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Abstract

We present an immersed boundary method based on volume penalization, with which pulsatile flow in a model
cerebral aneurysm is simulated. The model aneurysm consists of a curved vessel merged with a spherical cavity. The
dominant vortical structures arising in the time-dependent flow are discussed and the evolution of the maximal shear
stress in the aneurysm is analyzed. We approximate flow properties of blood by those of an incompressible Newtonian
fluid. The flow inside the aneurysm is simulated with the use of a skew-symmetric finite-volume discretization and
explicit time-stepping. We focus on effects due to variations in the amplitude of the pulsatile flow as well as due to
changes in the Reynolds number (Re) by studying flow at Re = 100, 250 and 500. At Re = 500 a complex time-
dependence in the shear stress levels is observed, reflecting the lively development of the flow in the model aneurysm
in which vortices are created continuously inside the curved vessel and in the spherical cavity of the aneurysm. An
increase in the amplitude of the pulsatile flow increases the shear stress levels somewhat, but at Re = 500 the flow is
mainly dominated by its intrinsic unsteadiness. Reducing the Reynolds number yields a stronger contribution of the
periodic pulsatile flow forcing: at Re = 100 we find a strong dominance of shear stress levels due to the forcing, while
at Re = 250 the intrinsic and pulsatile unsteadiness are of comparable importance.
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1. Introduction

There is a growing medical need to obtain predictions of the flow behavior and shear stresses inside the human
brain that is specific to individual patients. The prediction of the flow constitutes a challenging and timely computa-
tional multiscale modeling problem, aimed at understanding and identifying the likelihood of long-time rupture from
an analysis of short-time pulsatile flow [13]. Understanding such pulsatile flow patterns will help to describe long-
time accumulation effects such as the growth of an aneurysm, or the deterioration of the vessel wall due to reduced
blood circulation. This capability allows also a more complete planning of surgical intervention and can be used to
predict the effectiveness of such procedures. A huge amount of work has been done on Computational Fluid Dynamics
(CFD) of flow in the human brain and in the cardiovascular system [11, 2, 1, 12, 6, 3]. The most commonly adopted
numerical approach is the finite element method. This method can, in principle, represent highly complex geome-
tries but at considerable expense, particularly when dealing with raw biomedical imagery to define vessel geometries
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2. Numerical method

In this section we introduce the fluid-mechanical model that is used to simulate blood flow in cerebral aneurysms.
The numerical method employs a volume-penalization immersed boundary (IB) method, which is briefly reviewed
and illustrated for the geometry of a curved blood vessel. For viscous flow at Reynolds number Re = 1 we present
convergence findings achieved by grid refinement.

There is a number of different approaches to model flow of blood in the human brain. A comprehensive overview
is given in [12]. One way is to approximate blood as a simple Newtonian fluid with constant viscosity [2]. More
refined models include the shear-thinning behavior of blood by adopting, e.g., the Carreau-Yasuda model to capture
non-Newtonian rheology [1, 6]. Under physiological flow conditions in sufficiently large arteries the non-Newtonian
corrections were found to be quite small [11, 3]. The main flow features were the same as in Newtonian flow,
albeit at somewhat different stress and velocity levels. In this paper we study to what extent an immersed boundary
method is suitable to simulate time-dependent flow in the circle of Willis; for these low Reynolds flows in larger
cerebral vessels non-Newtonian corrections are neglected. Hence, we restrict to incompressible Newtonian fluid
mechanics as represented by the Navier-Stokes equations. The total physical domain Ω consists of a fluid part Ω f and
a complementary solid part Ωs. The interface between the two will be identified as ∂Ω f at which the no-slip condition
applies. The governing equations, completed with a no-slip boundary condition on the solid walls of the domain are
given in non-dimensional form by:

∂u
∂t
+ u · ∇u = −∇p +

1
Re
∇2u + f (1)

∇ · u = 0 (2)
with u = 0 at ∂Ω f (3)

where u is the velocity of the fluid in the domain Ω, p is the pressure and Re = UL/ν is the Reynolds number, in terms
of a reference velocity U, a reference length scale L and the kinematic viscosity ν = μ/ρ with molecular viscosity
given by μ and the fluid mass density ρ. In our model the length scale is of the order of the diameter of a vessel
connecting to an aneurysm cavity, while the reference velocity is of the order of the bulk velocity derived from the
mass flow-rate Q and the cross-sectional area of a vessel A, i.e., U = Q/A. Obviously, the velocity inside the solid
regions should vanish. This may be expressed to very close approximation by a proper selection of the forcing term f
giving rise to a volume penalization immersed boundary method [10]. We describe this approach in more detail next.

The IB method provides an alternative to conventional numerical simulation methods in case flow in and around
very complex spatial domains is considered. Conventional methods adhere to computational meshes that are body-
fitted. With this approach the gridding of the fluid region becomes very time consuming for complex domains. The
task of generating grids that yield an accurate discrete computational model is correspondingly difficult, up to the
point of becoming impractical. Instead, the IB method can be formulated entirely in terms of an uniform Cartesian
grid. The geometry over and through which the flow takes place is simply immersed in a ‘block’ of physical space.
These striking differences in the computational strategies also imply important consequences for the accuracy with
which flow near solid boundaries may generally be captured. Conventional body-fitted methods allow, in principle,
for a precise representation of no-slip conditions at the body. In contrast, the accuracy achieved by an IB method
generally is reduced by the fact that the geometry is not aligned with the Cartesian grid and the location of the solid-
fluid interface is known only to within a grid-spacing. The accuracy of the resulting IB method will be considered
for the velocity field u as well as its gradient, e.g., in terms of the shear stresses that develop. As illustrated in [8]
reliable results can readily be obtained at moderate Reynolds numbers, even with the coarse staircase approach to the
solid-fluid interface.

The forcing term f in our IB method represents the impenetrability of a stationary solid wall to fluid flow. It is
approximated by direct penalization of the flow from entering the solid domain by choosing

f = −1
ε

H(x)u(x, t) (4)

The control parameter ε � 1 (a typical value used here is ε = 10−10) and H(x) is the so-called ‘masking function’
which distinguishes fluid parts from solid parts of the computational domain. For a point x which belongs to a fluid
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[2, 6, 3]. As an alternative approach, designed primarily to treat flow in domains of realistic complexity, we present
the development and application of an immersed boundary (IB) method capable to reliably compute flow and shear
stresses at various flow conditions and vessel geometries. We concentrate on a generic model aneurysm with which
the flow and forces are studied at a range of physiologically relevant Reynolds numbers and various amplitudes of the
pulsatile flow. The effects of the pulsatile flow are found to be strongest for very viscous flow, i.e., at relatively low
Reynolds numbers, while the intrinsic unsteadiness of the flow at higher Reynolds numbers is dominant.

In medical applications the shape of cerebral aneurysms developing in patients can be inferred by using three-
dimensional rotational angiography [4]. In this procedure a small volume of brain tissue can be scanned, allowing an
approximate identification of the fluid and the solid parts. A volume-penalization immersed boundary (IB) method
is applied to represent the aneurysm geometry. In this IB approach the flow domain is characterized by a so-called
‘masking function’, which takes the value ‘0’ in a fluid part and ‘1’ in solid parts of the domain. The raw angiography
data allows for a simple ‘staircase approximation’ of the vessel and aneurysm shape in which individual pixels in
the digital data form the smallest unit of localization of the solid-fluid interface. This raw information specifies
the masking function. We will adopt the ‘staircase’ geometry representation in this paper and do not incorporate
any additional smoothing of the geometry or the use of sophisticated reconstruction methods. For a more complete
modeling of the dynamics in the vessel system, flow-structure interaction often plays a role [12]. In that case also
parameters and models that characterize mechanical elasticity of brain tissue are required. In this paper we restrict to
developing the IB approach for relatively small cerebral aneurysms for which movements of the vessel wall is often
not a primary concern and, hence, a detailed mechanical characterization is not required.

Cerebral aneurysms are most often located in the Circle of Willis – the central vessel network for the supply of
blood to the human brain. The common risk-areas are at ‘T’ and ‘Y’-shaped junctions in the vessels of the Circle of
Willis [5]. This motivates to analyze the flow in basic vessel and aneurysm structures by modeling them as curved
cylindrical tubes to which spherical cavities are attached. The computational model for the simulation of blood flow
through the larger vessels in the human brain is based on the incompressible Navier-Stokes equations. The flow
inside the vessels is simulated with a skew-symmetric finite-volume discretization on a uniform Cartesian grid and
explicit time-stepping. In this paper we illustrate our IB approach by predicting unsteady flow in basic cylindrical
and spherical geometries. This allows a detailed assessment of the quality of the flow predictions and forms essential
stepping stone problems on the way toward adopting the IB flow solver on a patient-specific basis.

The quality of the predictions depends strongly on the spatial resolution that can be afforded. From a previous
study of Poiseuille flow in channels and pipes [9, 8] we inferred that about 16 grid points per coordinate direction
suffice to obtain reliable laminar flow predictions. For general geometries that are not aligned with the underlying
Cartesian grid, first order convergence upon grid-refinement was established. Using an energy-conserving skew-
symmetric discretization [14] the IB approach was found to provide reliable information about the flow structure and
associated stress levels. Such computational modeling augments current clinical data and can, in future, help improve
the planning and execution of surgical interventions.

In [8] several strategies to generate a masking function were compared. For the test-case of Poiseuille flow, the
analysis of the numerical method showed an overall first order convergence. This low convergence order is associated
with the non-alignment of the geometry with the underlying Cartesian grid. Flow emerging from steady forcing was
investigated and the laminar velocity and shear stress distribution were computed. In this paper we focus on pulsatile
flow through a model aneurysm, i.e., we investigate the flow response to a time-dependent, prescribed mass flow rate.
For convenience we impose a sinusoidal function for variations in the mass flow rate and investigate effects arising
from changes in the pulsatile amplitude at various Reynolds numbers, taken in the range 100-500 to comply with
clinical data in [7, 12]. The IB method in combination with skew-symmetric finite volume discretization was found
suitable to capture the dominant flow structures and the corresponding time-dependent shear stresses on the aneurysm
walls. At sufficiently low Reynolds number, e.g., at sufficiently low fluid velocity or at sufficiently high viscosity,
the effect of periodic variation in the mass flow rate dominates the developing flow. Conversely, at higher Reynolds
numbers the flow displays an intrinsic unsteadiness associated with the nonlinearity in the Navier-Stokes equations,
which is strong enough to overwhelm the detailed periodic variations in the flow rate.

The organization of this paper is as follows. In Section 2 we present a brief sketch of the IB method that is applied
to the curved vessel geometry and discuss the convergence of numerical predictions. The dynamics of pulsatile flow
is discussed in Section 3 and an analysis of shear stress levels in pulsatile flow is given in Section 4. Concluding
remarks are in Section 5.
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part Ω f the masking function H(x) = 0. Correspondingly, around such a location the regular Navier-Stokes system in
(1)-(2) is employed. For any location inside the solid part Ωs of the domain the masking function H takes the value
1. Since ε is chosen very small, the forcing inside the solid domain dominates all other fluxes in the Navier-Stokes
equations.

The form of the forcing f inside the solid part implies that the velocity component u is negligible; if at some
location in the solid u would, for some reason, have become non-zero then the forcing drives the local velocity
exponentially quickly back to negligible values. In the region near the interface between the solid and the fluid parts
of the domain the velocity field would be forced to negligible values within a very thin strip of the grid. A sufficiently
small value of ε will imply a very localized region in which a non-trivial flow in Ω f connects to a solution with
negligible values in Ωs. This rough sketch identifies that the simple volume forcing (4) can indeed approximate a no-
slip boundary condition, localized to within one grid cell. Thus, accurate results can in principle be achieved provided
the spatial resolution is adequate.

Numerically the equations resulting from the introduction of the forcing (4) in the Navier-Stokes equations are
treated with a finite-volume discretization where the skew-symmetry of the nonlinear convective fluxes and the
positive-definite dissipative nature of the viscous fluxes are preserved [14]. This method can be shown to be sta-
ble on any (coarse) resolution, with a proper treating of a small scale details in a numerical solution. In order to
capture forces on the solid walls of the domain the treatment of the small near-wall flow structures is essential. A
second order accurate method for the fluxes is employed, implemented on a staggered grid. The effect of these fluxes
is integrated in time using an explicit time-stepping algorithm of Adams-Bashforth type [14]. The contribution of
the forcing term f is integrated implicitly in time, which overcomes severe stability problems that would arise with
explicit methods as ε � 1. The total computational domain is endowed with periodic boundary conditions. In order
to generate a non-trivial flow we impose a time-dependent pressure drop across the streamwise direction x, chosen
such that the desired unsteady flow-rate is maintained. In total, the pressure can be expressed at a(t)x+ p where p(x, t)
denotes a periodic pressure field and a(t) is the time-dependent pressure gradient across the domain in the x direction.

The use of a staggered grid introduces the question how to define exactly the masking function. Intuitively, H
is easily defined as indicated above. However, there is some freedom in its definition on grid-scale near a solid-
fluid interface. We work with an individual grid cell as the smallest elementary unit; this implies that a grid cell is
considered either as part of the solid or as part of the fluid. We need to identify on which component of the solution
to base the masking function as all three velocity components u, v,w and the pressure p are defined on their respective
grids. We choose to work with Hp, which means that if the center of a primary grid cell is in the fluid domain, then
the entire grid cell is defined as part of Ω f . This allows to define the precise location (within the resolution of the
adopted grid) of the solid-fluid interface in a ‘staircase’ approximation. The convergence of the volume-penalization
IB method can be established on the basis of laminar Poiseuille flow in a straight cylindrical tube. This test-case was
considered in [8] and first-order convergence was observed. This confirms results obtained for the plane channel flow
in case the no-slip condition is imposed within a grid cell of the solid wall [9].
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Figure 1: Application of the immersed boundary method to flow in a curved cylindrical vessel. Simulations are done for laminar flow at Re = 1.
The flow is visualized by plotting velocity vectors (a) and velocity profiles of the streamwise velocity component (b) in a cross-section through the
geometry at grid resolution 64 × 16 × 32.
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The geometry of blood vessels in a human brain is much more complicated than straight cylindrical tube. The
first step towards simulating flow in more realistic vessel shapes is to consider smoothly curved geometries. To obtain
the masking function for such a vessel we rely on the smallest distance of a point x to the centerline of the curved
vessel. For each point of the computational domain we can find the minimal distance to this centerline and check the
condition whether or not this distance is smaller than the radius of the cylindrical tube. If so, then the point (grid cell)
is in the fluid domain and the masking function H = 0. Otherwise it is in solid domain and H = 1.
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Figure 2: The convergence of the immersed boundary method for the flow inside a curved cylindrical vessel is shown in terms of the evolution of
the pressure difference. Simulations are done for laminar flow at Re = 1 at several grid resolutions: 32 × 8 × 16 (dot), 64 × 16 × 32 (dash-dot),
128 × 32 × 64 (dash) and 256 × 64 × 128 (solid). With increasing grid resolution the numerically obtained solution is seen to converge.

To illustrate the IB method for curved vessels we consider simple sinusoidal shapes for the centerline and a
constant circular cross-section in a plane locally normal to the tangent vector to the centerline. Simulations at Re = 1
as shown in Figure 1(a) clarify that the steady flow which develops closely follows the shape of the vessel. At each
location a well-defined velocity profile emerges as is seen in Figure 1(b). To illustrate the convergence of the method
for curved vessel we consider the pressure difference over the flow domain in the x-direction. The development of
this pressure difference at a number of spatial resolutions is displayed in Figure 2. We observe a clear convergence in
these pressure evolutions by comparing results obtained at N = 32, 64, 128 and 256. For longer simulation time all
these solutions converge to a steady state.

3. Reference pulsatile flow dynamics

In this section we consider the dynamics of pulsatile flow in a model aneurysm. First, we define the geometry
of the model aneurysm and motivate the adopted flow conditions. Subsequently, we analyze the velocity field and
shear forces for the reference case and compare the main characteristics as pressure drop and maximal shear stress for
pulsatile and constant mass flow rate which have the same average flow.

One of the common locations of cerebral aneurysms within the Circle of Willis is on the internal carotid artery
(ICA), where a typical mass flow rate is reported to be Q ≈ 245ml/min [5]. The diameter of the ICA is of the
order of D ≈ 0.42cm [7]. Together, this leads to a reference velocity U ≈ 0.2947m/s and a corresponding Reynolds
number Re ≈ 354 in which we used as reference kinematic viscosity ν = 3.5 · 10−6m2/s [12]. The natural variation in
conditions and geometry motivate to use Reynolds numbers in the general range of 100-500, properly including this
estimate obtained from literature.

The Reynolds number Re is the only parameter which is required to specify the flow conditions. It quantifies the
ratio between the magnitude of the (destabilizing) convective transport u · ∇u and the (stabilizing) viscous processes
∇2u. It is well known that for relatively small Reynolds numbers flow is laminar and steady, which implies a smooth
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Figure 3: Three dimensional geometry of the model aneurysm that is constructed of a curved vessel and a spherical cavity attached to it.

velocity and pressure field at every moment in time. With increasing Reynolds number the flow can develop more
detailed vortical structures, e.g., associated with separated flow near relatively abrupt changes in the shape of a vessel.
A further increase in Re usually implies that the flow structures become unsteady with different vortices. The range
of Reynolds numbers arising in the flow in the Circle of Willis, as estimated above, corresponds to laminar flow. As
point of reference we chose to work with Reynolds number Re = 500.

The flow domain is composed of a simple sinusoidally shaped cylindrical tube of radius R to which we add a
spherical cavity of radius 3R, thus arriving at a configuration that generates significant flow separation. As reference
length scale we adopt the basic radius R of the vessel. The geometry of the model aneurysm is based on a model for
curved blood vessel, which was described above in Section 2. The three dimensional geometry of the model aneurysm
is represented in Figure 3. The walls of the model aneurysm are assumed to be stationary in our studies reported here.
Further refinements in which flow-structure interactions will be included are subject of current research.

The blood flow in a human body is pulsatile. Every person has their own complex heart beat characteristics. These
depend on all sorts of parameters [12]. One cardiac cycle consists of two phases: systole and diastole. Depending
on a stage the blood mass flow rate is higher or lower than average. In our investigations here we do not consider all
details of a real cardiac cycle, but concentrate on a simple sinusoidal pulsatile flow, representing a Fourier component
of the total cardiac pattern. We specify the average mass flow rate and add a sinusoidal perturbation for which the
amplitude and the frequency can be varied. As point of reference the amplitude of the sinusoidal pulse is taken 10%
of the average flow rate. The period of the oscillations is set to T = 20.

In Figure 4(a,b) we show the developing flow in the model aneurysm. Two snapshots of the unsteady flow are
plotted. The addition of a spherical cavity is seen to strongly affect the flow in the curved vessel, which leads to
massive flow separation, e.g., from the rim of the spherical cavity. This produces a detached ‘jet’ that continuously
impinges on the wall of the cavity. The flow shows complex vortical structures that fill a large part of the spherical
cavity with recirculating flow. The occurrence of such flow structures contributes to an extension of the average
‘residence time’ of blood inside the flow domain, expressing a deterioration of the quality of transport of nutrients to,
and waste products from the tissue surrounding the aneurysm. This can be an important indicator for the rate at which
health risks may develop.

The main challenge for the IB method in case of flow through model aneurysms is in capturing the flow near the
solid-fluid interface, which is required to compute the shear stress. We define the shear stress in terms of the gradient
of the velocity as follows. The rate of strain tensor S is such that

S i j =
1
2

(
∂iu j + ∂ jui

)
(5)

The shear stress τ is a measure of the components of S. It is defined as

τ =
1

Re

√
2 S i jS i j (6)

The distribution of the shear stress τ is an important indicator for the forces inside the model aneurysm and on its
wall. The shear stress is also relevant for long-time accumulation effects that can lead to a deterioration of the quality
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Figure 4: Velocity vector field and shear stress distribution inside the model aneurysm. Simulations are done for pulsatile flow at Re = 500. The
period of the pulsatile flow is T = 20 while the amplitude is 10% of the long-time average. The flow is visualized by plotting velocity vectors in a
cross-section through the geometry at grid resolution 32×16×32. Two snapshots of velocity fields at time t = 50 (a) and time t = 100 (b) illustrate
the unsteady flow with various vortices inside the spherical cavity. Correspondingly, in (c) and (d) the characteristic impression of the shear stress
is shown. Dark regions relate to the areas with high shear stress values.

of the fluid-solid interface. This makes the shear stress a key quantity of relevance for the prediction of long-term risk
of rupture of the aneurysm wall. In Figure 4(c,d) we show shear stress distributions at two characteristics moments
during the evolving flow. We observe high shear stress levels in the curved vessel as well as associated with localized
vortices inside the spherical cavity.

In order to better understand the impact of pulsatility we compare pressure drop and shear stress obtained at
constant and pulsatile flow. In Figure 5(a) we observe a strong effect of the pulsatile flow forcing on the pressure
drop across the domain. The maximal shear stress in Figure 5(b) shows a very complex time dependence with strong
variations in the shear stress and occasionally very high values. The shear stress does not display a very clear signature
of the periodic flow forcing at this high value of Re. At these conditions the intrinsic unsteadiness of the flow is
considerably stronger than the effect of forcing. In the next section we consider the dynamics of the flow under a
range of forcing and flow conditions.
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Figure 5: Pressure drop over the streamwise direction (a) and maximal shear stress in the domain (b). We compare flow with constant mass flow
rate (dash) with pulsatile flow at the same average flow rate (solid). Simulations are done at Re = 500. The period of the pulsatile flow is T = 20
and the amplitude of flow rate variations is 10% of the long-time mean.

4. Pressure drop and shear stress levels in pulsatile flow

In this section we consider the effect of varying the forcing amplitude and the effect of changing the flow con-
ditions. These illustrate the flexibility and robustness with which the IB method can handle a range of dynamic
conditions.

In Figure 6 we show pressure drop and shear stress levels at Re = 500 and a range of amplitudes of the pulsatile
variations in the flow rate. The main signature of the pressure drop and the shear stress is the same as that observed in
Figure 5, the main difference being that an increase in the forcing amplitude leads to a somewhat stronger response in
the shear stress. As remarked earlier, at Re = 500 the intrinsic dynamics of the flow at the selected mean flow rate is
sufficiently strong to overwhelm the effects of the pulsatile flow as far as the shear stress is concerned.

We next present results for different Reynolds numbers, fixing the amplitude of the pulsatile oscillations to 10%.
We consider Re = 100, 250 and 500. There are two, dynamically different situations that correspond to these vari-
ations in the Reynolds number. If (situation A) we would keep the mass flow rate unchanged then a decrease in the
Reynolds number, assuming fixed geometry, corresponds to an increase in the fluid viscosity. If (situation B) at fixed
geometry, we intend to keep the viscosity fixed, i.e., keep the physical properties of the fluid fixed, then a reduction in
Re has to be accompanied with a reduction in the flow rate with the same factor. The two situations A and B will be
presented next.

We investigated the evolution of the pressure drop and the shear stress for situation A, i.e., the fixed flow rate
situation. The effect of pulsatility is stronger at lower Re, i.e., in case the fluid is more viscous. To maintain a given
flow rate while increasing the viscosity, we observed that the pressure drop needs to be increased. In Figure 7(a) the
shear stress levels are seen to increase with increasing viscosity. This response is in stark contrast with situation B in
which we vary the Reynolds number, while keeping the viscosity of the fluid and the geometry fixed. In situation B we
noticed that a reduction of the Reynolds number, i.e., a slower flow, implies a reduction in the pressure drop over the
domain. The shear stress levels are seen to be lower when the Reynolds number is reduced (Figure 7(b). Not only the
level but also the complexity of the shear stress response is considerably diminished with reduced Reynolds number.
All these findings correspond directly with physical intuition, illustrating the qualitative reliability of the simulations.
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(a) (b)

Figure 6: Pressure difference across the streamwise direction (a) and maximal shear stress (b) comparing flow with a constant mass flow rate (dash)
with pulsatile flow at the same average flow rate. We employ different amplitudes of the pulsatile variations (10% – solid, 25% – dot, 50% –
dash-dot). Simulations are done at Re = 500. The period of the pulsatile flow is T = 20.

5. Conclusions

In this paper we presented a basic immersed boundary method (IB) for the prediction of pulsatile viscous flow in
models for cerebral aneurysms. Applications of this method to simple model geometries such as a curved vessel and a
model aneurysm were presented. The flow was simulated successfully using the IB approach. Complex flow structures
were observed at Re = 500, displaying a significant flow separation inside the spherical cavity and complex, intrinsic
flow dynamics that is not very sensitive to external flow rate variations. Such would correspond to an aneurysm that
developed into a considerable size in which the flow response is somewhat disconnected from the bodily rhythms.
The pressure drop across the domain was found to reflect the periodic forcing much more clearly, even at high Re.
The shear stress on the vessel and aneurysm walls was computed as well. At high Re a highly irregular, rapidly
varying shear stress development was recorded, which could possibly induce an acceleration in the development of
the aneurysm in its final stages. In order to extract more reliably such general information of clinical relevance, more
research is needed into the reliability of the simulation results.

We showed the application of the IB method for a range of flow conditions and pulsatile forcing. Changes in the
amplitude of the pulsatile flow do not seem to generate qualitative difference - rather an increase in the forcing ampli-
tude leads to a corresponding increase in pressure drop and shear stress. Conversely, changes in the flow conditions
can give rise to strong qualitative differences. We investigated two, physically different situations. Keeping the scale
of the problem fixed we compared results at different viscosity, keeping the flow rate fixed, and results at different
flow rate, keeping the viscosity fixed. The latter situation corresponds most closely to actual physiological conditions
in which a higher flow rate, i.e., higher Reynolds number, requires a higher pressure drop, giving rise to higher shear
stresses and considerably more complex flow development in terms of vortical structures and shear stress maxima. In
case the viscosity is varied at fixed flow rate we observed the more unusual situation of an increased pressure drop
and shear stress in case of a lower Reynolds number. This is solely due to the requirement of generating a fixed
mass flow for an ever more viscous fluid. In each of these cases the IB method readily provided the qualitative flow
consequences, even at rather coarse resolutions.

The application of computational support in the monitoring and treatment of cerebral aneurysms is a field of
ongoing research. The location, time-dependence and intensity of peaks in the shear stress are all of relevance to
medical practice, as these appear to be related to the long-time evolution of the condition of vessel walls. In order to
achieve a closer connection with medical practice several steps need to be taken. A central element is the incorporation
of realistic patient aneurysms and their coupling to proper inflow and outflow conditions. As illustrated in this paper,
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(a) (b)

Figure 7: Maximal shear stress comparing flow with a constant mass flow rate (lines marked with circles) with pulsatile flow at the same average
flow rate. The amplitude of mass flow rate variations is 10% of the long-time average. Simulations are done at Re = 500 (solid), Re = 250
(dash-dot) and Re = 100 (dashed) (a) changing viscosity and (b) changing flow velocity. The period of the pulsatile flow is T = 20.

the use of the IB method provides an invaluable point of departure for the geometric representation of complex
aneurysms. The inflow and outflow conditions pose a more intricate modeling problem in which the challenge is
to approximate patient-specific in vivo conditions. Other main elements are the inclusion of non-Newtonian fluid
corrections and the proper capturing of the interaction between the flow and the aneurysm structure. In all these
aspects, attention should be given to the computational robustness of predictions, focusing on the relation between the
general topology of flow structures and the shear stress characteristics.
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