A Novel Folding Intermediate State for Apolipoprotein A-I: Role of the Amino and Carboxy Termini

Eitan Gross,* Dao-Quan Peng,* Stanley L. Hazen,*†§ and Jonathan D. Smith*†§

*Department of Cell Biology, †Department of Cardiovascular Medicine, and §Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic Foundation, Cleveland, Ohio; and †Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio

ABSTRACT Intramolecular interactions between the amino and carboxy termini of apolipoprotein A-I (apoAI) are believed to stabilize the helix bundle conformation of the protein. During lipid assembly the protein undergoes conformational changes that result in an exposure of the carboxy terminus and its insertion into the lipid phase. To determine the role of the two termini in the energetics of unfolding, we studied the guanidine-hydrochloride-induced unfolding and refolding of apoAI as well as its N-terminal deletion (del[1–43]), C-terminal deletion (del[186–243]), and the double deletion containing only the central residues 44–185. Thermodynamic analysis of the equilibrium unfolding measured by fluorescence spectroscopy revealed the presence of an intermediate unfolded state (I_{equil}) in addition to the native (N) and unfolded states. Refolding kinetics of apoAI, measured by stopped-flow circular dichroism, revealed two kinetic intermediates, I_{burst} and $I_{recovery}$. Computer modeling suggested that the first resembles the partially unfolded protein, whereas the second overlaps with the native state of the protein. The free energy changes for the N → I_{equil} transition of the N-terminal and double deletions were lower than that of the full-length form, whereas that for the C-terminal deletion was higher. Our findings suggest that the N-terminus of apoAI stabilizes the native state of the protein by increasing the Eyring energy barrier for the N → I_{equil} unfolding transition; whereas the carboxyl terminus destabilizes that state.

INTRODUCTION

The 243-amino-acid apolipoprotein A-I (apoAI) is the main protein component in high-density lipoprotein (HDL) and thus plays an important role in reverse cholesterol transport and reduction in risk for cardiovascular and atherosclerotic diseases (1). HDL is the main mediator of the ‘‘reverse cholesterol transport’’ pathway by acting as an acceptor of cellular cholesterol and transporting this cholesterol to the liver where it can be excreted directly or indirectly after conversion to bile acids (2). Lipid-free apoAI can also act as an acceptor of cellular cholesterol in a process that is mediated by the membrane protein ABCA1 (3,4). The primary sequence of apoAI from residues 44–243 can be divided into 22- and 11-residue tandem repeats that form type A amphipathic α-helices (5). Although the crystal structure of the entire lipid-free apoAI has not been determined, the C-terminal α-helices appear to have a less organized structure than the rest of the protein (6,7). Secondary-structure predictions suggest that the amino-terminal 43 amino acids form a G* class amphipathic α-helix (8). Deletion of these 43 amino acids (N-terminal deletion, or del[1–43]) allowed crystals of the lipid-free protein to be obtained, and the x-ray structure of this protein has been used as a model for the conformation that resembles the one conferred on the intact protein upon binding to lipid in its lipid-bound state (6). This result is consistent with the finding by Borhani et al. (6), who reported, using x-ray crystallography, that the del[1–43] mutant of apoAI forms an extended α-helix horseshoe-shaped belt, with the N- and C-termini at adjacent ends of this horseshoe, and a tetramer of these stacked in an offset antiparallel manner to a size consistent with apoAI lipid disks. This view is also supported by the finding that in recombinant discoidal HDL, apoAI forms an extended series of α-helices that circumscribe the perimeter of the disk-shaped phospholipid bilayer such that the α-helix segments align perpendicular to the fatty acid chains of the phospholipids (9–11). The amino-terminal deletion has lipid binding and ABCA1-dependent cholesterol acceptor activity equivalent to that of full-length apoAI (12,13). 1-Anilinonaphthalene-8-sulfonate binding experiments and circular dichroism spectroscopy have demonstrated that an extended portion of the amino terminus (amino acids 1–90) is critical for maintaining and stabilizing the folded, lipid-free structure of apoAI (14). In contrast, carboxy terminal deletions ([1–192]apoAI) exhibit severely impaired lower lipid binding and ABCA1-dependent cholesterol acceptor activity (13,15). Interestingly, double deletion of both the N- and C-termini of apoAI leads to a restoration of these apoAI activities, showing that the central domain is sufficient for these functions of apoAI (13,15).

Davidson and colleagues have recently proposed a detailed folded helical bundle model of the lipid-free form of apoAI, with the hydrophobic faces binding adjacent surface and the N- and C-termini in close proximity with each other (11,16). Lipid binding is thought to first occur in the C-terminus,
which undergoes a transition from an unordered to an α-helical conformation and acts as the trigger to allow exposure of the remainder of apoAI hydrophobic domains to the lipid phase (7). The idea that the carboxy terminus of the protein is associated with or embedded within the lipid phase is further supported by the finding that, when bound to lipid, the carboxy terminus of human apoAI was less susceptible to proteolytic cleavage than the amino terminus (17,18). An earlier study indicated that lipid binding of apoAI proceeds via a molten globule (MG) state (19). The MG state is a partially folded, nonnative-state conformation of the protein that plays a key role in a variety of physiological functions such as lipid-binding or penetration of the protein into the lipid bilayer in a variety of globular proteins (20). The MG state appears to be intermediate between the native and denatured states, is relatively compact, and is characterized by a well-preserved secondary structure and a significant reduction in tertiary structure (21,22).

In this study, we used circular dichroism (CD) spectroscopy in combination with stopped-flow techniques to demonstrate that lipid-free apoAI forms at least two kinetic folding intermediate states (Iburst and Irecovery). In another set of experiments, using fluorescence spectroscopy under equilibrium conditions, we also found a denatured state of the protein that is stable in 3 M GdnHCl. This unfolded intermediate state, which we refer to as an equilibrium intermediate state (Iequil), has a CD spectrum that closely resembles the denatured state of the protein and a fluorescence spectrum that is distinct from either of the native protein state (N, observed at 0 M GdnHCl) or the unfolded state (U, observed at 5 M GdnHCl). Deletion of the amino terminus of the protein stabilizes Iequil by lowering the Eyring energy barrier for the N → Iequil transition. Deletion of the carboxy terminus, on the other hand, stabilizes the N state of the protein by elevating that barrier. These findings have implications for lipid binding.

MATERIALS AND METHODS

ApoA1 mutant constructs

cDNA encoding 6-his-tagged recombinant human apoAI (rh-apoAI) in the pET-20b bacterial expression vector was a gift from Dr. Michael Oda (23). Deletions and stop codon point mutations were made by polymerase chain reaction and use of the Quick-change Mutagenesis Kit (Stratagene, La Jolla, CA) to create del[1–43], the C-terminal deletion (del[186–243]), and the N- and C-terminal double deletion, containing only the central residues 44–185. All mutations were confirmed by DNA sequencing. The plasmids were transformed into Escherichia coli strain BL21(DE-3) pLysS, and apoAI expression was induced with 0.5 mM isopropyl-β-D-thiogalactopyranoside by overnight incubation at room temperature. The cell pellet was dissolved in B-PER lysis buffer (BioRad, Hercules, CA) followed by centrifugation to sediment cell debris. The supernatant was diluted into phosphate-buffered saline containing 3 M GdnHCl, pH 7.0, and then loaded onto a nickel-chelating histidine-binding resin column and specifically eluted with imidazole as previously described (23). Recombinant apoAI was dialyzed extensively in 100 mM sodium phosphate buffer, pH 7.0, containing 100 μM DTPA. ApoAI samples were analyzed by electrophoresis on a 14% sodium dodecyl sulfate polyacrylamide gel under reducing conditions. The gels were stained for protein with 0.25% Coomassie blue. All samples were >95% pure by this method (data not shown). All constructs in this study contained the same amino-terminal 6-his tag. Pilot studies with purified native human apoAI revealed CD and fluorescence spectra as well as folding kinetics that were very similar to the 6-his-tagged recombinant human apoAI used in this study (data not shown).

Equilibrium spectra

Steady-state fluorescence spectra were measured with a Perkin-Elmer (Wellesley, MA) LS-50B spectrophotometer. Samples of 25 μg/ml apoAI were prepared in PBS (10 mM phosphate buffer, pH 7.4, 150 mM NaCl) and the indicated concentration of GdnHCl. Steady-state CD spectra were acquired with an Applied Photophysics (Leatherhead, Surrey, UK) piStar180 spectrophotometer equipped with a thermostatted equilibrium sample handling unit.

Free energy of GdnHCl-induced unfolding (ΔG_{NU}) was calculated by three independent methods as follows:

Method I

By fitting the equilibrium CD data (see Fig. 2 b) to the relationship ΔG_{NU} = −RT ln K_D, where the equilibrium constant K_D is calculated from the mean residual ellipticity (MRE) using the relation:

\[
K_D = ([\theta]_N - [\theta]) / ([\theta] - [\theta]_D),
\]

where [\theta] is the observed MRE at a given concentration of GdnHCl and [\theta]_N and [\theta]_D are the MREs for the native and fully denatured forms of the protein.

Method II

By fitting the equilibrium wavelength of maximum fluorescence (WMF) data (see Fig. 3 b) to the relationship ΔG_{NU} = −RT ln K_D, where the equilibrium constant K_D is calculated from the WMF (peak fluorescence emission for 295-nm excitation) using the relation

\[
K_D = (WMF_N - WMF) / (WMF - WMF_D),
\]

where WMF is the observed WMF at a given concentration of GdnHCl and WMF_N and WMF_D are the WMFs for the native and fully denatured forms of the protein.

Method III

By fitting Eq. 13 (see Results section) to the fluorescence peak intensity data (as depicted in Fig. 3 c).

Kinetcs of refolding/unfolding

All fast kinetics studies were carried out with an Applied Photophysics piStar180 spectrophotometer equipped with an xv18 stopped-flow mixing chamber. The observed kinetic curves were fitted by the nonlinear least-squares method with the multieponential relation:

\[
A(t) = A_0 + \sum A_i \exp(-k_i t),
\]

where A(t) and A_0 are the signal values at time t and at infinite time, respectively; and \ A_i and k_i are the amplitude and the rate constant of phase i.

Computer modeling

Free energy changes, m values, and the molar fractions of the three protein folding states—native, unfolded, and intermediate—were calculated by...
globally fitting all equilibrium peak fluorescence data (see Fig. 3 c) to Eq. 13 (see Results section) using the SCoP modeling package (24,25).

Reagents

Ultrapure GdnHCl was from USB Chemicals (Cleveland, OH). All other salts were from Sigma-Aldrich (St. Louis, MO).

RESULTS

In the first set of experiments, we used CD to measure the kinetics of the change in MRE at 222 nm (\(\theta_{222}\)) upon refolding of apoAI initiated by a GdnHCl concentration jump from 5 M to 0.45 M using a stopped-flow apparatus. Fig. 1 a illustrates the outcome of such an experiment performed with full-length apoAI. As can be seen, \(\theta_{222}\) rapidly decreases (\(\alpha\)-helix content increases) with an overshoot before relaxing toward the value characteristic of the native protein. We thus labeled the fast, or burst, phase intermediate \(I_{\text{burst}}\), and the recovery phase intermediate \(I_{\text{recovery}}\). The kinetics of signal recovery upon refolding as shown in Fig. 1 a was best fitted by a double exponential function (see Table 1). Table 1 also lists the corresponding values for the three deleted forms of apoAI. Comparing the rate constants for the \(N \rightarrow I_{\text{burst}}\) transition of protein refolding in Table 1 reveals the following order of folding kinetics (starting from the fastest): del[186–243] > apoAI ~ apoAI[44–185] > del[1–43]. Accordingly, the Eyring free energy barrier for the \(I_{\text{burst}} \rightarrow N\) transition is largest for the del[1–43] mutant and smallest for the del[186–243] mutant. We also studied the unfolding of apoAI and its deleted forms. This was done by measuring \(\theta_{222}\) immediately after a GdnHCl concentration jump from 0 to 4.55 M. In contrast to the refolding experiments, the kinetic traces of the unfolding process for all four proteins could be fitted with a single exponential function (Table 1). Furthermore, the kinetic traces did not exhibit an overshoot (Fig. 1 b).

The overshoot in the CD signal at 222 nm observed in the refolding experiments suggests the presence of a folding intermediate. To gain more insight into the properties of this intermediate and whether it can also be obtained at equilibrium, we performed a series of measurements under equilibrium conditions. At equilibrium, the secondary structure of apoAI is rich in \(\alpha\)-helix. Fig. 2 a depicts the far-ultraviolet (UV) CD spectra of native apoAI with a large negative ellipticity between 210 and 230 nm indicative of the presence of \(\alpha\)-helix. Most of the \(\alpha\)-helix structure is lost in the unfolded state achieved in 5 M GdnHCl. The dose-dependent loss of molar ellipticity at 222 nm (\(\theta_{222}\)), indicative of \(\alpha\)-helix content, with increasing GdnHCl concentration is shown in Fig. 2 b, along with the corresponding EC\(_{50}\) values, for full-length apoAI as well as for the N-terminal, C-terminal, and double N- and C-terminal deleted forms. The smaller EC\(_{50}\) of del[1–43] compared to the other three mutants suggests a lower energy barrier for the unfolding transition of the N-terminal deleted mutant. This is consistent with a role for the amino terminal in stabilizing the folded, N, state of the protein.

The fluorescence emission spectra of apoAI is shown in Fig. 3 a. In the absence of denaturant the spectrum exhibits a peak at around 340 nm. At 5 M GdnHCl, the emission peak shifts to the red. This shift in the WMF of full-length apoAI as well as of the three deleted forms, with increasing GdnHCl concentration is shown in Fig. 3 b along with the corresponding EC\(_{50}\) values. Comparing the EC\(_{50}\) values of all four mutants, the amino-terminal deletion exhibits the smallest value of all four with EC\(_{50}\) of 0.88 M. This is consistent with a lower energy barrier of the unfolding transition for the amino-terminal deletion as compared to the other mutants and further supports the notion that this segment of the peptide stabilizes the folded native state of the protein. It should
also be noted that the EC50 values for the WMF changes are slightly larger than the EC50 values observed for the ellipticity changes as a function of GdnHCl concentration. This result suggests that conformational changes to the secondary structure of the protein precede changes in the tertiary structure. Fig. 3c shows the fluorescence emission intensity at the peak of their respective spectra. It should be noticed that apoAI has four Trp residues, whereas the other three constructs have only three Trp residues each, and that it therefore would have a lower fluorescence quantum yield. To account for this difference in fluorescence quantum yield we normalized, for each of the four constructs, the peak fluorescence intensity at each GdnHCl concentration to the intensity at zero GdnHCl. Interestingly, all four forms of apoAI exhibit a biphasic profile with a decreasing normalized peak fluorescence intensity between 0 and ~2 M GdnHCl that then increases between ~3 and 5 M GdnHCl (Fig. 3c). These biphasic behaviors cannot be described by a simple two-state unfolding transition, but can be fitted with a three-state transition scheme as described by Eq. 4 below. This scheme suggests the presence of a folding intermediate that exists in the transition range of GdnHCl concentration.

To gain more insight into the thermodynamics of the equilibrium intermediate state, depicted in Fig. 3c as a nadir in the peak fluorescence curves, we used a mathematical model that describes the folding processes of apoAI as an equilibrium transition reaction between the native and unfolded states and an intermediate state (26–29). In this model we propose a three-state folding scheme as described below.

\[
U \leftrightarrow I_{\text{equil}} \leftrightarrow N,
\]

where N and U are the native and unfolded states and \(I_{\text{equil}}\) is the equilibrium unfolding intermediate. The equilibrium constant between N and I is given by

\[
K_{NI} = \frac{f_I(g)}{f_N(g)}.
\]

Similarly, the equilibrium constant between N and U is given by

\[
K_{NU} = \frac{f_U(g)}{f_N(g)}.
\]

where \(f_N(g), f_I(g),\) and \(f_U(g)\) are the fractions of the three states at a denaturant (GdnHCl) concentration of \(g\) \((f_N + f_I + f_U = 1)\). The measured fluorescence intensity of the protein at a given wavelength is a superposition of the contribution from all three states:
where ΔG_{NI} and ΔG_{NU} are the free energy changes for the transition from the N to the Iequil state and from the N to the U state, respectively, and R and T have their usual meanings. We further assume that the free energy of unfolding varies linearly with g, so that

\[
\Delta G_{NI} = \Delta G_{NI}^{\text{water}} - m_{NI} g \\
\Delta G_{NU} = \Delta G_{NU}^{\text{water}} - m_{NU} g,
\]

where $\Delta G_{NI}^{\text{water}}$ and $\Delta G_{NU}^{\text{water}}$ are the free energy changes,ΔG_{NI} and ΔG_{NU}, at 0 M GdnHCl, respectively. m_{NI} and m_{NU} are the cooperativity indexes of the transitions. Combining Eqs. 4–12 and assuming the coefficients B_i are linearly dependent on g, we get (28)

\[
B_{\text{obs}}(g) = B_N f_N(g) + B_I f_I(g) + B_U f_U(g),
\]

where B_i represents the fluorescence intensity of the ith state. The concentration of each state is related to the equilibrium constants by the following relations (28,29):

\[
f_N = \frac{1}{1 + K_{NI} + K_{NU}} = \frac{1}{1 + e^{-\Delta G_{NI}/RT} + e^{-\Delta G_{NU}/RT}} \quad (8)
\]

\[
f_I = \frac{K_{NI}}{1 + K_{NI} + K_{NU}} = \frac{e^{-\Delta G_{NI}/RT}}{1 + e^{-\Delta G_{NI}/RT} + e^{-\Delta G_{NU}/RT}} \quad (9)
\]

\[
f_U = \frac{K_{NU}}{1 + K_{NI} + K_{NU}} = \frac{e^{-\Delta G_{NU}/RT}}{1 + e^{-\Delta G_{NI}/RT} + e^{-\Delta G_{NU}/RT}} \quad (10)
\]
intermediate (Iburst) and is shown in Fig. 2 spectrum obtained by this method represents the burst phase CD signal, measured at each wavelength, to time zero. The unfolding branch of the chevron plots did not show any detectable curvature. On the other hand, nonlinearities were observed for the refolding part of the plots (<0.5 M GdnHCl). This curvature could be due to the presence of an early folding intermediate that forms during the dead time of the instrument and becomes increasingly populated under stabilizing conditions (i.e., at low GdnHCl concentration).

CD spectra of the I state

To gain more insight into the spectral properties of the intermediate states of apoAI, we tried to reconstruct the CD spectra of these states. To achieve this task we used two approaches. 1), In the first approach, we measured the kinetics of apoAI refolding using stopped-flow techniques at different wavelengths after a decrease in GdnHCl concentration from 5 to 0.45 M as depicted in Fig. 1a. The spectrum of the intermediate was reconstructed by extrapolating the CD signal, measured at each wavelength, to time zero. The spectrum obtained by this method represents the burst phase intermediate (Iburst) and is shown in Fig. 2a (open squares).

2), In the second approach, we calculated the CD spectra of the intermediate state, as described below. The observed molar ellipticity, \([\theta]_{\text{obs}}\), at each wavelength is a superposition of the molar ellipticities of the N, I, and U states (28), i.e.,

\[
[\theta]_{\text{obs}}(\lambda) = [\theta]_N(\lambda) + f_I[\theta]_I(\lambda) + f_U[\theta]_U(\lambda),
\]

where \(f_I\) represents the molar fraction of the \(j\) state. \(f_I\) was calculated using Eqs. 8–10. The CD spectrum of the I state is thus given by

\[
\theta_I(\lambda) = \frac{[\theta]_{\text{obs}}(\lambda) - [\theta]_N(\lambda) - [\theta]_U(\lambda)}{f_I},
\]

where \([\theta]_N(\lambda)\) and \([\theta]_U(\lambda)\) are the experimentally measured ellipticities of apoAI at 0 and 5 M GdnHCl, respectively. The CD spectrum obtained this way for full-length apoAI is shown in Fig. 2a (theory). As can be seen, the spectrum of \(I_{\text{theory}}\) is very close to the spectrum of \(I_{\text{burst}}\), suggesting that the latter represents a bona fide intermediate state.

Kinetic difference spectra

The exponential fit of the refolding kinetics curves measured at 10 different wavelengths provides kinetic difference CD spectra for the I → N transition phase (28). The difference spectra are related to fractional changes in secondary and/or tertiary structure components, which occur during the different kinetic phases. The difference spectra for this transition are given by the wavelength dependence of the amplitudes of the fast and recovery exponential functions (see Fig. 1a). In Fig. 5, we show the kinetic difference spectra calculated from the exponential fits of the refolding curves measured at 10 different wavelengths. The spectra are for the I → N transition of apoAI.

DISCUSSION

Protein folding is a fundamental process in biology that is not yet fully understood. Nevertheless, it has been generally accepted that detection and characterization of intermediate conformational states between the native and fully unfolded states are useful for elucidating the mechanism of folding of globular proteins.

TABLE 2 Thermodynamic parameters for equilibrium unfolding of apoAI mutants

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta G_{\text{NU}}) (kcal/mol)</td>
<td>2.4 ± 0.2</td>
<td>1.6 ± 0.1</td>
<td>3.5 ± 0.3</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>(\Delta G_{\text{IN}}) (kcal/mol)</td>
<td>1.9 ± 0.2</td>
<td>1.0 ± 0.1</td>
<td>1.8 ± 0.1</td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>(\Delta G_{\text{IU}}) (kcal/mol)</td>
<td>4.5 ± 0.4 4.7 ± 0.4</td>
<td>2.4 ± 0.2 2.2 ± 0.2</td>
<td>2.6 ± 0.2 5.1 ± 0.4 4.7 ± 0.4</td>
<td>5.3 ± 0.4 3.2 ± 0.3 3.4 ± 0.3 3.8 ± 0.3</td>
</tr>
<tr>
<td>(m_N) (kcal/mol)</td>
<td>2.1 ± 0.2</td>
<td>1.2 ± 0.1</td>
<td>3.1 ± 0.3</td>
<td>1.9 ± 0.2</td>
</tr>
<tr>
<td>(m_I) (kcal/mol)</td>
<td>1.4 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>2.1 ± 0.2</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>(m_U) (kcal/mol)</td>
<td>3.6 ± 0.3 3.9 ± 0.3</td>
<td>3.5 ± 0.3 1.9 ± 0.2 1.8 ± 0.2 2.0 ± 0.2</td>
<td>5.1 ± 0.5 4.7 ± 0.5</td>
<td>5.2 ± 0.5 2.8 ± 0.2 2.6 ± 0.2 3.1 ± 0.3</td>
</tr>
</tbody>
</table>

I, II, and III refer to the three different methods used to calculate the change in free energy of the indicated transition; \(m\) is the GdnHCl susceptibility parameter and is given in Eqs. 11 and 12.

FIGURE 4 Chevron plots showing GdnHCl concentration dependence of the observed rate constants for the refolding and unfolding reactions of apoAI measured by CD at 222 nm: full-length apoAI (squares); del[143] apoAI (triangles); del[186–243] apoAI (circles); and [44–185] apoAI (diamonds).
In the past, apoAI unfolding transitions were studied by steady-state CD spectroscopy and spectral shifts in the wavelength of maximum fluorescence (33). Unfortunately, equilibrium CD spectra and the WMF cannot capture short-lived intermediate states of the protein. The CD spectrum reflects changes in the secondary structure (i.e., \(\alpha \)-helix), whereas the WMF reflects only the dielectric constant (electrical polarity) of the fluorophore microenvironment. Indeed, in our hand, the ellipticity parameter has already reached and completed its full range of change within several hundred milliseconds. The fluorescence intensity (which is proportional to the fluorescence quantum yield and thus the transition dipole moment) is a more complicated function that also includes large geometrical coefficients and short distances between Trp residues and other groups that can act as fluorescence quenchers. These parameters reflect the tertiary, as opposed to the secondary, structure of the protein. The secondary structure goes through a two-state transition upon folding (as illustrated in Figs. 2 b and 3 b), whereas the tertiary structure does not (Fig. 3 c).

The data obtained in our refolding kinetics experiments (Fig. 1 a) suggest that there are at least two intermediate states of apoAI, the burst phase intermediate (I\(_{\text{burst}}\)) and the slower intermediate formed by the recovery phase (I\(_{\text{recovery}}\)). The intermediate formed by the first phase exhibits an overshoot in the time-dependent ellipticity change at 222 nm. To determine whether the formation of the nonnative \(\alpha \)-helix, represented by the overshoot in the CD ellipticity, is crucial for directing the subsequent folding process, one has to establish the kinetic role of the burst phase intermediate. If the intermediate is an on-pathway and obligatory one, there should be a lag period in the appearance of the N state. We could not observe a lag phase, however, because the formation of the burst phase is too fast to be measured by our stopped-flow apparatus. Alternatively, the overshoot may represent a parallel, rather than a sequential, reorganization (e.g., due to cis-trans isomerization of X-pro peptide bonds) of the secondary structure within the already compact state formed in the burst phase.

The kinetic CD spectra represent the time-dependent changes in the structure of apoAI during the refolding process. The difference spectrum from I to N exhibits both positive and negative bands with an isoelectricity point at 222 nm. This pattern is characteristic of an exciton coupling effect. The presence of an exciton in the kinetic difference spectrum suggests a close proximity between at least two Trp residues during the folding process (34,35).

Previous studies have shown that deletion of the carboxyl terminus of apoAI results in impaired lipid binding by the protein (36). Our data on GdnHCl-induced equilibrium unfolding states suggest that the N\(\rightarrow \)U free energy change (\(\Delta G_{\text{NI}}^{\text{water}} \)) of the del[186–243] mutant is comparable to that of full-length apoAI (5.0 \(\pm \) 0.4 vs. 4.5 \(\pm \) 0.2 kcal/mol). This finding would argue against the view that lipid binding is associated with a complete unfolding of the protein. However, a closer examination of the free energy change data shown in Table 2 reveals that the N\(\rightarrow \)I transition \(\Delta G_{\text{NI}}^{\text{water}} \) for del[186–243] is significantly larger than that for full-length apoAI (3.4 \(\pm \) 0.3 vs. 2.5 \(\pm \) 0.2 kcal/mol). This finding would be consistent with the idea that the intermediate state of apoAI facilitates lipid binding by lowering the free energy barrier for the binding of the native state of apoAI to lipid (Fig. 6). Further support for the notion that the intermediate state may play a role in lipid binding emerges from our finding that \(\Delta G_{\text{NI}}^{\text{water}} \) for the del[1–43] mutant is significantly smaller than that for full-length apoAI (1.5 \(\pm \) 0.1 vs. 2.5 \(\pm \) 0.2 kcal/mol; see Table 2). This finding is consistent with the
previous finding that removal of the first 43 amino acids of apoAI allows the protein to be crystallized in a conformation that is thought to resemble the lipid-bound form of the intact protein. Our hypothesis regarding the role of the I state of apoAI in lipid binding further predicts that the [44–185] mutant would bind lipid somewhat more strongly than full-length apoAI, as the former exhibits a slightly lower ΔG\text{water} (2.0 ± 0.1 vs. 2.5 ± 0.2 kcal/mol; see Table 2). Further studies will be needed to confirm whether apoAI lipidation involves a conformation state similar to the intermediate state we describe for unfolding, and whether this state can be accurately described as a molten globule.

In conclusion, several lines of evidence suggest that the refolding of the protein goes through at least two intermediate states. 1), Comparing the ellipticity at 222 nm of the unfolded protein in 5 M GdnHCl at equilibrium (Fig. 2 a, solid line) to the ellipticity of the protein extrapolated to time 0 in the refolding experiment (Fig. 1 a, solid square), revealed that the magnitude of the latter is significantly larger (ellipticity at 222 nm more negative). This suggests that a significant portion of the protein has already folded during the ‘‘dead time’’ of the measurement (i.e., before the first point in the kinetic trace was collected). 2), The kinetics of the refolding process as measured by protein ellipticity at 222 nm is biphasic and can be best described by a double exponential decay function. This further suggests that in addition to the fast, burst phase intermediate (I\text{burst}), which accumulates during the dead time of the refolding experiment, there is a slow, recovery intermediate (I\text{recovery}) that appears later in the process. 3), An overshoot of the CD signal was observed in the first phase of the folding process followed by a slower change in the signal, which converged toward a value characteristic of the native state of the protein. 4), At equilibrium, the transition curve for the fluorescence peak intensity (Fig. 3 c) strongly suggests that the unfolding process of the protein is going through an equilibrium intermediate state (I\text{equil}). One unresolved issue of this study is that we do not know if the folding intermediates observed in the kinetic studies are related to the intermediate observed in the equilibrium experiments.

This work was supported by National Institutes of Health grant HL66082 to J.D.S. The SCoP simulation package was purchased with a grant-in-aid from the American Heart Association to E.G.

REFERENCES