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Abnormally hyperphosphorylated tau aggregates form paired helical filaments (PHFs) in neurofibrillary tangles,
a key hallmark of Alzheimer's disease (AD) and other tauopathies. The cerebrospinal fluid (CSF) levels of soluble
total tau and phospho-tau from clinically diagnosed AD patients are significantly higher comparedwith controls.
Data from both in vitro and in vivo AD models have implied that an aberrant increase of mammalian target of
rapamycin (mTor) signaling may be a causative factor for the formation of abnormally hyperphosphorylated
tau. In the present study, we showed that in post-mortem human AD brain, tau was localized within different
organelles (autophagic vacuoles, endoplasmic reticulum, Golgi complexes, and mitochondria). In human SH-
SY5Y neuroblastoma cells stably carrying different genetic variants of mTor, we found a common link between
the synthesis and distribution of intracellular tau. mTor overexpression or the lack of its expression was respon-
sible for the altered balance of phosphorylated (p-)/-non phosphorylated (Np-) tau in the cytoplasm and differ-
ent cellular compartments, which might facilitate tau deposition. Up-regulated mTor activity resulted in a
significant increase in the amount of cytosolic tau as well as its re-localization to exocytotic vesicles that were
not associated with exosomes. These results have implicated that mTor is involved in regulating tau distribution
in subcellular organelles and in the initiation of tau secretion from cells to extracellular space.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease (AD), the most common age-related neurode-
generative disorder is characterized by the presence of neurofibrillary
tangles (NFTs), senile plaques (SP) and progressive neurodegeneration
[1]. In AD, the severity of dementia has been positively related to the
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degree of NFT deposition [2]. NFTs are intraneuronal inclusions that
are composed of straight and paired helical filaments (PHFs), the
major component of which is the aberrantly hyperphosphorylated
form of themicrotubule-associated protein tau [3,4]. Such abnormal fil-
aments accumulate in the cell bodies of diseased but surviving neurons,
aswell as in the dystrophic neurites, and neuropil threads in and around
SPs [5,6]. Regulation of microtubule assembly and stabilization is
the most studied function of tau, although it is becoming convincingly
evident that tau might play an additional role in the cell. In addition to
phosphorylation other site specific posttranslational modifications,
such as glycosylation or O-GlcNAcylation occur to tau [7]. The functions
of tau are regulated by site-specific phosphorylation, carefully coordi-
nated by kinases and phosphatases, which if dysregulated, in various
disease state, result in tau dysfunction and re-localization [6], potential-
ly followed by tau aggregation, neuronal and synaptic dysfunction and
ultimately cell death. In AD, studies on postmortem brain tissues show
a progressive spread of tau deposits from the transentorhinal cortex to
the hippocampus, that eventually spreads to most cortical areas [8]. A
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similar spreading pattern has also been described in other tauopathies
[9]. Besides interacting with microtubules, tau also interacts with
neuronal membranes, such as plasma membrane [10], endoplasmic re-
ticulum(ER) [11], andGolgi apparatus [12], where part of the posttrans-
lational modifications occur. Regarding its localization, tau is mainly
localized in the axons of neuronal cells but can also be found in the nu-
cleus, dendrites and synapses. However, intracellular localization of tau
in in vitro and in vivo AD models and its underlying mechanism is still
poorly understood. In addition, an inverse relationship has been
established in damaged areas between the number of extracellular
NFT (ghost tangles) and the number of surviving neurons [13,14]. The
CSF levels of total soluble tau and p-tau from clinical AD patients are
significantly higher compared with control cases [15,16]. The released
extracellular tau also aggregates in AD brain, being possibly toxic for
the surrounding neurons [17,18]. Recent studies report that extracellu-
lar tau is detected in different cellular systems and mouse models with
or without overexpressing tau [19].

Both, in vitro and in vivo, tau is a substrate for several kinases. The
co-localization of NFTs with some kinases such as glycogen synthase
kinase-3β (GSK-3β), mitogen-activated protein kinase (MAPK), mi-
crotubule affinity-regulating kinase (MARK), p70S6 kinase (p70S6K),
and protein kinase B (PKB) [20–23] has been already proven although
other kinases might co-localize with tau as well. The mammalian
target of rapamycin (mTor) is a 289-kDa serine/threonine kinase,
which consists of two multiprotein complexes known as mTor com-
plex mTorC1 and mTorC2 [24]. mTorC1 controls cellular homeostasis
via activating p70S6 kinase (S6K), and being inhibited by rapamycin.
In contrast mTorC2 is insensitive to rapamycin and controls cell
survival via PI3K and phosphoinositide-dependent kinase (PDK) 2
pathway [25].

mTor plays an important role in protein homeostasis.Wehave found
mTor being co-localized with NFTs and mediating tau phosphorylation
at S214, S356 and T231 in vitro, as well as that mTor mediates the syn-
thesis and aggregation of tau, resulting in compromised microtubule
stability [26–28]. mTor is also an inhibitor of macroautophagy, a con-
served intracellular system designed for the degradation of long-lived
proteins and organelles in lysosomes [29]. Macroautophagy is induced
when an isolation membrane is generated surrounding cytosolic com-
ponents forming an autophagic vacuole (AVs) which will eventually
fuse with lysosomes for protein/organelle degradation. The induction
of autophagosome is negatively regulated by mTor [30]. Sixteen
autophagy-related proteins (Atg) are involved in different stages of
the autophagic processes [31]. LC3 (microtubule associated protein
light chain 3) is the homologue of Atg8 in yeast that participates in
the formation of autophagosomal membrane. After its synthesis, LC3
is cleaved by Atg4 to form LC3-I being further converted to LC3-II
by Atg7 and Atg3 [32]. LC3-II a lipid conjugate that localizes to
autophagosome membrane is often used as a marker of ongoing au-
tophagy. Cumulative evidence suggests that an age-dependent decrease
in the autophagy/lysosome systemmay account for the accumulation of
abnormal proteins during aging [33]. AVs are rare in neurons of normal
adult brains [34]. In AD brains AVs appear in neocortical and hippocam-
pal pyramidal neurons and accumulate markedly within the dendritic
arbors of these affected cells [34].

The intraneuronal distribution of tau protein and the mechanisms
behind mTor-tau interactions consequently leading to tau hyper-
phosphorylation and aggregation in AD represents a topic of increasing
interest. It is not clear how and whether mTor influences secretion of
tau to extracellular space. In this article our main purpose was to
study the relationship between tau protein in various cellular compart-
ments responsible for protein synthesis and secretion (such as ER, Golgi
apparatus and mitochondria) and the autophagosomes in relationship
to mTor activity. In order to investigate the link between mTor and
tau trafficking, in the present study we have compared AD and control
human brain samples, as well as a series of human SH-SY5Y neuroblas-
toma cells carrying a series of genetic modifications of mTor.
2. Experimental procedures

2.1. Antibodies, reagents and materials

Detailed information regarding the antibodies used in the study,
are presented in Table 1. Okadaic acid, protease inhibitor cocktail,
alkaline phosphatase (AP), trichloroacetic acid, and acetone were
purchased from Sigma-Aldrich Sweden AB (Stockholm, Sweden),
culture media from Invitrogen (Stockholm, Sweden), bicinchoninic
acid (BCA) kit from Pierce (Stockholm, Sweden), while Immobilon
Western chemiluminescent HRP Substrate from Millipore (Stockholm,
Sweden).

2.2. Cell cultures

We have reported the establishment of a series of stable SH-SY5Y
cell lines that carry a selection of constructs expressing: empty
pcDNA3.0 plasmids (V1) and pcDNA3.0 plasmids with human flag-
mTor wild type (m-WT), human flag-mTor-S2035T (rapamycin resis-
tant site, m-S), and human flag-mTor-S2035T/D2357E (both rapamycin
resistant and kinase dead sites, m-SD) constructs as well as stable cell
lines that carry empty vector pLko.1 (V2) (0.5 μg/ml puromycin), or
pLko.1 with suppression of mTor expression (m-SR1 and m-SR2). Cell
lines that carry both empty pcDNA3.0 vector and EECMV plasmids
(V3), and both pcDNA3.0 vector and EECMV plasmids with S6K kinase
dead (S6K-KD) were also established [26]. Briefly, the SH-SY5Y cells
were grown to 70–80% confluence in 100 mm culture dishes in
Dulbecco's modified Eagle's medium (DMEM)/F12 medium (1:1) sup-
plemented with 10% fetal bovine serum (FBS) (Invitrogen, Stockholm,
Sweden). In order to induce autophagic activity and minimize cell
death responses, cells were induced by serum deprivation in 2 steps:
first, cells were cultured in DMEM/F12 with 1% FBS for 24 h, then kept
in serum free medium for 4.5 h.

2.3. Cell fractionation

After 4.5 h serum deprivation, cells were washed with PBS and
suspended in Triton lysis buffer (1% Triton X-100 in 50 mM Tris,
150 mM NaCl, pH 7.4) containing protease and phosphatase inhibitors
2mMEGTA, 25mMNaF, 200 μMNa3VO4, 0.5mMphenylmethylsulfonyl
fluoride (PMSF), 5 mM EDTA, 1 μM okadaic acid, and protease inhibitor
cocktail (1:200). Cell lysates were sonicated on ice and centrifuged in
two steps: 1) at 1000 ×g, 4 °C for 10 min to collect supernatants free
of nuclei and cell debris; 2) at 100,000 ×g, 4 °C for 1 h for separating
supernatant (cytosolic fraction) from pellet (microsomal membrane
fraction) re-suspended in the same Triton lysis buffer.

2.4. Isolation of endoplasmic reticulum, mitochondria and Golgi
membrane fractions

Cellular fractionswere prepared according to amethod described by
Bozidis with small modifications [35]. After serum deprivation, cells
were harvested by centrifugation at 1400×g for 5 min; suspended in
mannitol/Tris/EDTA (MTE) buffer containing 270 mM D-mannitol, pro-
tease and phosphatase inhibitors — 2 mM EGTA, 5 mM EDTA, 25 mM
NaF, 1 mM Na3VO4, 1 μM okadaic acid and protease inhibitor cocktail
(Sigma) (1: 200), and then sonicated 3 × 10 s. Crude ER and mito-
chondria were separated by centrifugation of cell lysates for 10 min at
15,000 ×g at 4 °C. Supernatant containing crude ER was layered on
top of a sucrose gradient (2M, 1.5M and 1.3M sucrose) and centrifuged
for 70 min at 152,000 ×g, 4 °C. ER fractions were collected at the
interface of 1.3 M sucrose gradient using a 20-G needle then washed
with 1 × MTE buffer and centrifuged at 126,000 ×g for 45 min at 4 °C.
The final ER pellets were resuspended in Triton lysis buffer. Crudemito-
chondrial pellets were gentlywashed and resuspended in 1 ×MTE buff-
er then layered on a mitochondrial sucrose gradient (1.7 M and 1.0 M



Table 1
Antibodies used in this study. Abbreviations used are as follows: T—total, r—rabbit, m—mouse, p—phosphorylated, de-p—dephosphorylated, IF—immunofluorescence, WB—Western blot,
DB—dot blot.

Antibody Host Specificity Phospho-epitopes WB/DB dilution IF dilution Sources

Anti-Raptor (24C12) r T raptor – 1:100 Cell signaling
Anti-LC3B r N-terminal LC3-B – 1:3000 Novus biologicals
Anti-LC3-5F10 r N-terminal LC3-B – 1:400 1:100 Nanotools
Anti-Rab5 m Early endosome and plasma membranes – 1:400 BD transduction laboratories™
Anti-lamp1 m Lysosomal membrane proteins1 – 1:400 – BD transduction laboratories™
Tau-1 m De-p tau S198/199/202/205 1:80,000 1:40,000 Dr I. Binder, USA
PHF-1 m p-Tau S396/404 1:400 1:400 Dr P. Davies, USA
TG3 m p-Tau T231/S235 1:40 1:20 Dr P. Davies, USA
R134d r T tau – 1:5000 1:500 Dr K. Iqbal, USA
DC190 (anti-pan tau) m T tau 1:5000 1:500 Dr. M Novak, Slovakia
AT8 m p-Tau S202/T205 1:500 Innogenetics
Anti-Tau S214 r p-Tau S214 1:1000 1:100 Invitrogen
Anti-Tau S422 r p-Tau S422 – 1:1000–6000 Invitrogen
Golgin 97 m Golgi marker 1:500 Molecular probes
Syntaxin 6 (C34B2) r Golgi marker 1:1000 1:100 Cell signaling
COX IV (3E11) r Mitochondrial marked 1:1000 1:125 Cell signaling
KDEL (10C3) m ER marker 1:1000 Enzo life science
Anti-mTor (7C10) r T mTor – 1:10,000 – Cell signaling
Anti-p-mTor r P, active mTor S2448 1:1000 1:100 Cell signaling
Anti-S6K (49D7) r T S6K – 1:1000 – Cell signaling
Anti-p-S6K (108D2) r P, active S6K T389 1:1000 1:100 Cell signaling

1648 Z. Tang et al. / Biochimica et Biophysica Acta 1853 (2015) 1646–1657
sucrose) and centrifuged 22 min at 40,000 ×g, 4 °C. Mitochondrial
fraction was collected from the interface of 1.7 M and 1.0 M sucrose
gradient then washed and centrifuged at 15,000 ×g for 10 min at 4 °C.
Final pellets were resuspended in Triton lysis buffer.

For the separation of Golgi fraction cells were homogenized in a
Dounce homogenizer using 10 – 15 strokes [36]. Homogenates were
brought to 1.4 M sucrose solution by adding two volumes of 2.0 M
sucrose then layered on the top of 1.6 M sucrose solution, overlaid
with 1.2M and 0.8M sucrose gradient solutions. Gradients were centri-
fuged at 110,000 ×g for 2 h at 4 °C. Golgi fraction was collected at
the 0.8 M/1.2 M sucrose interface then washed and centrifuged at
100,000 ×g for 30 min at 4 °C. Final pellet was resuspended in Triton
lysis buffer.
2.5. Exosome isolation

Exosomes were prepared from supernatants of cell culture media
[37]. Mediawas collected after 4.5 h serumdeprivation and sequentially
centrifuged at 300 ×g, 4 °C for 10 min, 2000 ×g, 4 °C for 10 min, and
10,000 ×g, 4 °C for 30 min to remove cells and cell debris, then spun
again at 100,000 ×g, 4 °C for 2 h to obtain crude exosomes pellets.
Pellets were resuspended in PBS, centrifuged at 100,000 ×g, 4 °C for
1 h to separate exosomes. Collected exosomes were suspended in 1%
Triton X-100 lysis buffer.
Table 2
Human material case details. Abbreviations used are as follows AD—Alzheimer disease,
Control—non-demented control, f—female, m—male, PMD—post-mortem delay,
Br.wt—Brain weight (g)., Br. Staging—Neurofibrillary staging criteria by Braak & Braak.

Case nr Diagnosis Gender Age PMD
(hour:minute)

Br.wt ApoE
(allele)

Br.
Staging

1 AD F 54 03:55 1089 33 6
2 AD F 74 04:30 1070 43 6
3 AD F 78 03:10 1019 43 5
4 AD F 87 06:55 1010 43 5
5 AD M 62 03:30 1287 43 5
6 AD M 83 03:15 1315 33 6
7 Control F 55 05:35 1363 43 0
8 Control F 73 04:40 1360 32 0
9 Control M 51 07:44 1550 33 0
10 Control M 62 09:35 1175 33 0
11 Control M 71 07:40 1190 33 1
12 Control M 83 08:50 1120 33 1
2.6. Protein purification and isolation from conditioned culture media

Cell culture media supernatants were collected after serum dep-
rivation for 4.5 h and sequentially centrifuged at 300 ×g, 4 °C for
10 min, 2000 ×g, 4 °C for 10 min, and 10,000 ×g, 4 °C for 30 min to
remove cells and cell debris. The supernatant was collected, added
with ice-cold 100% trichloroacetic acid [38] (1:8), vortexed and incu-
bated at 4 °C for 2 h. The samples were centrifuged at 20,000 ×g at
4 °C for 30 min and the supernatants were carefully aspirated. 1 ml
100% ice-cold acetone was added to the pellets which were briefly
vortexed and incubated at −20 °C for 1 h. The samples were centri-
fuged at 20,000 ×g at 4 °C for 30 min and the pellets were washed
twice with 100% ice-cold acetone. The final pellets were allowed to
air dry at 23 °C [39] then were suspended in 1% Triton X-100 lysis
buffer.
2.7. Immunohistochemistry and immunofluorescence

Brain tissues from 6 AD cases and 6 age-matched non-neurological
controls from The Netherlands Brain Bank were used in the study
(Table 2). As described in our previous paper [26], paraffin sections
(6 μm) of the hippocampus and adjacent temporal cortex were
deparafinized in xylene, rehydrated with different gradient ethanol
(100%–95%–70%), and blocked with buffer containing 5% bovine
serum albumin (BSA, Sigma) and 0.1% Triton X-100 in TBS for 1 h
followed by an incubation with various primary antibodies. The bound
autophagosome marker LC3 antibodies were incubated with secondary
anti-mouse and detected using the avidin-biotin system from
Vectastain (BioNordika AB, Stockholm, Sweden), and visualized with
3, 3′-diaminogenizidine (DAB) (Sigma-Aldrich Sweden AB, Stockholm,
Sweden) as brown color [26]. The sections were subsequently in-
cubated with tau (PHF-1, p-tau Ser(P)-422), or Aβ 6E10 antibodies,
and visualized by Vector® SG (BioNordika AB, Stockholm, Sweden) as
dark gray/blue color. Control sections were used in order to control for
unspecific signals.

For immunofluorescent staining, sections were incubated with
primary antibodies against KDEL, COX IV or Golgin 97 and anti-p-tau
(R134d, p-tau Ser(P)-422, PHF-1 and AT8) overnight at 4 °C. Following
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treatment, cells plated on coverslipswere rinsedwith buffer (pH 6.85)
containing 80 mM HEPES, 10 mM EGTA and 2 mM MgCl2 (HEM) and
then fixed in 4% paraformaldehyde/HEM buffer (1: 1) for 30min. Cells
were permeated with Tris-buffered saline (TBS) containing 0.1%
Triton X-100 for 5 min. For staining with the Tau-1 antibody, cells
were permeabilized in the presence of 30% glycerol and dephosphor-
ylated with alkaline phosphatase (149 U/ml) in 100 mM Tris,
pH 8.0 at 37 °C for 6 h [40], then washed three times with TBS buffer.
Unspecific binding sites were blocked with buffer containing 5% BSA
and 0.1% Triton X-100 in TBS for 30 min. Cells were incubated with
primary antibodies against KDEL, COX IV or Golgin 97, Raptor, LC3,
R134d, p-tau Ser(P)-422, p-tau Ser(P)-214, Tau-1, PHF-1 and TG3
overnight at 4 °C. Unbound antibody for both brain sections and cell
staining was removed by washing. Bound antibody was detected by
incubation for 1 h with Dylight 488 conjugated goat anti-mouse IgGs
or Dylight 594 conjugated goat anti rabbit IgGs (1:200 for both,
JACKSON ImmunoResearch). After staining the nuclei with DAPI,
fluorescent signals were assessed using confocal microscopy (Zeiss,
Oberkochen, Germany).
2.8. Immunoelectron microscopy (EM)

After serum deprivation for 4,5 h cells were fixed in 3% paraformal-
dehyde in 0.1M phosphate buffer (PB), pH 7.4. Cells were then infiltrat-
ed with 10% gelatin in 0.1 M PB and fixed in the same fixative as above.
Small pieceswere cut and then infiltratedwith 2.3M sucrose and frozen
in liquid nitrogen. Sectioning was performed according to Tokuyasu
[41] at−95 °C. To block non-specific binding the sections were placed
on drops of 2% normal goat serum in 0.1M PB (PBG) pH 7.4 for 2 h. Sub-
sequently the sectionswere incubatedwith theprimarymouse anti-Tau
1 antibody diluted 1:100 in PBG overnight in a humidified chamber. The
sections were thoroughly washed in PBS buffer, and bound antibodies
were detected with secondary goat anti mouse antibodies conjugated
to 10 nm gold nanoparticles (Biocell, BBInternational, Cardiff, England),
diluted 1:100 in PBG. Sections were then washed, and embedded in 1%
methyl cellulose containing 0.02% uranyl acetate. Grids were analyzed
in a Tecnai 12 Bio TWIN (FEI Company, Eindhoven, The Netherland)
and images were taken using a Veleta camera (Soft Imaging System,
GmbH, Muenster, Germany) [42].
2.9. Western and dot blotting

Protein concentration of samples prepared from the stable cell lines
was determined by a bicinchoninic acid (BCA) kit (Pierce, Rockford, IL,
USA). In the case of Western blotting equal amounts (20–80 μg/lane)
of protein were loaded onto 8–12.5% (w/v) SDS-polyacrylamide
gels. Separated proteins were blotted onto PVDF membranes
(MILLIPORE AB, Solna, Sweden). For dot blots equal amounts (3–
5 μg/dot) of protein sample from cell homogenates or conditioned
culture media fractions were dotted onto a nitrocellulose membrane.
The protein on the membrane was permeabilized in the presence of
30% glycerol and dephosphorylated with alkaline phosphatase
(149 U/ml) in 100 mM Tris, pH 8.0 at 37 °C for 18 h [40] to analyze
tau phosphorylation at S198/199/202/205 sites by Tau-1 antibody.
Membranes were blocked in 5% (w/v) nonfat milk for 1 h diluted in
Tris-buffered saline supplemented with 0.1% (v/v) Tween-20 (TBST)
followed by an incubation with primary antibodies (Table 1) at 4 °C
overnight, and then with secondary peroxidase coupled anti-mouse
or anti-rabbit antibodies (1:2000, GE Healthcare AB, Solna, Sweden)
at room temperature for 1 h. After exposure to Hyperfilm MP
(Amersham Biosciences) intensities were analyzed using Image J soft-
ware. Probed filters were stripped by using stripping buffer (100 mM
2-Mercaptoethanol, 2% SDS, 62.5 mM, Tris–HCl pH 6.8) at 50 °C for
30 min.
2.10. Statistical analysis

Statistical comparisons between different experimental groupswere
performed by one-way ANOVA followed by Bonferroni post-hoc test
analyses. A value of p ≤ 0.05 was considered as significant.
3. Results

3.1. Coexistence of tau deposits in tangle-bearing neurons with clustered
autophagic vacuoles, endoplasmic reticulum, mitochondria and Golgi
apparatus in AD brains

We have used double immunostaining with the autophagy marker
light chain LC3 ( and II) and tau (PHF-1 or anti-Ser(P)-422) or amyloid
beta (Aβ) (6E10) antibodies to identify the coexistence of AVs with tau
or amyloid pathology. The control human brains presented negligible
tau pathology displaying little amount of LC3-positive cells that were
mostly found in the soma of neurons (Fig. 1, A1, B1 and C1). AD brains
however presented wide spread mottled immuno-clusters of LC3
(brown) co-existing with deposits positive for anti-Ser(P)-422 (blue,
Fig. 1, A2–3) and PHF-1 (blue, Fig. 1, B2–3) in pyramidal tangle-
bearing neurons from hippocampal CA1 region. We have observed
LC3-positive stainings (brown) in the close vicinity of the core of senile
plaques (blue, Fig. 1, C2 and C3) in AD brains, suggesting a partial
overlap of LC3-positive cells with senile plaques.

Nextwe questionedwhether there is difference in the localization of
tau (total tau or PHF-1 or AT8 or anti-Ser(P)-422) in various cellular
organelles between AD and control brain sections. We have used ER
marker KDEL, Golgi apparatus marker Golgin 97, as well as the mito-
chondria marker COX IV. No significant difference in the immuno-
staining of the various organelle markers has been found between AD
and control brains. Deposits of total tau (R134d) and hyper-p-tau
(anti-Ser(P)-422) were observed to be partially overlapped with the
ER (Fig. 1, D1 and E1), as well as with the Golgi apparatus (Fig. 1, F1
and G1) and the mitochondria (Fig. 1, H1 and I1) in the majority of
neurons from AD brains. In control brains we have seen little or no
hyper-phosphorylated tau pathology (Fig. 1 D2–I2), while total tau
was less partially overlapped to the ER marker and Golgi marker,
KDEL or Golgin 97 to similar extent as in AD brains (Fig. 1, D2 and F2).
3.2. mTor activity interferes with tau in membrane and cytosolic fractions

In the present study, we employed a series of genetically modified
mTor expressing cell lines recently characterized by us [26] to analyze
the levels of tau protein in membrane and cytosolic fractions from
these cell lines. In the microsomal membrane fraction from up-
regulated wild type mTor (m-WT) cells the levels of Np-tau (Tau-1)
and total tau (R134d) were higher, while in the cytosolic fraction the
levels of total tau and p-Tau (PHF-1 and TG3) were increased compared
with the fraction deriving from control cells (V1), mutatedmTor cells at
rapamycin resistant site (m-S) and kinase dead mTor (m-SD) cells
(Fig. 2, B1). In fractions prepared from cells with down-regulated
mTor activity (m-SR1 andm-SR2), total andNp-tau levelswere reduced
in membrane fractions compared to control cells containing empty
vector (V2), cytosolic p-Tau also showed decreased levels compared
to control V2 cells (Fig. 2, B2). No immunoreactivity could be detected
for Np-tau in the cytosolic fractions and for p-Tau species in the mem-
brane fractions. S6 kinase dead (S6K-KD) cells have resulted in
decreased levels of total tau (R134d) in both membrane and cytosolic
fractions compared to control cells containing empty vector (V3). Np-
tau (Tau-1) showed a decreased reactivity in membrane fraction of
S6K-KD compared to V3 cells while decreased levels of p-Tau (PHF-1
and TG3) were also found in cytosolic fraction compared to V3 empty
vector (Fig. 2, B3).



Fig. 1. Increased macroautophagy and tau accumulation in subcellular compartments of human AD and control brain. Double immunostaining for LC3 (brown), p-Tau (p-tau Ser(P)-422
and PHF-1) (A1–B3, gray/blue) and 6E10 (C1–C3, gray/blue) in CA1 pyramidal neurons of control (A1, B1, C1) and AD hippocampus (A2–3, B2–3, C2–3). In the pre-tangle and classic
tangle-bearing neurons, the granular staining of KDEL (endoplasmic reticulum marker) (D1–2 and E1–2, green), Golgin 97 (Golgi apparatus marker) (F1–2 and G1–2, green) and COX
IV (mitochondria marker) (H1–2 and I1–2, red) are partially overlapped with dotted or fine filamentous structures labeled by T-tau (D1 and F1, red), anti-p-Tau (p-Tau Ser(P)-422
(E1 and G1, red)) and anti-PHF-tau (AT8 and PHF-1) (H1 and I1, green) in AD brains. Scale bar is 120 μm for A1–2, B1–2, C1–2, 24 μm for A3, B3, C3, and 10 μm for D1–I2. Arrows indicate
the co-localization. Immunostaining are representative from at least 3 independent experiments.
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Fig. 2.Membrane and cytosolic fraction of Tau influenced by genetic interference of mTor activity. Panel A shows a schematic diagram of the cell fractionation procedure used for neuro-
blastoma cells to obtainmembrane and cytosolic fractions. Panel B shows homogenate, membrane and cytosolic fraction of tau analyzed byWestern blots: total (T), Non-phosphorylated
(Np-) tau and phosphorylated (p) tau from three groups of humanneuroblastoma cell lines transfectedwith 1) pcDNA3.0 (V1), flagwild typemTor (m-WT),flagmTormutated at S2035T
rapamycin resistant site (m-S), andmTor kinase deadmutated at both rapamycin resistant and activity sites (S2035T/D2357E, m-SD); 2) pLko.1 vector (V2), partial or complete silence of
mTor by mTor shRNA1 (m-SR1) or mTor shRNA2 (m-SR2); 3) pcDNA3.0 and EECMV plasmids (V3), and S6K kinase dead (S6K-KD). Blots are representative from at least 3 independent
experiments. The corresponding results from the independent experiments are presented as mean S.D.(error bars). *, p b 0.05; **, p b 0.01; ***, p b 0.001 compared with control.
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3.3. mTor mediates localization and aggregation of tau in endoplasmic
reticulum, mitochondria and Golgi apparatus

The synthesis, phosphorylation and aggregation of tau are also
affected by mTor as we have shown in our previous study [26]. In
Fig. 3. Distribution of tau in different subcellular compartments in genetically modified mTor c
(PHF-1) from two groups of cell lines transfected with 1) pcDNA3.0 (V1), flag wild type mTo
(S2035T/D2357E, m-SD); 2) pLko.1 vector (V2), complete silence of mTor by mTor shRNA2 (m
subcellular markers KDEL (endoplasmic reticulum and cis-Golgi network marker) (B1–B3, C
apparatus marker) (F1–F3, G1–G3, green) in V1 and m-WT. Scale bar is 10 μm. Immunostainin
order to determine whether mTor would influence the repartition of
tau into different subcellular compartments, we have isolated ER,
mitochondria and Golgi membrane fractions through differential
and density gradient centrifugation from stable SH-SY5Y cellular
models in which mTor activity was constitutively genetically modified
ells. Panel A shows Western blots of total tau (pan tau), Np-tau (Tau-1) and hyper-p-tau
r (m-WT), and mTor kinase dead mutated at both rapamycin resistant and activity sites
-SR2); Panels B–G show double immunostaining for T-tau, Np-tau and p-Tau and various
1–C3, green), COX IV (mitochondria marker) (D1–D3,E1–E3, red) and Golgin 97 (Golgi
g are representative from at least 3 independent experiments.
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(Supplementary Fig. 1). KDEL (ER and cis-Golgi network marker) and
syntaxin (Golgi apparatus marker) are used as marker proteins to
identify ER or Golgi apparatus-containing fractions (Fig. 3B). Increased
levels of total tau (pan tau) and Np-tau (Tau-1) but not p-tau (PHF-1)
were detected in the ER fraction of m-WT compared with V1 and
m-SD by Western blotting. Interestingly we have also found that
down-regulation of mTor decreased the levels of total tau (pan tau)
and Np-tau (Tau-1) in m-SR2 compared with V2. In Golgi fraction de-
creased immunoreactivity for total-, Np-, and p-tau could be detected
in alignment with ER fractions possibly reflecting a deficiency in trans-
lation and trafficking of tau protein in mTor deficient cells. In pure
mitochondrial fractions no tau species were detected by Western blot
(data not showed). Since Golgi marker syntaxin showed a decreased
immunoreactivity for total-, Np-, and p-tau in the Golgi fraction
(Fig. 3A3), the increased extent of the levels of these anti-tau immuno-
reactivities in ER fraction stained byKDEL is less exposed since the KDEL
also stained Golgi fraction (Fig. 3A1).

To further investigate whether the intracellular distribution of tau is
altered bymTor in our cellularmodelswe have cultured over-expressed
wild type mTor (m-WT) and V1 control cells and deprived them of
serum for 4.5 h in order to induce autophagy by inhibition of mTor
activity, followed by immunostaining for a panel of tau antibodies and
organelle markers. Immunostaining of KDEL (ER marker) has revealed
an increased reactivity and localization with deposited tau (R134d,
hyper-p-tau Ser(P)-422 and hyper-p-tau Ser(P)-214) in m-WT as
compared with V1 empty vector (Fig. 3, B1–C3); interestingly total tau
(pan tau), PHF-1 and Np-tau (Tau1) have been found to be present
and co-localized with COXIV (mitochondria marker) mainly in m-WT
(Fig. 3, D1–E3). In respect to the Golgin 97 immunostaining partial
co-overlap was observed in m-WT as compared with V1 between the
Golgi marker and deposited tau (R134d, hyper-p-tau Ser(P)-422 and
hyper-p-tau Ser(P)-214) (Fig. 3, F1–G3).

3.4. Up-regulated mTor increases tau species in autophagic vacuoles

Next we explored the possibility if macroautophagy could be
involved in intracellular accumulation of tau species and that AVs
could present a site of tau accretion. In order to induce autophagic
activity, m-WT and V1 cells were deprived of serum for 4.5 h, then the
autophagic–lysosomal system was studied by ultracentrifugation,
protein gel blotting and immunocytochemistry. Following a low speed
centrifugation protocol at 1000 ×g, we have found that cells overex-
pressing mTor (m-WT) displayed decreased level of LC3–II when
compared with V1 control cells in supernatant — S1 fraction (Fig. 4,
A1–2) while the level of LC3-I has increased inm-WT. Interestingly, fol-
lowinghigher speed centrifugation at 100,000×g, inmembrane fraction
(P3) containing lysosomes, peroxisomes, microsomes and other small
vesicles, both Np- tau (Tau-1) and LC3 (LC3-I and LC3-II) immunoreac-
tivity have dramatically increased in m-WT cell membrane fraction,
while levels of Lamp1 (marker for lysosomes) and Rab5 (marker for
early endosomes) were unchanged in both V1 and m-WT membrane
fraction (Fig. 4, B1–4).

To further investigate the relationship between tau and autophagic
vesicles, m-WT cells have been seeded and cultured on coverslips that
were double stained for tauusingNp-tau (Tau-1), p-tau (detection of al-
kaline phosphatase treated tau at S198/199/202/205 sites), and p-tau
(PHF-1 and TG3) and AVs using LC3. Co-existence of tau with LC3
positive vacuoles was significantly more in m-WT cells compared with
Fig. 4. Up-regulatedmTor increased tau accumulation in autophagic vacuoles. RepresentativeW
cell homogenates at 100,000 ×g (B1–B4) analyzed with anti-NP-tau (Tau-1), anti-LC3, anti-la
GADPH indicates loading control. Blots are representative from at least 3 independent exper
mean S.D. (error bars). *, p b 0.05 compared with control. C1–F2 show confocal microscopy
(Tau-1, green), tau (Tau-1 antibody used for detection of alkaline dephosphatase treated tau
G2 show immunostaining from control cells (V1) and wild type mTor cells (m-WT) with an
representative from at least 3 independent experiments.
control V1 cells (Fig. 4, C1–F2). Of note, higher level of LC3 is detected
in V1 control cells (Fig. 4, G2) with a decreased immunoreactivity for
raptor compared with m-WT cells (Fig. 4, G1).

3.5. Up-regulatedmTor increases the localization of intracellular tauwithin
autophagic vacuoles and mediate its release in an exosome independent
fashion

Both in vitro and in vivodata support the possibility that extracellular
tau can be a key factor in tau pathology and its spreading [14,17,43].
Therefore we aimed to assess the extracellular tau protein found in
conditioned media after serum deprivation of m-WT cells by analyzing
dot blots for the presence of tau protein (Supplementary Fig. 2). Using
Np-tau (Tau-1), p-tau (also for detection of alkaline phosphatase treat-
ed tau) and hyper-p-tau (PHF-1 and hyper-p-tau Ser(P)-214) antibod-
ies to identify secreted tau species. Increased levels of tau species have
been found in purified fractions (pellets 8) from conditioned culture
media of m-WT cells compared to V1 controls. Regarding the levels of
Tau-1 and hyper-p-tau (PHF-1 and hyper-p-tau Ser(P)-214) no signifi-
cant changes could be detected between m-WT and V1 exosomal
fractions (Fig. 5, A–B).

Immunogold labeling of m-WT and V1 cells with the NP-tau (Tau-1)
antibody have shown that tau protein was localized with AVs and in
close proximity to plasma membrane in m-WT cells (Fig. 5C). Thus
Np-tau (Tau-1) immunogold labeling could suggest the association of
Np-tau (Tau-1) with plasma membranes and its release from the cells
(Fig. 5D). Taken together, the present data suggest that tau protein
could be secreted by some exocytotic pathways in SH-SY5Y cells.

4. Discussion

The redistribution of p-tau from axons to somatodendrites and the
defective tau traffic in subcellular compartments are considered as
pathological markers during tauopathy development. Previously we
found that mTor is involved in the translation, phosphorylation, and
aggregation of tau in AD brains and SH-SY5Y cells containing different
genetic modifications of mTor activity [26–28]. In the current study,
we have focused on the alteration of tau protein in different cellular
compartments responsible for protein translation, trafficking and secre-
tion such as ER, Golgi apparatus and autophagosomes. A large number
of studies, mostly in ADmodels, have explored the intracellular produc-
tion sites of amyloidβ (Aβ). Aβ40 andAβ42monomers are demonstrat-
ed in ER, trans-Golgi apparatus, post-trans-Golgi network secretory
vesicles, autophagosomes, endosomes, lysosomes, multivesicular bod-
ies, mitochondria, cytosol, and plasma membrane [44–50]. However
subcellular localization of tau is less explored. In the present study, we
have demonstrated that intracellular tau is partially localized to AVs,
ER, mitochondria and Golgi apparatus in AD brains (Fig. 1). Overexpres-
sion of various mTor constructs in SH-SY5Y cells revealed increased
levels of tau species, beingpartially co-localizedwith various subcellular
compartments such as ER, mitochondrial or/and Golgi apparatus
(Fig. 3). These results might indicate that up-regulated mTor mediates
intracellular tau accumulation and plays a critical role in tau trafficking.

Both up-regulated mTor and S6K are associated with increased total
tau in AD brains, and inhibition of mTor with rapamycin decreases the
level of total tau both in vitro and in vivo [27,28,51,52]. Consistent
with these findings, in the present study we have found that overex-
pression of mTor in human neuroblastoma cells leads to increased
estern blots in cell homogenates at 1000 ×g (A1–A2), analyzed with anti-LC3 antibodies;
mp1, anti-Rab5 antibodies in control cells (V1) and wild type mTor cells (m-WT). Anti-
iments. The corresponding results from the independent experiments are presented as
of wild type mTor (m-WT) and control cells (V1) under serum deprivation for Np-tau
, green) and hyper-p-tau (PHF-1 and TG3, green) co-localization with LC3 (red). G1 and
ti-LC3 (green) co-localization with raptor (red). Scale bar is 10 μm. Immunostaining is
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Fig. 5. Intracellular tau is localized to autophagic vacuoles and is released in associationwith non-exosome particles. Panels A and B show dot blotting with p-tau (PHF-1 and TG3), Np-tau
(tau-1) and tau (tau-1 antibody used for detection of alkaline dephosphatase treated tau) from control cells (V1, 4 individual samples) andwild typemTor (m-WT, 4 individual samples)
conditioned media. Panels C and D illustrate immunogold labeling of Np-tau (Tau-1) and its localization with autophagic vacuoles as well as proximity to the plasma membrane
by immunoelectronic microscopy. Scale bar is 200 nm in C and 50 nm in D. Red arrow shows plasma membrane; black arrow—gold particles at the plasma membrane surface; blue
arrow—gold particles in autophagic vacuoles; red arrow—plasma membrane; black arrow head—membrane with double layer of autophagic vacuoles.
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total tau level, and overexpression of the inactive form of mTor, S6K or
mTor silencedmutants decreases total tau (Fig. 2B). Tauphosphorylated
at AD-specific sites TG3 (Thr231/Ser235) or PHF-1 (Ser396/404) could
not be detected in neuronal membranes [10,53], but Np-tau (Ser199/
202) was found to be associated with plasma membrane in transfected
PC12 cells [54], or enriched in the membrane fraction of differentiated
SH-SY5Y cells or tau transfected-non neural cos-1 cells [55]. It is the
N-terminal half of tau that interacts with the plasma membrane in
transfected PC12 cells [54]. In the present study, we have found that
up-regulated mTor increases membrane-bound Np-tau (Tau-1) and
cytosol-soluble p-tau (PHF-1 and TG3), and down-regulated mTor de-
creases membrane-bound Np-tau (Tau-1) and p-tau (PHF-1 and TG3)
in cytosol (Fig. 2). Interestingly overexpression of mTor in SH-SY-5Y
cell has been previously shown by us to suppress PP2A activity, the
main tau phosphatase with concomitant increase in S6K phosphoryla-
tion at Thr 389 site and increase in GSK-3β phosphorylation at Ser9
site, contributing to increased tau phosphorylation at certain sites
[26]. On the other hand, constitutive silencing of S6K (S6K-KD), the im-
mediate downstream substrate of mTor, significantly decreased the
level of tau phosphorylation. The increased level of membrane-bound
Np-tau (Tau-1) in m-WT cells might also reflect newly synthesized tau.

The role of autophagy in AD is notwell understood and contradicting
reports have been published. For example, it has been reported that AVs
may be a source of Aβ production and that AVs accumulate in AD brains
and in the brains of APP/PS1 transgenic mice [34,56]. In contrast, other
reports show that autophagy protects neurons from Aβ toxicity [57,
58]. To complicate this apparent contradiction more, it has also been
shown that mTor function, which negatively regulates autophagy, is
increased in neurons that are predicted to develop tau pathology in
AD brains, suggesting that high level of mTor signaling (and hence
low level of autophagy) increases mTor gain-of-function occurred
during aging, this process may facilitate the development of tau
pathology [59,60].

Exocytosis has been implicated as a possible mechanism of amyloid
spread as both prion andα-synuclein have been shown to be associated
with exosomes in cultured cell media [61,62]. Tau was secreted and
accumulated in membrane vesicles prepared from overexpressed tau
kidney-derived cell lines culture medium [63,64]. Controversies exist
since one study showed that tau is secreted by SH-SY5Y cells and tau
in human CSF is associated with exosomes [65], other studies reported
that tauwas not detected in isolated exosomes from the neuroblastoma
cells nor in primary mouse neuronal cultures [66–68]. In the present
study, we have found no alteration among the tau species in the
exosomes from control V1 compared to m-WT SH-SY5Y cells, however,
increased levels of tau species have been found in pure protein extrac-
tions from conditioned culture medium of m-WT cells. Our present
evidence indicates that up-regulated mTor facilitates the release of
tau into extracellular space in an exosome independent fashion in
SH-SY5Y cells, suggesting that mTor may mediate tau secretion by
other alternative exosome free pathway.

In summary, considering a central role of mTor in the onset and pro-
gression of tau pathology in AD, our findings suggest that intracellular
tau localized to various subcellular compartments is secreted to a
large extent into extracellular space via an exosome independent
manner. Our data also indicates that involvement ofmTor in autophagic
processing and secretion of tau could result in intracellular tau accumu-
lation and its translocation to various cellular organelles as seen in AD
brains and cellular models. These findings can provide a better under-
standing of the role of mTor in different tauopathies and could possibly
contribute to development a novel therapeutics targeting mTor.
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AD Alzheimer's disease
Akt v-Akt murine thymoma viral oncogene homologue-1
AMPK 5′ adenosine monophosphate-activated protein kinase
AVs autophagic vacuoles
Cdk5 cyclin-dependent protein kinases 5
DMEM Dulbecco's modified eagle's medium
ER endoplasmic reticulum
ERK1/2 extracellular signal-regulated kinase 1 and 2
NFT neurofibrillary tangles
GSK-3β glycogen synthase kinase-3β
m-WT human flag-mTor wild type
m-S human flag-mTor-S2035T (rapamycin resistant site)
m-SD human flag-mTor-S2035T/D2357E (both rapamycin resistant

and kinase dead sites)
m-SR mTor shRNA
mTor mammalian target of rapamycin
mTorC1 mTor Complex 1
mTorC2 mTor Complex 2
PDK 3-phosphoinositide dependent protein kinase
PHFs pair helical filaments
PKA cAMP-dependent protein kinase
S6K p70 S6 kinase
S6K-KD S6K kinase dead
SP senile plaques
V1 selection empty pcDNA3.0 plasmids
V2 selection empty vector pLko.1
V3 both empty pcDNA3.0 vector and EECMV plasmids
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