracketed Conway games as objects, and well-bracketed
strategies σ of A∗ ⊗ B as morphisms σ : A → B. The resulting category Conway
is compact-closed in the sense of [13]. The unit ηA : 1 → A ⊗ A∗ and counit εA :
A∗ ⊗ A → 1 are defined as the expected copycat strategies.

From now on, we will consider the full subcategory Conway− of negative brack-
eted Conway games. By negative game A, we mean a game where Opponent starts.
This category Conway− is symmetric monoidal, and inherits a trace operator from
the ambient category of bracketed Conway games. Not only that: the category
Conway− is symmetric monoidal closed. As such, it defines a model of tensor logic
for every object ⊥ selected as tensorial pole in the category Conway−. The tenso-
rial negation below is induced by defining ⊥ as the game with a unique move, which
is played by Opponent, and initiates no query.

3.12 Tensorial negation.

The negation ¬A of a negative game is the pointed game obtained by lifting the
dual game A∗ with a unique Opponent move that does not initiate any query.

3.13 Replication modality.

Every negative Conway game A induces a duplicable game !A which should be seen
as some kind of infinite tensor product of the game A. We define !A as follows
• its positions are finite words w = x1 · · ·xk whose letters are positions xi of the

game A which are different from the root; the intuition is that a letter xi describes
the current position in the ith copy of A;

• its root is the empty word �!A = ε;
• a move w → w′ is either a move played in one copy:

w1 y w2 → w1 y′ w2

where y → y′ is a move of the game A and y �= �A; or an opening of a new copy:

w → w · y

where �A → y is a move of the game A strating from the root �A.
• its queries at the position w = x1 · · ·xn are the pairs (i, r) composed by an index

1 ≤ i ≤ n and a query r at the position xi of the game A. In particular, there is
no query at the empty position ε.

The polarities of moves and queries are inherited from those of the game A in the
obvious way; and the residual relation is defined as for the tensor product. Using
the limit construction of free exponentials described in [23,26], we are able to show
that the game !A is the free commutative comonoid generated by the game A. In
this way, we have just defined a model of tensor logic (without coproducts) in a
traced monoidal category equipped with a notion of well-bracketing.
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3.14 Accommodating the additives.

At this point, there remains to define a notion of finite coproduct in the category
Conway−. Unfortunately, the category Conway− does not have coproducts. In-
stead, it has all products, noted &iAi, defined as the direct sum of the underlying
graphs. So, we apply the family construction, described in [5], in order to freely add
the coproducts to our category. One extremely pleasant aspect of tensor logic is that
the category Fam(Conway−) defines a model of tensor logic with sums and a repli-
cation modality inherited from the category Conway−. Namely, the exponential
modality on the category Fam(Conway−) is defined pointwise, and thus transports
an object (Ai)i∈I of the category Fam(Conway−) to the object !(Ai)i∈I = (!Ai)i∈I .

3.15 Notation.

Before interpreting the language IdeaML in our game semantics, we find use-
ful to polarize formulas, so that negative formulas are interpreted in the category
Conway− of Opponent-starting Conway games, whereas the positive formulas are
interpreted in the category

Conway+ def= (Conway−)op

of Player-starting Conway games. In order to distinguish between a positive and a
negative formula, one has to clone every connective of tensor logic. Typically, the
tensorial negation ¬ is cloned as two functor

P

ˆ : Conway− −−→ Conway+
O

´ : Conway+ −−→ Conway−

This leads us to draw the mnemonic table:

Conway− O

´ A+ A− ⊗ B− A− & B− !A−

Conway+
P

ˆ A− A+ ` B+ A+ ⊕ B+ ?A+

Note in particular that the replication modality ! does not alter the polarity of the
negative formula, in contrast to what happens in usual polarized logic. This point
is not only a key aspect of tensor logic: it is also necessary in order to achieve our
reconstruction the memory cell in the next section.

4 Full abstraction by comparison

In this section, we establish a full abstraction theorem for our game semantics of the
language IdeaML. We achieve this by reformulating the game model designed by
Abramsky, Honda and McCusker as a subcategory of the Kleisli category Conway−

!

induced by the replication comonad ! on the category Conway− of negative brack-
eted Conway games.

Recall that Abramsky, Honda and McCusker construct a category AHM with
arena games as objects, and well-bracketed strategies on the game A ⇒ B as mor-
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phisms from A to B, see [2] for details. An arena is a triple A = (MA, λA,�A)
where MA is a set of moves, λA = (λOP

A , λQA
A ) : MA → {O,P}×{Q, A} is a labelling

function and �A is a justification relation between the moves. A strategy of such an
arena is then defined as a set of justified, alternating and well-bracketed plays, in
the tradition of [10].

The three authors declare that a strategy σ is thread-independent when it plays
according each “thread” or “connected component” of the game independently. In
other words, a thread-independent strategy σ plays according to all the moves of the
game which are hereditarily justified by the same initial move. A more conceptual
way to think of these strategies is to observe that they are precisely the comonoid
morphisms between arenas, seen as commutative comonoids in the category AHM,
see [8] for details.

Our point is that every such thread-independent strategy σ from A to B in the
category AHM may be seen as a strategy of the form !A � B in the category
Conway− of negative Conway games. We formalize this intuition below. Let us
define AHMthread the category whose objects are arenas and whose morphisms
from A to B are well-bracketed and thread-independent strategies on the game
A ⇒ B. It is by definition a subcategory of AHM.

We define a faithful (but not full) functor

U : AHM −→ Conway−

which transports an arena A = (MA, λA,�A) to the negative bracketed Conway
game U(A) defined as follows:

• the positions of U(A) are the plays of the arena game A,
• there is a move m between two plays s and s′ precisely when s′ = s · m,
• the polarity of moves is inherited from the polarity of those of A,
• a move s

m−→ s′ initiates a query when m is a question in the game A;
• a move n complies with a query initiated by the move m when n is an answer and

m justifies n.

Every strategy σ of the game A −→ B in the category AHM is transported to the
corresponding strategy σ of the game U(A) −→ U(B) in the category Conway− of
negative bracketed Conway games. The functor U is obviously faithful.

Let us briefly explain why the functor U is not full. This is a subtle point
which deserves to be clarified. The anomaly is minor however, and comes in fact
from the very definition of well-bracketed strategies in arena games – as strategies σ

containing only well-bracketed plays, where well-bracketed means that the play is
well-bracketed from the point of view of Player and Opponent. Given two arena
games A and B, it is generally possible to find an alternating play s in the arena
game A ⇒ B which is well-bracketed from the point of view of Player but not
from the point of view of Opponent. Then, any well-bracketed strategy τ which
contains the play s in the Conway game U(A) � U(B) cannot be the image of a
well-bracketed strategy σ : A −→ B in the category AHM of arena games.
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This anomaly is easy to correct however, since every well-bracketed strategy τ

on a Conway game contains a largest well-bracketed strategy τ̂ of the form U(σ),
defined as the set of plays s ∈ τ which are not only well-bracketed from the point of
view of Player, but also from the point of view of Opponent. The strategies of the
form U(σ) are then characterized as the strategies τ such that the equality τ = τ̂

holds.
The functor U : AHM → Conway− lifts to a faithful functor

Ũ : AHMthread −−→ Conway−
!

such that the following diagram commutes

AHMthread
eU ��

� �

��

Conway−
!� �

��
AHM U �� Conway−

Observe that the category AHMthread defines a subcategory of Conway−
! in which

all the bracketed Conway games of the form U(A) are bracketed in the usual sense...
that a move in the game can initiate at most one query.

At this stage, Abramsky, Honda and McCusker shift to the game semantic in-
terpretation of a call-by-value language, by applying the family construction on the
category AHM, exactly as we have done in order on the category of negative Con-
way games Conway− in order to obtain a model of tensor logic with sums and
replicative modality. From this, we deduce that the category introduced by Abram-
sky, Honda and McCusker in order to give a fully abstract model of IdeaML lives
inside the category Fam(Conway−

!). Moreover, the morphisms of this underling
category are characterized by the equality τ = τ̂ . Besides, the contextual equiva-
lence of the category Fam(Conway−

!) identifies two strategies σ and τ containing
the same well-bracketed plays:

σ ∼ τ ⇐⇒ σ̂ = τ̂ .

Hence, the category Fam(Conway−
!) provides a fully abstract model of IdeaML

which coincides with the model provided by Abramsky, Honda and McCusker after
this mild quotient by contextual equivalence.

5 An algebraic account of memory cells

The main novelty of our approach to general references is that it enables us to recon-
struct the interactive strategy interpreting the memory cell in a purely conceptual
way. In fact, we work gradually, and define three different paradigms of memory cell,
using tensor logic and the compact closed structure of the underlying category of
Conway games. A pleasant aspect of the approach is to relate the copy management
performed by the familiar memory cell to the existence of a natural transformation
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on the replication modality

ξA,B : !(A ⊗ !B) −−→ !A ⊗ !B

satisfying two coherence laws.

5.1 An analysis of the strategy cellA.

Before constructing the strategies associated to each kind of cell, it seems useful to
recall how the language IdeaML is interpreted in the category Fam(Conway−),
following [2]. Abramsky, Honda and McCusker interpret the call-by-value language
IdeaML using a cartesian closed category equipped with a strong monad. This
monad, defined on the family category, is described in our model by

T (Ai)i∈I
def= (

O

´ ⊕i

P

ˆ Ai)

seen as a singleton family in the category Fam(Conway−). The unit of this monad
is obtained from the unit of the continuation monad and from injections. The
strength of the monad T is easily deduced from the strength of the continuation
monad. We note

TA ⊗ TB
leftA,B ��
rightA,B

�� T (A ⊗ B)

the left-to-right and right-to-left coercions of the strong monad T . The interpretation
of a typing judgment

x1 : X1, · · ·xn : Xn � M : A

is given by a morphism

!{X1} ⊗ · · · ⊗ !{Xn} −−→ T{A}

where {A} = (Ai)i∈I is the translation of the type A in the category Fam(Conway−).
Such a morphism in the category Fam(Conway−) may be seen as a strategy which
lets Opponent choose a component Yi in each family Xi, and then plays according
to a strategy

!Y1 ⊗ · · · ⊗ !Yn −−→ O

´ ⊕i

P

ˆ Ai

in the category Conway−. The translation of the arena corresponding to the type
ref[A] is the bracketed game

{ref[A]} def= !(&i

O

´ (
P

ˆ 1 ` ?A∗
i )) ⊗ ! T (Ai)

def= !Write!A ⊗ !ReadA

seen as a singleton family in the category Fam(Conway−). The formulas

WriteA = &i

O

´ (
P

ˆ 1 ` A∗
i ) ReadA = T (Ai)i∈I
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{Γ � new x : A, y : B in M} = {Γ � new y : B, x : A in M} (1)

{Γ, x : ref[A] � new y : B in x := V ; M} = {Γ, x : ref[A] � x := V ; new y : B in M} (2)

{Γ � new x : A, y : B in x := V1; y := V2; M} = {Γ � new x : A, y : B in y := V2; x := V1; M} (3)

{Γ � new x : A in x := V ; (λy.M)(deref(x))} = {Γ � new x : A in x := V ; (λy.M)V } (4)

{Γ � new x : A in x := V1; x := V2; M} = {Γ � new x : A in x := V2; M} (5)

Fig. 3. Semantics of the memory cell

denote the type of the write and read methods for the family A = (Ai)i∈I . When
I = {i} is a singleton, the game T{ref[A]} can be depicted as the arena

O

P!
����

� !����

write(i)
����

�?
����

read

A∗
i ok i

Ai

The interactive strategy cellA implementing the memory cell may be described
informally as follows:

• the strategy cellA reacts to the first move O by playing the move P ,
• if the next move played by Opponent is read, the strategy does not respond,
• the strategy cellA reacts to the move write(i) by playing the move ok,
• when Opponent plays the move read and when the last writing move which has

been played is write(i), the strategy cellA answers i,
• when Opponent plays an initial move of Ai in the read component, the strategy
cellA answers by playing an initial move in a new copy of the game ?A∗

i , which
corresponds to the last move write(i) played,

• then, the strategy cellA copycats the Opponent moves in Ai (resp. A∗
i ) by playing

the corresponding moves in A∗
i (resp. Ai).

We will now reconstruct the strategy cellA in three elementary steps.

5.2 Linear memory cell and dual object.

First, we construct the strategy lin_cellA of type

1
lin_cellA−−−−−−−→ T

(
WriteA ⊗ ReadA

)
, (6)

which interprets the linear memory cell. The construction of this strategy relies on
the tensorial negation and on the existence of dual objects. Those two things enable
to build a right inverse to the strength tA,B,C

tA,B,C :
O

´ (A`
P

ˆ (B ⊗ C)) −−→ O

´ (A`
P

ˆ B) ⊗ C.
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The construction starts from an elementary property of duals in a monoidal closed
category, which the interested reader will find mentioned by Peter May [17].

Proposition 5.1 Let (C,⊗, 1,�) be a symmetric monoidal closed category. If the
object C possesses a dual object C∗ in the category C, then the canonical morphism

fA,B,C : (A � B) ⊗ C −−→ A � (B ⊗ C)

is an isomorphism, for every object A and B.

We use a variant of this property, where the closure is replaced by a tensorial nega-
tion. As starting point, we observe that the strength

O

´ (A`
P

ˆ B) ⊗ C
tA,B,C−−−−→ O

´ (A`
P

ˆ (B ⊗ C))

which exists in the category Conway− extends in fact to the whole category Conway.
This point is subtle: note in particular that the strategy tA,B,C is partial when the
game C is positive, since it does not answer when Opponent plays his first move in
the left hand side game C. For that reason, the algebraic and logical status of the
strength in the whole category Conway remains somewhat enigmatic at that level
of description.

The strategy tA,B,C in the category Conway may be defined as follows:

O

´ (A`
P

ˆ (B ⊗ C))
−⊗ηC−−−−→ O

´ (A`
P

ˆ (B ⊗ C)) ⊗ C∗ ⊗ C

t⊗C−−→ O

´ (A`
P

ˆ (B ⊗ C ⊗ C∗)) ⊗ C

(−⊗εC)⊗C−−−−−−−→ O

´ (A`
P

ˆ B) ⊗ C.

When the game A is positive and the games B and C are negative, the resulting
strategy defines a morphism in the category Conway−, which is right inverse to
the strength. This right inverse morphism will be at the heart of our definition of
the strategy lin_cellA. The construction starts by composing the injection of the
singleton family (Ai) into the family (Ai)i∈I with the unit of the monad T

Ai −−→ (Ai)i∈I −−→ T (Ai)i∈I = ReadA. (7)

We then take its image by the tensorial negation and apply the law defining the
tensorial negation, so as to obtain the morphism

χ(Ai) : 1 −−→ O

´ (A∗
i`

P

ˆ ReadA

)
.

Then, we use the right inverse of the strength for A = A∗
i , B = 1 and C = ReadA
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and define a strategy of domain and codomain

write(i)
������

A∗
i ok

read

i

Ai

−→
write(i)

������
read

A∗
i ok i

Ai

in the arena games notation. Every play s played by this strategy starts with the
moves

write(i) · (write(i))∗ · i∗ · i
followed by a copycat strategy. So, the strategy is the copycat strategy which does
not answer in the case Opponent decides to read the memory cell before writing in
it.

At this stage, there only remains to take the product on every index i and to
compose with the unit of the continuation monad, in order to obtain the strategy
lin_cellA described by Equation (6). The linear dereference method is defined by
the copycat strategy on TReadA, and the linear assign method is provided by

assignlinA
def= eval

A,
P

ˆ1
: A ⊗ WriteA −−→ T1

where
evalA,B : A⊗ O

´ (A∗ ` B) → O

´ B

is obtained by applying the law defining the tensorial negation to the identity mor-
phism

O

´ (A∗ ` B) id−−→ O

´ (A∗ ` B).
At this point, we show that this linear memory cell is well behaved in the sense that
it satisfies the first four equations of Figure 3. Those four equations are well known
because they constitute four of the five equations validated by a memory cell in the
work of Abramsky, Honda and McCusker [2]. They ensure together the soundness
of a linear memory cell.

The formalism provided by tensor logic enables us to deduce the validity of
those four equations in a purely categorical way, using commutative diagrams of an
algebraic flavor. In particular, we never have to refer to the strategies underlying
the canonical morphisms.

(i) Equality (1) comes from the fact that the diagram

A ⊗ B
ηA⊗ηB �� TA ⊗ TB

leftA,B ��
rightA,B

�� T (A ⊗ B)

commutes, where the two morphisms leftA,B and rightA,B are the left-to-
right and right-to-left coercions induced by the strong monad T ,

(ii) Equality (2) follows directly from the coherence laws (associativity and multi-
plication) satisfied by the monad T ,
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(iii) Equality (3) follows from the bifunctoriality of the tensor product,

(iv) Equality (4) is more difficult to derive, because it involves diagrammatic prop-
erties of the morphism t. In order to simplify, we only describe here the key
diagrams in the case of a singleton family, (Ai)i∈I = (A). Namely, we use
the fact that the morphism tis constructed from the strength of the tensorial
negation and from the unit and counit of the compact closed structure.

More precisely, this equation reduces to the commutative diagram

TA
TA⊗χA ��

tA,1

TA⊗ O

´ (A∗`
P

ˆ TA)
TA⊗ tA∗,1,TA ��

tA,X1

��

TA⊗ O

´ (A∗`
P

ˆ 1) ⊗ TA

tA,X2

��

TA
T (A⊗χA)

��
T (A⊗ O

´ (A∗`
P

ˆ TA))
T (A⊗ tA∗,1,TA) ��

TevalA,Y1

��

T (A⊗ O

´ (A∗`
P

ˆ 1) ⊗ TA)

T (assignlinA⊗TA)

��
T (T 2A)

TμA

��

T t1,1,TA �� T (T1 ⊗ TA)

Tleft,1,A
��																													

TTA

μA

��
TA

where

X1 =
O

´ (A∗`
P

ˆ TA) X2 =
O

´ (A∗`
P

ˆ 1) ⊗ TA Y1 =
P

ˆ TA.

The two squares on the top commute by naturality of the strength of the monad T .
The bottom-left triangle commutes as a variation on the zigzag identity involving
the tensorial negation. By expanding the definition of tand using the naturality of
the unit and counit coming from the compact closed structure, the commutation of
the square involving eval can be reduced to the commutation of the square,

A⊗ O

´ (A∗`
P

ˆ TA) ⊗ (TA)∗
A⊗tA∗,TA,(TA)∗ ��

evalA,Y1
⊗(TA)∗

��

A⊗ O

´ (A∗`
P

ˆ (TA ⊗ (TA)∗))

evalA,Y2

��
T 2A ⊗ (TA)∗

tTA,(TA)∗ �� T (TA ⊗ (TA)∗)

where Y2 =
P

ˆ (TA ⊗ (TA)∗). In the same way, to see that the down-right triangle
commutes, we have to come back to the definition of t. The commutation is then
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reduced to the commutation of the diagram

T 2A
T 2A⊗ηTA ��

tTA,1=idT2A

T 2A ⊗ (TA)∗ ⊗ TA
tTA,(TA)∗⊗TA��

tTA,(TA)∗⊗TA ��



















T (TA ⊗ (TA)∗) ⊗ TA

TεTA⊗TA ��

tTA⊗(TA)∗,TA

��

T1 ⊗ TA

t1,A

��
T 2A T (TA⊗ηTA)

�� T (TA ⊗ (TA)∗ ⊗ TA)
T (εTA⊗TA)

�� T 2A

The left square commutes by naturality of the strength, the triangle in the middle
commutes by associativity of the strength, and the square on the right commutes
again by naturality of the strength.

5.3 Constant cell and replication modality.

We describe below the strategy const_cellA which interprets the constant memory
cell in which one can write only once, but read infinitely many times. We construct
it by taking the image through ! of the morphism (7) obtained by composing an
injection and the unit of the monad T

!Ai −−→ !A = (!Ai)i∈I −−→ !ReadA

instantiated at the family A = (Ai)i∈I . We then apply the same transformation as
for the linear memory cell, and obtain a morphism

1
const_cellA−−−−−−−−→ T (Write!A ⊗ !ReadA). (8)

This strategy has only one writing stage, and then throws a new copy on the same
thread each time Opponent asks for reading the value. The dereference method is
given by the dereliction

derefA
def= εTA : !ReadA −−→ TA

while the constant assign method is given by

assignconstA
def= eval

!A,
P

ˆ1
: !A ⊗ Write!A −−→ T1

Using the naturality of the dereliction of the replication modality, one easily estab-
lishes that the constant memory cell validates the first four equations of Figure 3
from the fact that the linear memory cell satisfies them.

5.4 Memory cell and temporality.

At this point, we are ready to describe the memory cell which can be written and
read an infinite number of times. The most natural idea is to think of such a memory
cell as an infinite number of constant memory cells. This gives rise to a strategy of
type

1 −−→ !(Write!A ⊗ !ReadA)
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where the scheduling of each copy is explicit. The whole point of the memory cell is
precisely to hide this management at the level of types. In order to achieve this, it
is necessary to take advantage of the high level of control available in the strategies
between Conway games, in order to define a memory access strategy

ξWrite!A,ReadA : !(Write!A ⊗ !ReadA) → !Write!A ⊗ !ReadA

whose task is to enforce that every time a read access is performed on the memory
cell, it reads the last written value. We start by defining this strategy in the language
of Conway games, before describing the series of algebraic properties it satisfies. It
is worth observing already that since the strategy is not innocent (not even visible),
there is no hope to define it using structural morphisms. Given a play s of the game
!A ⊗ !B

s : �!A⊗!B � (wA, wB)
where wA ∈ V!A and wB ∈ V!B, we define the position of the game !(A ⊗ !B)

(wA, wB) ↓ s
def= (a1, w1) · · · (an, wn)

where ai ∈ VA and wi ∈ V!B for all 1 ≤ i ≤ n, by requiring that

wA = a1 · · · an wB = w1 · · ·wn

and that the copies of the component B appearing in the position wi have been
opened by the play s after the copy of the component A corresponding to the posi-
tion ai, and before the copy of the component A corresponding to the position ai+1.
So, the transformation of (wA, wB) into (wA, wB) ↓ s consists in gathering together
as wi all the copies of the component B opened by the play s between the i-th and
(i + 1)-th copies of the component A, witnessed by the positions ai and ai+1. This
scheduling enables us to define the memory access function

f : Play!A⊗!B → Play!(A⊗!B)

as the unique function

s : �!A⊗!B � (w, w′) �→ f(s) : �!(A⊗!B) � (w, w′) ↓ s

such that the plays s and f(s) have the same underlying moves. This memory access
function induces a memory access strategy

ξA,B : !(A ⊗ !B) → !A ⊗ !B

defined as
ξA,B

def= {s | ∀t ≺ s , t|!(A⊗!B) = f(t|!A⊗!B)}
where s and t are even length paths of the game !(A ⊗ !B) � (!A ⊗ !B) and t is a
prefix of s. We will also need to consider the strategy

αA : A ⊗ !A −−→ !A
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consisting of a copycat between the first opened copy of the game !A on the right-
hand side and the game A, followed by a copycat between the other copies of the
game !A and the game !A on the left-hand side. We will now axiomatize the proper-
ties satisfied by the memory access strategy, properties that will be enough to show
the validity of this strategy (for clarity, we omit explicit mention to the associativity
in the monoidal category).

A memory access modality is defined as a replication modality ! equipped with
two natural transformations ξ and α of component

ξA,B : !(A ⊗ !B) −−→ !A ⊗ !B αA : A ⊗ !A −−→ !A

such that the diagrams

!(TA ⊗ !TB)
ξTA,TB ��

εTA⊗!TB

��

!TA ⊗ !TB

εTA⊗εTB

��
TA ⊗ !TB

TA⊗εTB

��

TA ⊗ TB

leftA,B

��
TA ⊗ TB leftA,B

�� T (A ⊗ B)

(9)

!(TA ⊗ !TB)
ξTA,TB ��

dTA⊗!TB

��

!TA ⊗ !TB

dTA⊗!TB

��
!(TA ⊗ !TB) ⊗ !(TA ⊗ !TB)

εTA⊗!TB⊗εTA⊗!TB

��

!TA ⊗ !TA ⊗ !TB

εTA⊗εTA⊗εTB

��
TA ⊗ !TB ⊗ TA ⊗ !TB

TA⊗eTB⊗TA⊗εTB

��

TA ⊗ TA ⊗ TB

leftA,A⊗TB;leftA⊗A,B

��
TA ⊗ TA ⊗ TB

leftA,A⊗TB;leftA⊗A,B

�� T (A ⊗ A ⊗ B)

(10)

TA⊗!TB⊗!(TA⊗!TB)

TA⊗!TB⊗ε
��

α �� !(TA⊗!TB) d �� !(TA⊗!TB)⊗!(TA⊗!TB)

ε⊗ε
��

TA⊗!TB ⊗ TA⊗!TB

TA⊗e⊗TA⊗ε
��

TA⊗!TB ⊗ TA⊗!TB

TA⊗e⊗TA⊗ε
��

TA ⊗ TA ⊗ TB

leftA,A⊗TB

��

TA ⊗ TA ⊗ TB

leftA,A⊗TB

��
T (A ⊗ A) ⊗ TB

leftA⊗A,B�� T (A ⊗ A ⊗ B) T (A ⊗ A) ⊗ TB
leftA⊗A,B		

(11)
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commute, where εA : !A → A denotes the unit and dA : !A → !A ⊗ !A denotes the
multiplication of the replication comonad ! while eA denotes the counit of the com-
mutative comonoid !A. We let the reader check that the memory access strategy ξ

satisfies the Diagrams (9) and (10) and that the strategy α satisfies the Diagram
(11). This enables us to define the memory cell as the strategy

cellA
def= ξWrite!A,ReadA ◦ !const_cellA

Coarsely speaking, Diagram (9) states that the memory cell behaves as the constant
cell on the first copy. Diagram (10) states that the copy in B are linked to the last
opened copy of A. It is worth stressing here the crucial use of the strength of the
monad T in order to express the order in which the different copies are opened and
played.

At this point, there remains to show that the notion of memory access is sufficient
to guarantee that the strategy cellA interpreting the memory cell, validates the five
equations exhibited in the work of Abramsky, Honda and McCusker [2], see Figure
3. The first three equations are deduced from the same ingredients as for the linear
or constant cell. Namely, we use properties of the tensor product and of the strong
monad T .

Equation (4) is more difficult to derive, and follows essentially from Diagram (9).
The proof is purely diagrammatic. The basic idea is to establish that for a unique
assignment, the memory cell behaves as the constant memory cell, and then, to take
advantage of the fact that we already know that the constant memory cell validates
Equation (4). Technically speaking, the proof is based on the diagram

1
!(f⊗const_cellA) ��

f⊗!const_cellA

��

!(!A ⊗ Write!A ⊗ !ReadA)
ξ!A⊗Write!A,ReadA ��

!(assignA⊗!ReadA)

��

!(!A ⊗ Write!A) ⊗ !ReadA

!assignA⊗!ReadA

��
!A ⊗ !(Write!A ⊗ !ReadA)

!A⊗εWrite!A⊗!ReadA

��

!(T1 ⊗ !ReadA)
ξT1,ReadA ��

εT1⊗!ReadA

��

!T1 ⊗ !ReadA

εT1⊗εReadA

��
!A ⊗ Write!A ⊗ !ReadA assignA⊗!ReadA

�� T1 ⊗ !ReadA

T1⊗εReadA

��

T1 ⊗ ReadA

left1,A

��
T1 ⊗ ReadA left1,A

�� TReadA

which is shown to commute for every morphism f : 1 → !A. The left top square
commutes by naturality of the counit ε, the right top square commutes by naturality
of the memory access ξ, and the bottom square commutes as an instance of Dia-
gram (9). This diagram states that a single use of the assign or dereference method
induces the same interactive behaviour for the memory cell as for the constant cell.

Finally, Equation (5) follows essentially from our assumption that Diagram (10)
commutes, which ensures that a memory cell always reads the last written value.
Just as in the case of Equation (4), the proof is purely diagrammatic. The basic idea
of the proof is to establish that for every pair of morphisms f, g : 1 → !A, whenever
one assigns the value f and then the value g to the memory cell, and then one reads
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the cell, one gets the value g. In order to establish this fundamental property, it
appears convenient to introduce the morphism

f � g : 1 −→ !(!A ⊗ Write!A ⊗ !ReadA)

defined as

f � g
def= (f ⊗ const_cellA) ⊗ !(g ⊗ const_cellA);α!A⊗Write!A⊗!ReadA

in the category Fam(Conway−). The proof is based on the following diagram

1

f⊗g⊗!const_cellA

��

f�g �� !(!A ⊗ Write!A ⊗ !ReadA)

!(assignA⊗!ReadA)

��

ξ!A⊗WriteA,ReadA

�� !(!A ⊗ Write!A) ⊗ !ReadA

!assignA⊗!ReadA

��!A ⊗ !A⊗
!(Write!A ⊗ !ReadA)

!A ⊗ !A⊗
dWrite!A⊗!ReadA ��

!(T1 ⊗ !ReadA)
ξT1,ReadA ��

dT1⊗!ReadA

��

!T1 ⊗ !ReadA

dT1⊗!ReadA

��!A ⊗ !A ⊗ Write!A ⊗ !ReadA
⊗Write!A ⊗ !ReadA

σ;assignA⊗assignA

��

!(T1 ⊗ !ReadA) ⊗ !(T1 ⊗ !ReadA)

εT1⊗!ReadA⊗εT1⊗!ReadA
��

!T1 ⊗ !T1 ⊗ !ReadA

εT A⊗εT A⊗εReadA

��
T1 ⊗ !ReadA ⊗ T1 ⊗ !ReadA

T1 ⊗ eReadA

⊗T1 ⊗ εReadA ��

T1 ⊗ !ReadA ⊗ T1 ⊗ !ReadA

T1 ⊗ eReadA

⊗T1 ⊗ εReadA ��

T1 ⊗ T1 ⊗ ReadA

left1,1 ⊗ ReadA;
left1,A ��

T1 ⊗ T1 ⊗ ReadA T1 ⊗ T1 ⊗ ReadA left1,1 ⊗ ReadA;
left1,A

�� ReadA

which is shown to commute for every pair of morphisms f and g: the right top square
commutes by naturality of ξ, the right bottom square is an instance of Diagram (10)
and we leave the reader check the left square postcomposed with the morphism

T1 ⊗ T1 ⊗ ReadA
left1,1⊗ReadA �� T1 ⊗ ReadA

left1,A �� ReadA

commutes, this fact itself following from our assumption that Diagram (11) com-
mutes.

6 Conclusion and future works

We have defined a compact closed category of games, equipped with a notion of
well-bracketing. This category offers an alternative way to think of the fully abstract
model of the call-by-value language with higher-order store defined by Abramsky,
Honda and McCusker. One interesting point about our approach is that the treat-
ment of the memory cell is done diagrammatically, thus avoiding the direct and
somewhat uncomfortable definitions and proofs in the original paper. We use only
a fragment of our linear type system, corresponding to the traditional notion of
“bracket” in arena games. We believe that this offers an opportunity to refine the
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type system of the original programming language, in order to integrate the hugely
extended notion of control provided by linear logic. It would be also interesting to
analyze the models defined by McCusker [18] and Murawski [21] in order to avoid
the bad variable constructor mkvar in the definition of the language. More gener-
ally, we believe that much remains to be done in order to understand the algebraic
structure of memory in game semantics. Ideally, this algebraic analysis should con-
nect the game models based on visible or thread-independent strategies studied in
this paper, with the monadic approach to general references recently advocated by
Tzevelekos [27] which is based on innocent strategies and a state monad defined by
recursion on all types.
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