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I. INTRODUCTION 

The study of automata and of context-free languages usually deals 
with monoids or semigroups. The purpose of this paper is to propose an 
extension of the domain of study to other algebraic systems. In the 
process, a better Understanding of what takes place in monoids can be 
achieved. 

The basic language is that of the theory of categories. The basic facts 
are reviewed in sections 2 and 3. The basic ideas of universal :algebra 
are then introduced. The key notions are that of a "theory" and of 
algebras belonging to a theory. These ideas were laid down by Lawvere. 
A streamlined version of Lawvere's theory is given in sections 4-10. 
This part of the paper is regarded as expository and no proofs are given. 

Recognizable sets and (deterministic) automata are discussed briefly 
in sections 11 and 12. In order to consider the analogs of nondeter- 
ministie automata, a restriction must be imposed upon the "theories" 
considered. The normal habitat for this notion is the so-called "linear 
theories". However, since the main result (Theorem III) is valid only 
for "free theories" (which are linear), we accept this restriction starting 
with section 13 and do not introduce linear theories at all. A full treat- 
ment of the subject is scheduled to appear in a book by the first of the 
authors. 

Relational algebras (section 13) and relational automata (section 14) 
supply then the analog of nondetermlnistie automata, while the notion 
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of a polynomial (section 15) and of an algebraic set (section 16) are the 
generalizations of that of a grammar and of a context-free language. 
The main result asserts that, for free theories, recognizable sets and 
algebraic ones coincide. This result is due to l~[ezei and Wright. The 
proofs are given in sections 17 and 18. 

I t  is clear from this introduction that this paper contains nothing 
that is essentially new, except perhaps for a point of view. 

2. CATEGORIES 

A category a consists of 
(2.1) a class of elements called objects of (~ and denoted by A, A~, 

A2, A'I etc.; 
(2.2) a set a(A1, A2) defined for any pair A1, As of objects of a. 

The elements f E a(A~, As) are called morphisms and are written as 
f: A1 --~ A2 or 

A1 s_~ As ; 

(2.3) a composition law which to morphisms 

A1/~ A2 2+ A~ 

assigns a morphism 

A1 ~ As. 

The following axioms are postulated. 
(2.4) Associativity: Given morphisms 

we have h(gf) = (hg)f. 
(2.5) Identity: For every object A there exists a morphism 14 : A --~ A 

such that in 

A 1 / ~ A  ~-4~A -~A~ 

we have 

l ~ f = f  and g14 = g. 

The uniqueness of 14 follows from (2.4) and (2.5). 
A morphism f:  A1 --~ As is called an isomorphism if there exists a 

morphism g: As --~ A1 such that gf = 1A1, fg = 145 • The uniqueness of 
g follows from (2.4) and (2.5) and we write g = f-~. 
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Let (~ and (B be categories. A functor F:  (~ --+ (B consists of 
(2.6) a function which to each object A of a assigns an object FA of (B; 
(2.7) a function which to each morphism f :  A1 -~ As in ff assigns a 

morphism Ff: FA1 ----> FA2 in (B. 
The following axioms are postulated. 
(2.8) F(g]) = (Fg)(F]). 
(2.9) FI~ = l r , .  
Given functors F:  ff --* (~ and G: (~ -~ e, the composite funetor 

GF: a -~ e is defined in the obvious way. 

3. EXAMPLES OF CATEGORIES 

The category S of sets has sets as objects and functions as morphisms 
• . \ . 

with composition defined as composition of functions. Two objects m S 
will play special roles: the empty set ~) and the set I consisting of the 
number 1 alone. For any set A there are unique morphisms 

O---+ A, A - +  I. 

We say that  ¢) is an initial object and I is a terminal object for S. 
A set A and an element a E A determine a unique morphism I --+ A 

with a as value. We shall denote this morphism by the same letter a. 
Thus morphisms I --+ A and elements of A will be identified. 

For each integer n = 0, 1, . . .  we denote by In] the set {1, . . .  , n}. 
Thus [0] = 0 and [1] = f .  The sets In], n = 0, 1, . . .  together with all 
morphisms between them form a subcategory S0 of S. 

4. THEORIES 

A theory T is a category such 
(4.1) the objects of T are [n] 
(4.2) So is a subeategory of 

morphism in T, composition of 
and the identity morphisms 1 E~ 

(4.3) given morphisms 

~i:I--->[P] in T, i -=  

there exists a unique morphism 

¢: In] ~ [p] 

such that  ¢~ is the composition 

. . . . . . . .  I -~ [n] ~-~ [p] 

for every i E [n]. 

tha t  
f o r n  = 0, i , - . .  ; 
T; i.e., every morphism in So is also a 
morphisms in So agrees with that  in T, 
in So are also identity morphisms in T; 
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We shall write (4)1, "-" , 4)~) for the morphism 4) given in (4.3). Thus 
for any morphism 4): [hi --* [p] in T, we have 4) = (4)1, . . -  , 4ml. 

I t  should be noted that  it follows from the above axioms that  in T 
there is only one morphism On : ¢ --+ In] for every n, just as in the ease 
of $0. However, (contrary to what  takes place in So) there may  be in 
T morphisms 4): I --~ ~. In  fact, these "0-ary operations" play a funda- 
mental  role in the sequel. 

5. ALGEBRAS 

Let  T be a theory. A T-algebra A consists of a set A and a rule which 
to each 4): In] ~ [p] in T and each p-tuple (x l ,  . . -  , xp) of elements of 
A assigns an n-tuple 

(xl', . . . ,  x j )  = ( z l ,  . . . ,  zT)4) 

of elements of A, subject to the following two axioms: 
(5.1) if 4) is in So, then x~-' = xoi ; 
(5.2) if ~: [k] --> In] in T, then 

(zl', . . . ,  x , ' )~  = (x~, . . . ,  xp) (¢~) .  

I f  we write x = (x l ,  . . -  , xT), then (5.9) may  be rewritten as 

(x4))¢ = z(¢~). (5.2') 

A morphism f :  A --+ B of T-algebras is a mapping from A to B satisfy- 
ing 

f [ ( x ~  , . . . ,  xT)4)] -- ( f x l  , . . .  f xT )4 ) ,  (5.3) 

or in abbreviated form 

f ( z 4 ) )  = ( fx )4) ,  (5.3') 

where f x  = ( f x x ,  . . .  , f x p ) .  

With composition of morphisms of algebras defined in the ordinary 
fashion, there results the category T ~ of T-algebras. 

We note that  if ~b: I -~ [p] in T, then 

( x l ,  . . .  , xp)4) C A 

so tha t  4) yields a mapping A T --* A where A ~ is the p-fold Cartesian 
product  A X . . .  X A. 

I f  in the above p = 0, i.e., 4): I ---> 0, then ( . )  4) E A is an element of A 
determined by  4), independent of any "inputs" al ,  • • • ,  a T . We denote 
this element by  #A. 
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6. F R E E  ALGEBRAS 

Let  A~ = T(I ,  [k]) be the set of all morphisms I --+ [k]. We convert 
Ak into a T-algebra as follows: Given ~: [n] ~ [p] in T and given 
xl ,  . . -  , x~ C Ak, we have x~: I --+ [k] and therefore (xl,  . - .  , xp): 
[p] --~ [k] in T. Thus, the composition ~: = (xl,  - - .  , x~)~ is defined and 
is a morphism ~: [n] --> [k] in T. We define 

( x l ,  - . . ,  = . . . ,  v n ) .  

The verification that  Ak is a T-algebra is immediate. 
W e n o t e  that  each mapping i:  I --* [k] i -- 1, -. • , n in $0 is an element 

of Ak and thus in a natural  fashion, [k] becomes a subset of A~. The 
following fact is fundamental:  

(6.1) If  A is any T-algebra, then every mapping f :  [k] --~ A admits a 
unique extension ] :  Ak --* A to a morphism of  T-Mgebras. 
Indeed, we must have for ~ C A~ 

]~ = ( f l ,  . . . , / k ) ~  ~ A. 

The above shows that  the algebras A~ are "free" with [k] as base. In  
particular, A0 is the free algebra with an empty base and (6.1) asserts 
tha t  for any T-Mgebra A there is a unique morphism 

~x : Ao---> A.  

In  fact, i'A¢ = Cx for ¢ ~ A0 ; i.e., for , : i  ~ 0. Thus, A0 is an "initial 
object" in the category T v. 

7. F R E E  THEORIES  

As is usual in algebra, theories will be defined by  "generators and 
relations" or as "quot ien t"  theories of "free"  theories. We start  out 
with this second notion. 

Le t  f~ = {~2~} n = 0, 1, . . .  be a sequence of sets. Consider a theory T 
such that  

f~ c T( I ,  In]). 

Assume further tha t  with each morphism ¢: [n] ---> [p] in T there is 
associated an integer d$ > 0 (called the degree of ¢) satisfying the 
following conditions: 

(7.1) de = 0 i f $ i s i n S 0 .  
(7.2) d$ = g ( ¢ l )  + ---  + d($n).  
(7.3) If  ~ E f~ ,  then d(¢~)  = 1 + d~b. 
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(7.4) If  ¢: I --+ [p] and &b > 0, then there exists a unique ]~ => 0 
and a unique factorization 

i -~ [k] & [p] 

of ~ with ~0 C ak and ¢ in T. 
I t  is not too difficult to see that  the above conditions virtually amount  

to the construction of a theory T which is unique. We call it the free 
theory with base 12 and denote it  by S0[a]. 

The theory S0[a] has the following two important properties, both of 
which are easily provable by induction on the degree: 

(7.6) Given any theory T', any family of functions 

a~ --+ T ' ( L  In]) ,  n = 0,  1, . - .  

admits a unique extension to a morphism 

S0[~?] ~ T' 
of theories. 

(7.7) Given a set A and functions 

5~:A~--->A fora l l  ~oEa~,  n = 0 , 1 , . . . ,  

there exists a unique S0[f~]-algebra structure on A such that  

( z l ,  . . . ,  xo)~ = ~(x~, . . . ,  ~ ) .  

8. CONGRUENCES 

Let A be a T-algebra. A congruence Q in A consists of an equivalence 
relation "~ in A satisfying 

(a l ,  . . . ,  a~)¢ ~ (a / ,  - . - ,  a~')~ 

for any 4): I -+ [p] in T, provided ai --~ a / f o r  i = 1, --.  , p. I t  is then 
clear tha t  the quotient set A/Q (i.e., the set of equivalence classes 
of A under the equivalence relation) acquires a structure of a T-algebra, 
uniquely determined by the condition tha t  the natural factorization 
mapping A ~ A/Q be a morphism of T-algebras. 

A congrunce Q in a theory T is a family of equivalence relations, one in 
each set T([n], [p]) satisfying the following conditions: 

(8.1) If  ¢i ,  ¢2: In] --+ [p] and ~1 ~'~ 42, then ¢~b ~-~ ~b2~ for every 
~b: [q] --+ In] and ~/¢1 ~ 3'¢2 for every 7: [p] -~ [q]. 

(8.2) If  41, ~2: [n]--~ [p] and 81i~-~ q~2/for e v e r y i  = 1, - . . , n ,  
then ¢1 "~ ¢~. 
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(8.3) If ¢1, ¢2 : I --+ [p] are in So and if ¢1 ~ ¢2, then ~1 = ~2. 
Condition (8.1) permits us to define a category T/Q in which mor- 

phisms are equivalence classes of morphisms in T. Condition (8.3) 
insures that So is embedded in T/Q and condition (8.2) shows that 
T/Q is a theory. This is the quotient theory of T by the congruence Q. 
A T/Q-a!gebra A is simply a T-algebra satisfying 

(al ,  . . .  , a~)~l = (al ,  - . .  , ap)¢2, 

wherever ~h ~-~ ¢2. In this way, the category (T/Q) ~ becomes the sub- 
category of T ~ determined by the T-Mgebras A that are "compatible" 
with Q. 

Conditions (8.1) and (8.2) imply that Q is completely determined by 
knowing the equivalence relation in T(I, [p]) for every p. There result 
congruences Qp in the free algebras A~, p -- 0, 1, . . . .  One can regard 
Q as the sequence {Q~} of these congruences and reformulate conditions 
(8.1)-(8.3) accordingly. The free T/Q-algebras are then simply the 
quotient algebras Ap/Qp. 

In practice, a congruence Q in T will seldom be given "in toto". 
I t  will usually be "generated" by designating for each p certain pairs 
¢1, ¢2 : I --+ [p] and taking the least Q for which these pairs become 
congruent. I t  is easy to construct Q so that (8.1) and (8.2) are satisfied. 
Whether (8.3) is satisfied is hnpossible to predict. In this connection 
the following procedure is useful: Use Q (satisfying only (8.1) and (8.2)) 
to define congruences Q~ in Ap. Then Q satisfies (8.3) if and only if 
the algebra A~/Q2 has at least two points. 

9. PRESENTATION OF THEORIES 

The two operations described above, namely the formation of a 
free theory and the passage to the quotient theory by a congruence, form 
the basic two steps in the formation of theories. The procedure follows 
closely the method of presenting groups by generators and relations. 
Instead of discussing it in general, we shall illustrate by examples, 
The examples chosen are those particularly relevant to theory of 
automata. 

The theory Sg whose algebras will be semigroups may be described as 
follows: We begin with a free theory T generated by a single morphism 
7r: I --~ [2]. More explicitly, T = S0[~] where ~2 = {Tr} while ~ = 0 
for i ~ 2. The T-Mgebras are then sets A with a binary multiplication 
(al ,  a2)~ C A subject to no conditions whatsoever. To introduce the 
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associative law, we must "equate" certain two morphisms I --+ [3] 
in T or equivalently certain two elements of the free T-algebra A3. 
These two elements are 

((1, 2)~r, 3)7r, (1, (2, 3)rr)~r. 

This generates a congruence Q in T (a priori  satisfying only (8.1) 
and (8.2)). A T-algebra A is compatible with Q if and only if 

( (al , a~)~r, a3)v = (a l ,  (a~, a s ) v )~  

holds for any al,  a2, a3 E A ; i.e., if and only ff A is a semigroup. The 
fact that there exist semigroups with more than one element implies 
that Q satisfies also (8.3). Then Sg is defined as T/Q.  

To obtain the "monoid theory" M whose algebras will be monoids, 
one proceeds as above, but in addition to ~: I -+ [2], one has an addi- 
tional generator e: I --~ 0. Then in the free algebra A1, one must "equate" 
the following three elements 

(1, ~)~, 1, (~ ,  I)~, 

where e~ is the composition 

I - - % O z + I ,  

being the unique morphism. 
There is one more theory that is of vital interest in the theory of 

automata. Let M be a fixed monoid. We shall construct a theory whose 
algebras will be sets on which M operates on the right. To this end we 
consider generators m: I --+ I in a 1-1 correspondence with the elements 
of M. In the free algebra A, we then must equate the pairs 

(lm)n, l(mn) m, n E M 

1, le 

where e E M is the unit element of M. Usually we adjoin to this theory 
an additional generator r: I --+ 0 without any axioms. There results a 
theory ~'~ = So[M, r]. An ~-algebra is a set A with a right action 
am E A for a E A, m E M satisfying 

( am )n = a( m n  ) , ae = a 

and with a selected element r ,  E A. The initial algebra for this theory 
is the monoid]~M itself acting on itself by multiplication and with 
E ~ T M  , 



460 EILENBERG AND WRIGHT 

If  M is a free monoid with base ~i, • "" ,  ~k, then 1~ is the free theory 
Zo[~tl , " ' ' ,  ~ k ,  T]. 

10. OPERATIONS ON THEORIES 

An important operation on theories is the construction of the free 
product (also called direct sum or coproduct) T = T r ~ T~rof two theories 
T' and T t~. This theory is completely determined by the requirement 
tha t  its algebras are to be sets A equipped with a T'-algebra structure 
and T"-algebra structure simultaneously, without any further condi- 
tions. The existence of such a theory can be established by choosing 
presentations of T t and T". In  particular, if T t --- S0[il'] and T" = S0[~tt], 
then T --- S0[f~] where ~ is the disjoint union ~t U f~tt. The free product 
T @ S0[~] is denoted by T[2]; this is the theory obtained from T by 
adjoining "freely" the operations f~. 

Let  T be a theory and A ° a T-algebra. One can construct a new theory 
T[A °] whose algebras will be pairs (A, f)  where A is a T-algebra and 
f :  A ° --~ A is a morphism of T-algebras. A morphism g: (A,  f) ~ (A t, ft) 
will be a morphism g: A --+ A t of T-algebras satisfying gf = f'.  The 
theory T[A °] may be constructed by first adjoining freely all the elements 
of A ° to T as operations I -* 0 and then dividing by a suitable con- 
gruence. The theory T[A °] has the property tha t  the pair (A °, 1~0) 
becomes the initial algebra in category T[A°] ~. If  A ° = Ax is a free 
algebra on a base X, then T[A °] is nothing else than the free extension 
T[f~] with f~0 = X, 2~ = 0 for i > 0. 

11. RECOGNIZABLE SETS 

Let  A be a T-algebra and Q a congruence in A. We say tha t  Q is 
finite if A has a finite number of equivalence classes rood Q, or equiva- 
lently if A / Q  is a finite T-algebra. A subset X of A is said to be closed 
for Q if X is the union of congruence classes mod Q, or equivalently if 
a ~'~ b and a E X imply b E X. A subset X of A which is dosed relative 
to some finite congruence Q is called recognizable. The class of recogniz- 
able subsets of A is closed with respect to finite Boolean operations. 

If M is a monoid, then M may be viewed as a T-algebra for a variety of 
theories T. If  we take for T the "monoid theory",  then T ~ is the category 
of monoids and M E T ~. A congruence Q in A is then an equivalence 
relation for which ml N m2 implies kmtl ~,~ kmd for all k, 1 E M. The 
same notion of congruence in M is obtained if we view M as the ini t ial  
algebra for the extended theory TIM]. 
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On the other hand, M m a y  also be viewed as the initial algebra for the 
theory _~r = S0[M, r] described in section 9. A congruence in M is 
then  ~n equivalence relation for which ml "~ m2 implies roll N m~l for 
all l E M. 

I t  is a known fact tha t  both  types of congruences in M lead to the 
same class of recognizable sets. 

12. A U T O M A T A  

Let  T be a theory.  A T-automaton is a pair A = (A, t) where A is a 
f in i te  T-algebra and t is a subset of A. The  T-au tomata  are converted 
into a category Ta r by  defining a morphism f :  A -~ B where B = (B ,  s) 

as ~ morphism f :  A -~  B of T-algebras such tha t  f f l s  = t. 
The  behavior (BA is defined as a subset of the initial T-algebra A0 

~s follows: Let  ~', : A0 --~ A be the unique T-morphism. Then  ~A = ~'~lt. 
The  morphism ~ defines a congruence Q in A0 by  defining al ~ a2 

whenever ~,a~ = ~aa~. This congruence is finite since A is finite. Further,  
(~A is closed for Q. 

(~B is a recognizable subset of A0. Conversely, let X be any  recogniz- 
able subset of A0. Let  then Q be a finite congruence in A0 for which X is 
closed. Then  A = Ao/Q is a finite T-algebra and setting t = X / Q  we 
obtain a T-au tomaton  A = (A, t). Further ,  ~A is the natural  factoriza- 
t ion mapping  Ao --~ Ao/Q = A .  Thus, X = ~;~t = (~A. This shows tha t  
the class of all the behaviors of T-au tomata  coincides with the class of 
recognizable subsets of A0. 

13. RELATIONAL ALGEBRAS 

I n  order to generalize the notion of a nondeterministie automaton,  we 
restrict  ourselves to the case tha t  the theory T is free: T = S0[~]. 
In  view of (7.7),  a T-algebra A is then described by  functions 
(x l ,  . . .  , x~)~ ~ A for xl ,  . . .  , x~ C A and w E ~ .  

We define a relational T-algebra A to consist of a set A together with 
functions which to x~, . . . ,  x~ E A and ¢~ E ~2~ assign a subset 

(x~, . . .  , x.)o~ of A. I f  X1, . - .  , X ,  are subsets of A, then we set 

(X~, . . . ,  X,)¢~ = O(x~, . . . ,  x , )~ ,  (13.1) 

the union extended over all n-tuples (x~, • • • ,  x~) in A such tha t  z{ E X { ,  
i = 1, • • • , n. In  this way, the set fl~ of all the subsets of A becomes a 
T-algebra. 

Conversely, ~ssume tha t  on the set zi we have a T-algebra s tructure 
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satisfying the "distr ibut ive" taw (13.1) where A is regarded as a 
subset of ~ .  Then restricting each ~ C ~ to A gives the relational 
T-algebra A. 

A morphismf:  A --~ B of relational T-algebras is defined as a morphism 

f : . ~ - + / ~  in T ~ 

satisfying the distributivity condition 

f X  = Ufx,  ~, ~ X .  (13.2) 

A function ~ --> /~ satisfying (13.2) is the same thing as a relation 
from A into B; it is described by the subset R of A X B defined as fol- 
lows: 

R = { (a ,b )  l b C f a l .  

The relational T-algebras form a category denoted by T ~. The category 
of T-algebras is a subcategory of T ~. Further,  the passage from A to 
yields a functor h : T ~ -*  T ~. 

An important  fact to note is tha t  the initial algebra A0 for the category 
T ~ remains an initial algebra also within the larger category T ~. Indeed, 
if A E T ~, then ~ E T ~ and we have a unique ~$ : A0 -~ ~ .  This defines 
~a : A0 -~ A in T ~, which is unique since ~ is. 

14. RELATIONAL AUTOMATA 

We define a relational automaton A = (A, t) exactly as above, except 
tha t  A E T ~. The behavior is defined as 

~ A  = ~ l t  = { x l x  ~ A0~ ~-~x N t ~ 0}. 

I t  is now clear tha t  if we define the automaton 

A = (.~, t'), t' = {X IX  c A, X n t ~ o}, 

then 6~A = ~A. We thus have the generalization of the known 
fact t h a t  nondeterministie automata  recognize the same sets as de- 
terministic automata.  

15. POLYNOMIALS 

Let  T be a free theory. A polynomial 

. . . .  P :  In] --* [p] 

is an n-tuple P = (P1, • "" , P , )  where P1, • • • , P ,  are finite subsets of 
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T( 1, [p]). The elements of P i  are called the constituents of P,  and if all 
these constituents have degree 1, then we say tha t  P has degree 1. 

Let  A be a relational T-algebra, and let X = ( X I ,  . . .  , Xp)  be a 
p-vector of subsets of A. We define 

X P ~ =  0 ( X i ,  . . . , X p ) ~  
~ E P i  

X P  = ( X P I ,  . . . ,  X P ~ ) .  

Thus, X P  is an n-vector  of subsets of X. Therefore, P defines a function 

P ~  : ~I ~ _~ ~P.  

In  the p-fold product  _~P of ~ we define inclusion and union coordinate 
by  coordinate. We then have the following important  property of P~ : 

(15.1) If in AP we have 

X ° c X  i c . . .  c X  ~ c . . . ,  

then 

(O X k ) P A  = U ( X k P ~ ) .  
k k 

For the proof it suffices to consider the case n = 1 and P = P1 = 
~: I --* [p] is a monomial (i.e., P has a single consti tuent) .  In  this case 
the desired relation is proved in a straightforward manner by induction 
on the degree of ¢. 

Proper ty  (15.1) implies tha t  PA is monotone; i.e., tha t  X P A  c Y P ~  
whenever X ~ Y in _~P. 

We now consider a polynomial 

Then the transformation 

may be iterated, yielding 

P :  In] --+ [n]. 

p Ak : .~ '~ ---> ~'~, 

for which (15.1) also holds. In  particular, if 0 E fl~" is the n-tuple 
(0, - ' -  , 0), we have 

O c OPA c OP~ 2 ~ . . .  ~ OPA ~ c . . .  
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P,, = U O P **. 
k 

The following fact should be regarded as well known (as well as easily 
provable) : 

(15.2) P ,  is the least solution of the equation 

X P  , -'- X ,  

for X E A n, as well as the least solution of the inequality 

X P a  c X .  

Iu  the special case where A -- Ao is the initial algebra in T ~, we shall 
write i 5 instead of P*0. This special case is all-important because of 

If  ~'a : A0 --~ A, then 15a = ~-,t 5. (15.3) 

Here, ~ denotes the mapping ~'A : ~0 n --+ t i  n defined by the mapping 
~, : ill0 -+ ~ given by the relation ~A : Ao --+ A. The fact stated in (15.3) 
follows readily from the commutative diagram 

l 
2 " -  p.',.', A ~ 

and the facts that  

~0 = ~, ~ U X ~ = U ~,X ~. 
k k 

16. ALGEBRAIC SETS 

A subset X of the initial algebra A0 for a free theory T = S0[~] is 
called algebraic if there exists an integer n and a polynomial P :  [n] --+ [n] 
such that  X -- /51 ; i.e., X is the first coordinate of the least solution of 
the equation YPAo = Y for Y E/ i0  n. 

The following properties of algebraic sets should be regarded as known: 
(16.1) Each element x of A0 is an algebraic set. 
(16.2) The empty set is algebraic. 
(16.3) If  X1 and X2 are algebraic sets, then so is X1 13 Xz. 
(16.4) If  ~: I --+ [p] in T and X1, . . .  , Xp are algebraic sets, then so is 

( x l  , . . . ,  x~,)¢, .  
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We are now in a position to state the main results of this paper. 
THEOREM 1. For each algebraic set X in the initial algebra Ao over a 

free theory T = So[~2], there exists an integer n > 0 and a polynomial 
P:  In] --+ In] of degree 1 such that X = D1. 

The proof will be given in section 17. 
Now assume tha t  the theory T = S0[f~] is free on a finite base; i.e., 

tha t  each of the sets f~k is finite and that  12k = 0 for all but  a finite 
number of integers /c = 0. 

Let  A be a relational T-algebra with In] as underlying set. We associate 
with A a polynomial, 

A~: In] --+ In] 

of degree i as follows: A morphism q5: I --+ In] of degree 1 is a composition 

I -~ [p] -~ In], 

where ~ E ~p and x = ( x l ,  . . . ,  xp), a p-tuple of elements in [n]; 
i.e., in A. We define x~ E P i  if and only if i C (xl, . . .  , xp)~ according 
to the relational T-algebra structure A. This clearly gives a bijection 
between the relational T-algebra structures A on [n] and polynomials 
P :  In] --~ In] of degree 1. 

T~EOREM 2. I f  the relational T-algebra A on In] and the polynomial 
P:  In] --~ [n] of degree 1 are related as above, then 

We recall here tha t  ~ : A0 -+ A = [n] is a relation so that  

~1i  = {y l Y C A0, i E ~'~y}. 

The proof will be given in section 18. 
From the two theorems asserted above, we can now prove: 
THEOREM 3. / f  T = S0[ft] is a free theory on a finite base, then in the 

initial T-algebra Ao the recognizable sets and the algebraic sets coincide. 
Proof. Let  X c A0 be recognizable. Then X = 53A where A = (A, t) 

is an automaton. Since the T-algebra A is finite, we may, without loss, 
assume that  the underlying set of A is In] for some n > 0. Let  P :  In] --* [hi 
be the associated polynomial of degree 1. Then by Theorem 2 

x = ~ A  = ~ ~ t  = U ~ 2 ' i  = U P ~ .  
iEt iEt 

Since e a c h / ~  is algebraic, it follows from (16.3) tha t  X is algebraic, 



466 EILENBERG AND W~RIGttT 

Conversely, let X be an algebraic set in A0. Then  by Theorem i we 
have X = t51 for  some polynomial P :  In] -+ In] of degree 1. Let  A be 
the relational T-algebra structure associated with P and let A = (A, t) 
be the relational automaton with t = { 1}. Then by  Theorem 2 

~ A  = ~ 1  = P1 = x 

so that  X is recognizable. 

17. PROOF OF THEOREM 1 

We shall establish two auxiliary propositions. 
PROPOSITIOX 1. Given a polynomial P:  In] --~ In], there exists a poly- 

nomial Q: In] --~ In] such that 
(i) The constituents of Q are precisely the constituents of P of degree 

>0.  
(ii) Q = P.  

P]~OPOSITIO~ 2. Given a polynomial P:  In] --~ In], there exists a poly- 
nomial Q: [m] --> Ira], n ~ m such that 

(i) All  constituents of Q have degree <=1. 
(ii) Qi has the same constituents of degree 0 as P~ , i = 1, • • • , n. 

(iii) Q~, n < i < m has no constituents of degree O. 
(iv) ~ = P ~ f o r  i = 1, . . . ,  n .  

I t  is now clear how Theorem i follows from these two propositions. 
Given an algebraic set X in A0, choose a polynomial P :  In] -+ In] such 
that  X = P l .  Then apply both propositions consecutively and in 
either order. There results a polynomial Q: [m] -+ Ira], n =< m of degree 
1 such that QI = X. 

In  the proofs tha t  follow, it  will be convenient to use the symbol 
+ for u and N for U. 

Proof of Proposition 1. We represent the polynomial P in the form 
P = R + M where R: [n] --+ In] consists of all the constituents of P of 
degree >0 ,  while M consists of the constituents of P of degree 0. The 
morphismsj:  1 --~ In] of degree 0 a r e j  = 1, . .  • , n. Thus  M may be repre- 
sented as the n X n matrix {Mq} whose coordinates M q  are 1 or 0 de- 
pending on whether j :  I -*  In] is a constituent of M~ (i.e., a constituent 
of P~). We now form the matrix 

N = E + M + M 2 +  . . .  + M k + . . .  

as follows: We regard (B = {0, 11 as a semi-ring with the operation table 
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0+0=0, 0+i = I+0= I+i = i 

ii = I, 01 = 10 = O0 = 0 

and  regard  M as a mat r ix  wi th  coefficients in (B. i%/latrices are mult ipl ied 
and added  in the  usuM fashion. E denotes the  matr ix  wi th  1 on the 
diagonal  and  zero everywhere  else. T he  sequence of matr ices  

M (~) = E + M + M  2 +  . . -  + M  k 

t~ = 0, 1, • • • is ascending and, therefore, for some k we have M (1~) = M ~7) 
for M1 l > k. The  matr ix  N is then  defined as M (~), for k sufficiently large. 
We  now define the  polyllomial  Q: In] --~ In] as Q -- R N ;  i.e., 

Q, = • R~N~,. 
k 

Since Nil  = 1 we have R~ c Q~. Condi t ion (i) of Proposi t ion i is then 
clearly satisfied and  we now prove  t h a t  Q = i 5. 

Assume t h a t  X - (X1 ,  • .- , X~) is a vec tor  of subsets of A0 such tha t  
X P  c X .  T h e n  since P = R + M,  we mus t  have  X R  c X and X M  c X .  
Therefore,  X M  k c X for all k and  ~hus X N  c X .  I t  follows tha t  

X Q  = ( X R  ) N  c X N  c X .  

This proves t h a t  O c i 5. To  prove the  converse, assume t h a t  XQ = X. 
Since R ~ Q, we have  X R  c X .  Since N M  c N,  we have 

QM = R N M  ~ R M  = Q. 

Therefore,  

X P  = X R  + X M  = X R  + X Q M  c X + QX = X .  

This shows t h a t  15 c 0 .  T h u s  15 = Q. 
Proof  of Proposi t ion 2. Assume t h a t  ]c > 1 is the highest degree of the 

const i tuents  of P and let ~: I -~  In] be a const i tuent  of P of degree k. We 
m a y  write 

P = R + 4 , M ,  

where R is ~ polynomial  no t  conta ining ¢ as a const i tuent  while 
M = (M~, • • • , M . )  is a vec tor  wi th  components  0, 1 defined by  M~ = i 
or  M~ = 0 depending on whether  or not  ¢ is a const i tuent  of P~.  The  
morphism ~ h~s a factor izat ion 
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in subsets X = (X~, 
written as 

with ~ C ~p and d~ = k - 1. Since d¢~ = ~ d(¢~i) i = 1, . . .  , p we must 
have d ( ¢ i )  > 0 for some i. Without  loss of generality, assume that  
d ( ~ p )  > O. 

Finding 15 is equivalent to finding the minimal solution of the system 
of equations 

X = X P  (17.1) 

• . .  , X~) of A0. The equation (17.1) may  be re- 

X = X R  + ( X ~ b l , . . . ,  X ¢ ~ ) ~ M ,  (17.2) 

where ~b~ = ¢i. 
We now consider the system of n -~ 1 equations with n ~- 1 unknowns 

as follows: 

X = X R  + ( . ¥ ~ i ,  " '" , X ~ - I ,  X ~ + I ) ~ M  
(17.3) 

X~+I = X~b~, 

where X -- (X1, . • • , X . ) .  I t  is clear tha t  if X = (X1, • • • , X~) is the 
minimal solution of (17.2), then (X1, . . .  , X~, X~+I) with X~+~ = X¢~ 
is the minimal solution of (17.3). 

The right-hand side of (17.3) yields a polynomial Q: [n -~ 1] --> In ~- 1] 
whose constituents are: ( 1 °) compositions 

I _Z> [n] f-+ [n + 1], 

where ~ is a constituent of P different from ¢ a n d f  is an inclusion; (2 °) 
morphisms r:  I --~ [n ~- 1] satisfying 0 < dr < k. By  the above, Oi = / 5  
f o r i  = 1 , . . . , n .  

An iteration of the above procedure yields the conclusion of Propo- 
sition 2. 

18. PROOF OF TttEOI~EM 2 

Let  

Then Q~ c A0 and we wish to show that  Q = P where Q = (Q1, " "  , Q~). 
We first show that  t5 c Q. For  this, it suffices to show that  QP c Q; 

i.e., tha t  

( Q 1 , ' "  , Q,)~ ~ Q~ whenever ~ ~ P~. 
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Le t  ~ E P~. Then  ~ is the composition 

I -~ [p] -~ [n] 

with ~ E ~ ,  x is a mapping in So and 

i E (z l ,  . . . ,  xp)~. 

Thus we must  show that  

( Q~I, . . .  , Q ~ ) ~  ~ Q, .  

Let  then 
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(18.1) 

be such that  

x : [ p ] ~ [ n ]  = A in S0 

xj  E ~.~bj j = 1 , . . .  , p  (18.3) 

i E (x~, . . . ,  xp)~. (18.4) 

Let  then 

~ E Q ~ j  j = 1 , - . . , p  

= ( ~ 1 ,  "'" , ~ )  : [p] -~ 0. 

Then x j  E ~'~bj f o r j  = 1, . . .  , p, and 

i E ( x l ,  . . . ,  xp)~ c ( r ~ l ,  " " ,  r ~ ) ~  = r ~ ( ~ ) .  

Consequently, ¢~0 E Q~, so tha t  (18.1) holds. 
To show the opposite inclusion, we must  prove that  
(18.2) if ~: I --* 0 and i E ~A~, then ~ E P~. 
This will be done by induction with respect to the degree of ~. First  

let d~ = 1. Then  ~ E ~0 and i E ~ • Then the composition 

is in P~ so that  ¢ = ~b~0 E 0P i .  Thus ¢ E / 5  as required. 
Now assume d~ = ]c > 1. Let  

z -~ [p] ~ In] 

be the faetorization of ¢ with ~ E ~p and de = k - 1 > 0. Then p > 0. 
We have 

i E t , ¢  = ~ ¢ ~  = g~(~l, . . . ,  ~p)~ = ( t , ~ ,  . . . ,  t~Cp)~. 
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I t  fol lows f rom (18.4)  that t h e  compos i t i on  

I -~ [p] -~ In] 

is in P~ .  C o n d i t i o n  (18.3) ,  in  v iew of dCj < k, impl ies  t h a t  Cj E P~ i .  

T h u s  ~ = (~1,  - . -  , pp)w C (Ps i ,  " . . ,  P~,)w = ( P I ,  " " ,  P~)xo~ c 
(/51, . . .  , iS~)Pi  c P~.  Consequen t ly ,  ~ E P~ as  requ i red .  
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