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1. Introduction

Unless stated otherwise, throughout this paper all rings are associative with identity and all mod-
ules are unitary modules. Let R be a ring. We denote by R-Mod (Mod-R) the category of left (right)
R-modules respectively. By P(R) and I(R) denote the class of all projective and injective R-modules
respectively. For any R-module M , pdR(M) denotes the projective dimension of M . The character
module HomZ (M, Q /Z) is denoted by M+ .

When R is two-sided noetherian, Auslander and Bridger [2] introduced the G-dimension,
G-dimR(M) for every finitely generated R-module M . They proved the inequality G-dimR(M) �
pdR(M), with equality G-dimR(M) = pdR(M) when pdR(M) is finite. Several decades later, Enochs
and Jenda [8,9] extended the ideas of Auslander and Bridger and introduced three homological di-
mensions, called the Gorenstein projective, injective and flat dimensions. These have been studies
extensively by their founders and by Avramov, Christensen, Foxby, Frankild, Holm, Martsinkovsky, and
Xu among others [3,6,9,12,22] over arbitrary associative rings. They proved that these dimensions are
similar to the classical homological dimensions; i.e., projective, injective and flat dimensions respec-
tively. D. Bennis and N. Mahdou [5] studied a particular case of Gorenstein projective, injective and
flat modules, which they call respectively, strongly Gorenstein projective, injective and flat modules.
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They proved that every Gorenstein projective (resp. Gorenstein injective, Gorenstein flat) module is
a direct summand of a strongly Gorenstein projective (resp. strongly Gorenstein injective, strongly
Gorenstein flat) module. In this paper, we continue the study of strongly Gorenstein projective, injec-
tive and flat modules. In Section 3, we consider these properties under change of rings. Specifically,
we consider completions of rings, Morita equivalences, excellent extensions, polynomial extensions
and localizations.

We firstly recalled some concepts. Let X be a class of R-modules. We call X projectively resolving
if P(R) ⊆ X and for every short exact sequence 0 → X ′ → X → X ′′ → 0 with X ′′ ∈ X the conditions
X ′ ∈ X and X ∈ X are equivalent. We call X injectively resolving if I(R) ⊆ X and for every short
exact sequence 0 → X ′ → X → X ′′ → 0 with X ′ ∈X the conditions X ′′ ∈X and X ∈X are equivalent.
An R-module M is said to be Gorenstein projective (G-projective for short) if there exists an exact
sequence of projective modules

P = · · · → P1 → P0 → P 0 → P 1 → ·· ·

such that M ∼= Im(P0 → P 0) and such that HomR(−, Q ) leaves the sequence P exact whenever Q is
a projective R-module. The exact sequence P is called a complete projective resolution. The Goren-
stein injective (G-injective for short) modules are defined dually. An R-module M is called strongly
Gorenstein projective (SG-projective for short) if there exists a complete projective resolution of the
form

P = · · · f−→ P
f−→ P

f−→ P
f−→ · · ·

such that M ∼= Ker f . Every projective module is strongly Gorenstein projective, every strongly Goren-
stein projective module is Gorenstein projective. The class of all strongly Gorenstein projective R-
modules is denoted by SGP(R). The strongly Gorenstein injective (SG-injective for short) modules
are defined dually. Every injective module is strongly Gorenstein injective, every strongly Gorenstein
injective module is Gorenstein injective. The class of all strongly Gorenstein injective R-modules is
denoted by SGI(R). An R-module M is said to be Gorenstein flat (G-flat for short) if there is an
exact sequence of flat modules

F = · · · → F1 → F0 → F 0 → F 1 → ·· ·

such that M ∼= Im(F0 → F 0) and such that I ⊗R − leaves the sequence F exact whenever I is an
injective R-module. The exact sequence F is called a complete flat resolution. An R-module M is
called strongly Gorenstein flat (SG-flat for short) if there exists a complete flat resolution of the form

F = · · · f−→ F
f−→ F

f−→ F
f−→ · · ·

such that M ∼= Ker f . Every flat module is strongly Gorenstein flat, every strongly Gorenstein flat
module is Gorenstein flat. The class of all strongly Gorenstein flat R-modules is denoted by SGF(R).

2. The strongly Gorenstein property

It was shown in [5, Theorem 2.7] that a module is Gorenstein projective if and only if it is a
direct summand of a strongly Gorenstein projective module. By [5, Example 2.13], {SG-projective
modules} � {G-projective modules}. Hence direct summands of a strongly Gorenstein projective mod-
ule need not be strongly Gorenstein projective and the class SGP(R) of all strongly Gorenstein
projective R-modules is not projectively resolving. In fact, assume SGP(R) is projectively resolv-
ing. Let M be a G-projective R-module but not SG-projective. Then there is a G-projective R-module
N such that M ⊕ N is SG-projective. Set L = M ⊕ N ⊕ M ⊕ N ⊕ · · · . Then L is SG-projective by [5,
Proposition 2.2]. Consider the exact sequence 0 → M → M ⊕ N ⊕ L → N ⊕ L → 0. Since M ⊕ N ⊕ L ∼= L
and N ⊕ L ∼= L, we have 0 → M → L → L → 0 is exact, and hence M is SG-projective, a contradiction.
But we have the following result.



X. Yang, Z. Liu / Journal of Algebra 320 (2008) 2659–2674 2661
Theorem 2.1. Let 0 → N → M → Q → 0 be exact with Q projective. Then N is SG-projective if and only if
M is SG-projective.

Proof. (⇒) If N is SG-projective, then M ∼= N ⊕ Q is SG-projective by [5, Proposition 2.2]. (⇐) As-
sume M is SG-projective. There exists an exact sequence 0 → N ⊕ Q → P → N ⊕ Q → 0 with P
projective. Consider the pushout of N ⊕ Q → P and N ⊕ Q → N:

0 0

0 Q

‖

N ⊕ Q N 0

0 Q P Q ′ 0.

N ⊕ Q N ⊕ Q

0 0

Then Q ′ is G-projective by [12, Theorem 2.5] since N and N ⊕ Q are G-projective by [12, Theorem 2.5].
So Ext1

R(Q ′, Q ) = 0, the sequence 0 → Q → P → Q ′ → 0 splits. Hence Q ′ is projective. Consider the
pullback of Q ′ → N ⊕ Q and N → N ⊕ Q :

0 0

N
=

N

0 Q ′′ Q ′ Q

‖

0

0 N N ⊕ Q Q 0.

0 0

Then 0 → N → Q ′′ → N → 0 is exact and Q ′′ is projective. Let W be any projective R-module. Then
Exti

R(N, W ) = 0 for all i � 1 since N is G-projective by [12, Theorem 2.5]. It follows that N is SG-
projective by [5, Proposition 2.9]. �

By analogy with the proof of Theorem 2.1, we have the following result.

Theorem 2.2. Let 0 → E → M → N → 0 be exact with E injective. Then N is SG-injective if and only if M is
SG-injective.
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Lemma 2.3. Let M be a left R-module and P a flat left R-module. Then M is SG-flat if and only if M ⊕ P is
SG-flat.

Proof. (⇒) If M is SG-flat, then M ⊕ P is SG-flat by [5, Proposition 3.4]. (⇐) Assume M ⊕ P is
SG-flat. There exists an exact sequence 0 → M ⊕ P → F → M ⊕ P → 0 with F flat. Then (M ⊕ P )+
is G-injective by [12, Theorem 3.6], and hence M+ is G-injective by [12, Theorem 2.6]. Consider the
pushout of M ⊕ P → F and M ⊕ P → M:

0 0

0 P

‖
M ⊕ P M 0

0 P F F ′ 0

M ⊕ P M ⊕ P

0 0

and consider the commutative diagram:

0 0

(M ⊕ P )+
=

(M ⊕ P )+

0 F ′+ F + P+

‖
0

0 M+ (M ⊕ P )+ P+ 0.

0 0

Then F ′+ is G-injective by [12, Theorem 2.6], and thus Ext1
R(P+, F ′+) = 0, the sequence 0 → F ′+ →

F + → P+ → 0 splits. It follows that F ′+ is injective, and hence F ′ is flat. Consider the pullback of
F ′ → M ⊕ P and M → M ⊕ P :

0 0

M
=

M

0 F ′′ F ′ P

‖
0

0 M M ⊕ P P 0.

0 0
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Then 0 → M → F ′′ → M → 0 is exact and F ′′ is flat. Let I be any injective right R-module. Then
0 = TorR

i+1(I, P ) → TorR
i (I, M) → TorR

i (I, M ⊕ P ) = 0 is exact for all i � 1. Hence TorR
i (I, M) = 0 for all

i � 1, and therefore M is SG-flat by [5, Proposition 3.6]. �
Theorem 2.4. Let R be right coherent. Then M is an SG-flat left R-module if and only if M+ is an SG-injective
right R-module.

Proof. (⇒) There exists an exact sequence 0 → M → F → M → 0 in R-Mod with F flat. Then
0 → M+ → F + → M+ → 0 is exact in Mod-R and F + is injective. Let I be an injective right R-
module. Then Exti

R(I, M+) ∼= TorR
i (I, M)+ = 0 for all i � 1, and hence M+ is an SG-injective right

R-module. (⇐) There exists an exact sequence 0 → M+ → E → M+ → 0 in Mod-R with E injective.
Then there is an injective right R-module E ′ such that E ⊕ E ′ = E++ . Let H = (E ′ ⊕ E)N ∼= (E+(N))+ .
Consider the exact sequence 0 → M+ ⊕ H → E ⊕ H ⊕ H → M+ ⊕ H → 0. Then 0 → M ⊕ E+(N) →
E+(N) ⊕ E+(N) → M ⊕ E+(N) → 0 is exact and E+(N) ⊕ E+(N) is flat. Let I be any injective right R-
module. Then TorR

i (I, M ⊕ E+(N)) = TorR
i (I, M) ⊕ TorR

i (I, E+(N)) = 0 for all i � 1 since M is G-flat by
[12, Theorem 3.6], and thus M ⊕ E+(N) is SG-flat. It follows that M is SG-flat by Lemma 2.3. �
Corollary 2.5. Let R be a commutative coherent ring. Then the following are equivalent:

(1) M is SG-flat;
(2) HomR(M, E) is SG-injective for all injective R-modules E;
(3) HomR(M, E) is SG-injective for any injective cogenerator E for R-Mod.

Proof. (1) ⇒ (2) By analogy with the proof of Theorem 2.4.
(2) ⇒ (3) is obvious.
(3) ⇒ (1) Since M+ ∼= HomR(M, R+) is SG-injective, we have M is SG-flat by Theorem 2.4. �

Theorem 2.6. Let R be right coherent and let 0 → N → M → F → 0 be exact with F flat. Then N is SG-flat if
and only if M is SG-flat.

Proof. Use Theorems 2.2 and 2.4. �
Remark 2.7. By analogy with the proof of Theorem 2.1, we can prove that the class of all strongly
Gorenstein projective R-modules is closure under direct transfinite extensions.

Let R be a ring and let M , N be left R-modules. Set T (M) = {x ∈ M | lR(x) = 0}. If T (M) = 0, then
M is called torsionfree. We denote by τN the natural map from M∗ ⊗R N to HomR(M, N) via ϕ ⊗ x �→
τN (ϕ ⊗ x)(m) = ϕ(m)x for any ϕ ∈ M∗ , x ∈ N and m ∈ M , where M∗ = HomR(M, R). Recall that an SG-
projective module is projective if and only if it has finite projective dimension [12, Proposition 2.27].
It was shown in [5, Proposition 3.7] that an SG-flat module is flat if and only if it has finite flat
dimension.

Theorem 2.8. Let M be a finitely presented torsionfree left R-module. Then the following are equivalent:

(1) M is SG-projective;
(2) M is SG-flat;
(3) The natural map from M∗ ⊗R M to HomR(M, M) is an isomorphism;
(4) The image of the natural map from M∗ ⊗R M to HomR(M, M) contains IdM ;
(5) M is projective;
(6) M is flat.

Proof. (1) ⇔ (2) By [5, Proposition 3.9].
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(2) ⇒ (3) There exists an exact sequence 0 → M → f F →g M → 0 with F flat. Consider the com-
mutative diagram:

M∗ ⊗R M

τM

τF M∗⊗R f
M∗ ⊗R F

τF

M∗⊗R g
M∗ ⊗R M

τM

0

0 HomR(M, M)
HomR (M, f )

HomR(M, F )
HomR (M,g)

HomR(M, M).

Let ϕ ⊗ m ∈ Ker(M∗ ⊗R f ). Then for any m′ ∈ M , τF (ϕ ⊗ f (m))(m′) = f (ϕ(m′)m) = 0. So ϕ(m′)m = 0,
and hence m = 0 or ϕ = 0 since M is torsionfree. It follows that ϕ ⊗ m = 0, M∗ ⊗R f is monic, and
hence τM is an isomorphism since τF is an isomorphism by [10, Theorem 3.2.14].

(3) ⇒ (4) and (5) ⇒ (1) are obvious.
(4) ⇔ (5) ⇔ (6) By [15, Theorem 4.19]. �

Proposition 2.9. Let R be left noetherian. Then every direct limit of finitely generated SG-flat left R-modules
is SG-flat.

Proof. Let ((Gi), (ϕ ji)) be a direct system over I of finitely generated SG-flat left R-modules. Let i,
j ∈ I with i � j. There are exact sequences 0 → Gi → Fi → Gi → 0 and 0 → G j → F j → G j → 0
with Fi , F j flat. Since Extn

R(Gi, F j)
+ ∼= TorR

n (F +
j , Gi) = 0 by [10, Theorem 3.2.13] for all n � 1, then

Ext1
R(Gi, F j) = 0. Consider the commutative diagram:

0 Gi

ϕ ji

F i

ψ ji

Gi 0

0 G j F j G j 0.

Then ((Fi), (ψ ji)) is a direct system over I . Therefore 0 → lim−→ Gi → lim−→ Fi → lim−→ Gi → 0 is exact by
[10, Theorem 1.5.6] and lim−→ Fi is a flat left R-module. Let E be any injective right R-module. Then
TorR

n (E, lim−→ Gi) ∼= lim−→ TorR
n (E, Gi) = 0 for all n � 1. Hence lim−→ Gi is SG-flat by [5, Proposition 3.6]. �

Proposition 2.10. Let R be a commutative ring and Q a projective R-module. If M is an SG-projective R-
module, then M ⊗R Q is an SG-projective R-module.

Proof. There is an exact sequence 0 → M → P → M → 0 with P projective. Then 0 → M ⊗R Q →
P ⊗R Q → M ⊗R Q → 0 is exact and P ⊗R Q is a projective R-module by [21, Ch. 2, ℵ1 Theorem 3].
Let Q ′ be any projective R-module. Then Exti

R(M ⊗R Q , Q ′) ∼= HomR(Q ,Exti
R(M, Q ′)) = 0 by [18,

p. 258, 9.20] for all i � 1. Hence M ⊗R Q is an SG-projective R-module by [5, Proposition 2.9]. �
Proposition 2.11. Let K be a field R a commutative K -algebra and suppose that Q is a countably generated
free R-module. Then M is an SG-projective R-module if and only if M ⊗R Q is an SG-projective R-module.

Proof. (⇒) By Proposition 2.10.
(⇐) There is an exact sequence 0 → M ⊗R Q → P → M ⊗R Q → 0 with P projective. Consider

the pullback of P → M ⊗R Q and M ⊗R (Q ⊕ Q ) → M ⊗R Q :
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0 0

M ⊗R Q
=

M ⊗R Q

0 M ⊗R Q

‖

H M ⊗R (Q ⊕ Q ) 0

0 M ⊗R Q P M ⊗R Q 0.

0 0

Then H is SG-projective by Theorem 2.1 and 0 → M ⊗R Q ⊗R Q → H ⊗R Q → P ⊗R Q → 0 is exact.
Since Q is countably generated free and Q ⊗R Rn ∼= (Rn)(N) ∼= Q , we have Q ⊗R Q = lim−→(Q ⊗R Rn) ∼=
Q . So 0 → M ⊗R Q → H ⊗R Q → P ⊗R Q → 0 is exact. Consider the exact sequence 0 → M → H →
C → 0. Then C ⊗R Q ∼= P ⊗R Q is projective, and hence C is projective by [21, Ch. 2, ℵ1 Theorem 3].
Thus M is SG-projective by Theorem 2.1. �
Theorem 2.12. Let R be left artinian and suppose that the injective envelope of every simple left R-module is
finitely generated. Then M is an SG-injective left R-module if and only if M+ is an SG-flat right R-module.

Proof. (⇒) There exists an exact sequence 0 → M → E → M → 0 in R-Mod with E injective. Then
0 → M+ → E+ → M+ → 0 is exact and E+ is a flat right R-module. Let J be any injective left R-
module. Then J = ⊕

Λ Jα , where Jα is an injective envelope of some simple left R-module for any
α ∈ Λ by [13, Theorem 6.6.4], and hence TorR

i (M+, J ) ∼= ⊕
Λ TorR

i (M+, Jα) ∼= ⊕
Λ Exti

R( Jα, M)+ = 0
by [10, Theorem 3.2.13] for all i � 1. Therefore M+ is an SG-flat right R-module.

(⇐) There exists an exact sequence 0 → M+ → F → M+ → 0 in Mod-R with F flat. Then 0 →
M++N → F +N → M++N → 0 is exact and F +N is an injective left R-module, and so there is an
injective left R-module E such that F +N ⊕ E = (F +N)++ . Set L = (F +N ⊕ E)N . Then 0 → M++N ⊕ L →
L → M++N ⊕ L → 0 is exact, and thus 0 → M ⊕ F +N → F +N → M ⊕ F +N → 0 is exact. Let J be
any injective left R-module. Then J = ⊕

Λ Jα , where Jα is an injective envelope of some simple
left R-module for any α ∈ Λ by [13, Theorem 6.6.4]. Thus Exti

R( Jα, M)+ ∼= TorR
i (M+, Jα) = 0 by [10,

Theorem 3.2.13] for all i � 1 and any α ∈ Λ, and hence Exti
R( J , M) ∼= ∏

Λ Exti
R( Jα, M) = 0 for all i � 1.

It follows that M ⊕ F +N is an SG-injective left R-module, and so M is an SG-injective left R-module
by Theorem 2.2. �
Lemma 2.13. Let R be left artinian and suppose that the injective envelope of every simple left R-module
is finitely generated. Then the class SGF(R) of all strongly Gorenstein flat right R-modules is closed under
arbitrary direct products.

Proof. Let M = ∏
i∈I Mi , and Mi ∈ SGF(R) for all i � 1. There exists an exact sequence 0 → Mi →

Fi → Mi → 0 for all i � 1. Then 0 → ∏
i∈I Mi → ∏

i∈I F i → ∏
i∈I Mi → 0 is exact and

∏
i∈I F i is a

flat right R-modules. Let E be any injective left R-module. Then E = ⊕
Λ Eα , where Eα is an injective

envelope of some simple left R-module for any α ∈ Λ by [13, Theorem 6.6.4]. Thus TorR
n (

∏
i∈I Mi, E) ∼=

⊕
Λ TorR

n (
∏

i∈I Mi, Eα) ∼= ⊕
Λ

∏
i∈I TorR

n (Mi, Eα) = 0 by [10, Theorem 3.2.26] for all n � 1. Therefore
M is an SG-flat right R-module. �
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Corollary 2.14. Let R be left artinian and suppose that the injective envelope of every simple module is finitely
generated. Then the following are equivalent for an (R, S)-bimodule M:

(1) M is a G-injective left R-module;
(2) HomS (M, E) is a G-flat right R-module for all injective right S-modules E;
(3) HomS (M, E) is a G-flat right R-module for any injective cogenerator E for Mod-S;
(4) M ⊗S F is a G-injective left R-module for all flat left S-modules F ;
(5) M ⊗S F is a G-injective left R-module for any faithfully flat left S-module F .

Proof. (1) ⇒ (2) There is a G-injective left R-module N such that M ⊕ N is SG-injective. Let E be any
injective right S-module. Then E is isomorphic to a summand of S+X for some set X . So HomS (M, E)

is isomorphic to a summand of HomS (M ⊕ N, S+X ) ∼= (M ⊕ N)+X , and hence HomS (M, E) is a G-flat
right R-module by Theorem 2.12, Lemma 2.13 and [5, Theorem 2.7].

(2) ⇒ (3) is obvious.
(3) ⇒ (1) There is a G-injective left R-module N such that M ⊕ N is SG-injective. Since (M ⊕

N)+ ∼= HomS (M ⊕ N, S+) is an SG-flat right R-module, we have M is a G-injective left R-module by
Theorem 2.12 and [5, Theorem 2.7].

(2) ⇒ (4) Let F be any flat left S-module. Then F + is an injective right S-module. Hence (M ⊗S

F )+ ∼= HomS (M, F +) is a G-flat right R-module, and therefore M ⊗S F is a G-injective left R-module
by [12, Theorem 3.6].

(4) ⇒ (5) and (5) ⇒ (1) are obvious. �
A ring R is said to be left V-ring if every simple left R-module is injective. Recall an R-module M

is small projective if HomR(M,−) is exact with respect to the exact sequence 0 → K → L → M → 0
in R-Mod with K � L.

Corollary 2.15. Let R be a left artinian left V-ring. Then the following are equivalent for an (R, S)-bimodule M:

(1) M is a G-injective left R-module;
(2) HomS (M, E) is a G-flat right R-module for all injective right S-modules E;
(3) HomS (M, E) is a G-flat right R-module for any injective cogenerator E for Mod-S;
(4) M ⊗S F is a G-injective left R-module for all flat left S-modules F ;
(5) M ⊗S F is a G-injective left R-module for any faithfully flat left S-module F .

Corollary 2.16. Let R be left artinian. If every left R-module is small projective, then the following are equiva-
lent for an (R, S)-bimodule M:

(1) M is a G-injective left R-module;
(2) HomS (M, E) is a G-flat right R-module for all injective right S-modules E;
(3) HomS (M, E) is a G-flat right R-module for any injective cogenerator E for Mod-S;
(4) M ⊗S F is a G-injective left R-module for all flat left S-modules F ;
(5) M ⊗S F is a G-injective left R-module for any faithfully flat left S-module F .

Corollary 2.17. Let R be a commutative artinian ring. Then the following are equivalent for an (R, S)-
bimodule M:

(1) M is a G-injective left R-module;
(2) HomS (M, E) is a G-flat right R-module for all injective right S-modules E;
(3) HomS (M, E) is a G-flat right R-module for any injective cogenerator E for Mod-S;
(4) M ⊗S F is a G-injective left R-module for all flat left S-modules F ;
(5) M ⊗S F is a G-injective left R-module for any faithfully flat left S-module F .

Proof. If L is a simple R-module, then E(L) is finitely generated by [14, Theorem 3.64]. �
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Proposition 2.18. Let R be a commutative noetherian ring. If M is an SG-flat R-module and Q is a flat R-
module, then M ⊗R Q is an SG-flat R-module.

Proof. There is an exact sequence 0 → M → F → M → 0 with F flat. Then 0 → M ⊗R Q → F ⊗R

Q → M ⊗R Q → 0 is exact and F ⊗R Q is a flat R-module by [10, p. 43, Exercise 9]. Let I be any
injective R-module and let F be a flat resolution of I . Then TorR

i (M ⊗R Q , I) = Hi((M ⊗R Q ) ⊗R F) ∼=
Hi(M ⊗R (Q ⊗R F)) = TorR

i (M, Q ⊗R I) = 0 for all i � 1 since Q ⊗R I is an injective R-module by [10,
Theorem 3.2.16]. Hence M ⊗R Q is an SG-flat R-module by [5, Proposition 3.6]. �
Proposition 2.19. If M is a finitely generated SG-projective right R-module, then M∗ = HomR(M, R) is a
finitely generated SG-projective left R-module.

Proof. There exists a complete projective resolution of the form P = · · · → f P → f P → f P → f · · ·
such that M ∼= Ker f with P finitely generated projective. Then P∗ = · · · → f ∗

P∗ → f ∗
P∗ → f ∗

P∗ → f ∗

· · · is exact such that M∗ ∼= Ker f ∗ since Exti
R(M, R) = 0 for all i � 1, and P∗ is finitely generated

projective by [1, p. 202, Exercise 8]. Let Q be any projective left R-module. Then HomR(P∗, Q ) ∼=
P ⊗R Q is exact by [1, Proposition 20.11]. Hence M∗ is a finitely generated SG-projective left R-
module. �
3. Change of rings

In this section, let (R,m) be a commutative local noetherian ring with residue field k and let
E(k) be the injective envelope of k. R̂ , M̂ will denote the m-adic completion of a ring R and an R-
module M , and M v will denote the Matlis dual HomR(M, E(k)). Esmkhani and Tousi in [11] studied
Gorenstein projective and flat modules over a noetherian ring R . For an R-module M , they proved
that Gorenstein projective dimension of M is finite if and only if Gorenstein flat dimension of M is
finite provided the Krull dimension of R is finite.

Proposition 3.1. Let (R,m) be a commutative local noetherian ring and M a finitely generated R-module.
Then

(1) M ∈ SGP(R) if and only if M̂ ∈ SGP(R̂).
(2) If R̂ is a projective R-module and M̂ ∈ SGP(R̂), then M̂ ∈ SGP(R).

Proof. (1) (⇒) There is an exact sequence 0 → M → P → M → 0 in R-Mod with P finitely generated
projective. Then 0 → M̂ → P̂ → M̂ → 0 is exact in R̂-Mod by [10, Theorem 2.5.11]. Since Exti

R̂
( P̂ ,−) ∼=

Exti
R̂
(R̂ ⊗R P ,−) ∼= HomR(P ,Exti

R̂
(R̂,−)) = 0 by [18, p. 258, 9.20] for all i � 1, then P̂ is a projective

R̂-module. Since Exti
R̂
(M̂, R̂) ∼= Exti

R̂
(M ⊗R R̂, R ⊗R R̂) ∼= Exti

R(M, R) ⊗R R̂ = 0 by [10, Theorem 3.2.5]

for all i � 1, we have M̂ ∈ SGP(R̂) by [5, Proposition 2.12].
(⇐) There is an exact sequence 0 → M̂ → P̄ → M̂ → 0 in R̂-Mod with P̄ finitely generated

projective. Then P̄ = R̂n for some n ∈ N by [20, Theorem 2.5.15]. Consider the exact sequence
0 → M → Rn → C → 0. Then 0 → Ĉ → M̂ → 0 is exact. Consider the exact sequence 0 → C →
M → L → 0. Then L̂ ∼= L ⊗R R̂ = 0, and hence L = 0 since R̂ is a faithfully flat R-module. Since
0 = Exti

R̂
(M̂, R̂) ∼= Exti

R(M, R) ⊗R R̂ by [10, Theorem 3.2.5], we have Exti
R(M, R) = 0 for all i � 1. It

follows that M ∈ SGP(R) by [5, Proposition 2.12].
(2) There is an exact sequence 0 → M̂ → P̄ → M̂ → 0 in R̂-Mod with P̄ finitely generated projec-

tive. Then P̄ is a projective R-module since P̄ is isomorphic to a summand of R̂(X) for some set X and
R̂(X) is a projective R-module. Since 0 = Exti

R̂
(M̂, R̂) ∼= Exti

R(M, R) ⊗R R̂ by [10, Theorem 3.2.5], we

have Exti
R(M, R) = 0 for all i � 1, and thus Exti

R(M̂, R) ∼= Exti
R(R̂ ⊗R M, R) ∼= HomR(R̂,Exti

R(M, R)) = 0
by [18, p. 258, 9.20] for all i � 1. Hence M̂ ∈ SGP(R) by [5, Proposition 2.12]. �
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Proposition 3.2. Let (R,m) be a commutative local noetherian ring and M an R-module. If R̂ is a projective
R-module, then:

(1) If M ∈ SGI(R), then HomR(R̂, M) ∈ SGI(R̂).
(2) If HomR(R̂, M) ∈ SGI(R̂), then HomR(R̂, M) ∈ SGI(R).

Proof. (1) There is an exact sequence 0 → M → E → M → 0 in R-Mod with E injective. Then 0 →
HomR(R̂, M) → HomR(R̂, E) → HomR(R̂, M) → 0 is exact in R̂-Mod and HomR(R̂, E) is an injective
R̂-module by [10, Theorem 3.2.9]. Let Ī be any injective R̂-module. Then Exti

R(H, Ī)⊗R R̂ ∼= Exti
R̂
(H ⊗R

R̂, Ī ⊗R R̂) = 0 by [10, Theorem 3.2.15] for any finitely generated R-module H and all i � 1 since Ī ⊗R R̂
is an injective R̂-module by [10, Theorem 3.2.16]. So Exti

R(H, Ī) = 0, and hence Ī is an injective R-
module. Thus Exti

R̂
( Ī,HomR(R̂, M)) ∼= Exti

R( Ī, M) = 0 by [18, p. 258, 9.21] for all i � 1. It follows that

HomR(R̂, M) ∈ SGI(R̂).
(2) There is an exact sequence 0 → HomR(R̂, M) → Ē → HomR(R̂, M) → 0 in R̂-Mod with Ē in-

jective. Then Ē is an injective R-module by the proof of (1). Let I be any injective R-module. Then
I is isomorphic to a summand of E(k)X for some set X , and hence I ⊗R R̂ is isomorphic to a sum-
mand of E(k)X ⊗R R̂ ∼= E R̂(R̂/m̂)X ⊗R R̂ by [10, Theorem 3.4.1]. It follows that I ⊗R R̂ is an injective

R̂-module by [10, Theorem 3.2.16]. Hence Exti
R(I,HomR(R̂, M)) ∼= Exti

R(I,HomR̂(R̂,HomR(R̂, M))) ∼=
Exti

R̂
(I ⊗R R̂,HomR(R̂, M)) = 0 by [18, p. 258, 9.21] for all i � 1. So HomR(R̂, M) ∈ SGI(R). �

Proposition 3.3. Let (R,m) be a commutative local noetherian ring and M an R-module. Then:

(1) If M ∈ SGF(R), then R̂ ⊗R M ∈ SGF(R̂).
(2) If R̂ ⊗R M ∈ SGF(R̂), then R̂ ⊗R M ∈ SGF(R).

Proof. (1) There is a complete flat resolution of the form F = · · · → f F → f F → f F → f · · · in R-Mod
such that M ∼= Ker f . Then R̂ ⊗R F = · · · →R̂⊗R f R̂ ⊗R F →R̂⊗R f R̂ ⊗R F →R̂⊗R f R̂ ⊗R F →R̂⊗R f · · · is
exact in R̂-Mod and R̂ ⊗R M ∼= Ker(R̂ ⊗R f ), R̂ ⊗R F is a flat R̂-module by [10, p. 43, Exercise 9]. Let Ī
be any injective R̂-module. Then Ī is an injective R-module by the proof of Proposition 3.2(1). Hence
Ī ⊗R̂ (R̂ ⊗R F) ∼= Ī ⊗R F is exact, and therefore R̂ ⊗R M ∈ SGF(R̂).

(2) There is a complete flat resolution of the form F̄ = · · · → f̄ F̄ → f̄ F̄ → f̄ F̄ → f̄ · · · in R̂-Mod
such that R̂ ⊗R M ∼= Ker f̄ . Then F̄ is a flat R-module. Let I be any injective R-module, Then I ⊗R R̂
is an injective R̂-module by the proof of Proposition 3.2. Hence I ⊗R F̄ ∼= (I ⊗R R̂) ⊗R̂ F̄ is exact, and

therefore R̂ ⊗R M ∈ SGF(R). �
Proposition 3.4. Let (R,m) be a complete local ring and M a nonzero artinian R-module. Then the following
are equivalent:

(1) M is an SG-injective R-module;
(2) M v is an SG-projective R-module;
(3) HomR(E(k), M) is a nonzero SG-projective R-module.

Proof. (1) ⇒ (2) There is an exact sequence 0 → M → E → M → 0 with E injective. Then E ⊕ E ′ =
E(k)n for some injective R-module E ′ and some n ∈ N by [10, Theorem 3.4.3], and thus E v ⊕ E ′v = Rn

by [8, Lemma 4.5] and E ′v is a projective R-module. Consider the exact sequence 0 → M ⊕ E ′ →
E(k)n ⊕ E ′ → M ⊕ E ′ → 0. Then 0 → M v ⊕ E ′v → Rn ⊕ E ′v → M v ⊕ E ′v → 0 is exact with Rn ⊕
E ′v projective by [8, Lemma 4.5]. Let Q be any projective R-module. Then Exti

R(M v ⊕ E ′v , Q ) ∼=
Exti

R(M v , Q ) ⊕ Exti
R(E ′v , Q ) = 0 by [8, Theorem 4.8]. Thus M v ⊕ E ′v is SG-projective, and hence M v

is SG-projective by Theorem 2.1.
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(2) ⇒ (1) There is an exact sequence 0 → M v → P → M v → 0 with P finitely generated projective
by [10, Theorem 3.4.7]. Then P = Rm for some m ∈ N by [20, Theorem 2.5.15], and hence 0 → M →
E(k)m → M → 0 is exact by [10, Lemma 3.4.6]. Thus M is SG-injective by [8, Theorem 4.8].

(2) ⇔ (3) We first note that if M v is SG-projective, then HomR(E(k), M) ∼= (M v )∗ = 0 by [8,
Lemma 4.1] since M v = 0. Let N be a finitely generated R-module. If N∗ is SG-projective, then N is G-
projective by the proof of [8, Theorem 4.8] and there exists an exact sequence 0 → N∗ → P → N∗ → 0
with P projective, and hence 0 → N → P∗ → N → 0 is exact by [7, Theorem 4.2.6] and P∗ is
projective by [1, p. 202, Exercise 8]. It follows that N is SG-projective iff N∗ is SG-projective by Propo-
sition 2.19. Therefore M v is SG-projective iff (M v )∗ is SG-projective iff HomR(E(k), M) is SG-projective
by [8, Lemma 4.1].

(⇐) There is an exact sequence 0 → M v → P → M v → 0 with P finitely generated projective by
[10, Theorem 3.4.7]. Then P = Rm for some m ∈ N by [20, Theorem 2.5.15]. Thus 0 → M → E(k)m →
M → 0 is exact by [10, Lemma 3.4.6], and so M is SG-injective by [8, Theorem 4.8]. �
Corollary 3.5. Let (R,m) be a complete local ring and M a nonzero R-module. Then the following are equiva-
lent:

(1) M is a finitely generated SG-injective R-module;
(2) M is of finite length and M v is SG-projective;
(3) M is of finite length and HomR(E(k), M) is a nonzero SG-projective R-module.

Proof. By [8, Lemma 4.10] and Proposition 3.4. �
Proposition 3.6. Let R and S be equivalent rings via equivalences F : R-Mod → S-Mod and G : S-Mod →
R-Mod. Then

(1) M ∈ SGP(R) if and only if F (M) ∈ SGP(S) for all M ∈ R-Mod;
(2) M ∈ SGI(R) if and only if F (M) ∈ SGI(S) for all M ∈ R-Mod;
(3) M ∈ SGF(R) if and only if F (M) ∈ SGF(S) for all M ∈ R-Mod.

Proof. (1) (⇒) There is a complete projective resolution of the form P = · · · → f P → f P → f P → f

· · · in R-Mod such that M ∼= Ker f . Then F (P) = · · · →F ( f ) F (P ) →F ( f ) F (P ) →F ( f ) F (P ) →F ( f ) · · ·
is exact in S-Mod such that F (M) ∼= Ker(F ( f )) and F (P ) is a projective S-module. Let Q be any
projective S-module. Then HomS(F (P), Q ) ∼= HomR(P, G(Q )) is exact. Hence F (M) ∈ SGP(S).

(⇐) By G F (M) ∼= M .
(2) and (3) By analogy with the proof of (1). �

Corollary 3.7. Let R and S be equivalent rings via equivalences F : R-Mod → S-Mod and G : S-Mod →
R-Mod. Then

(1) For all M ∈ R-Mod, R M is G-projective if and only if S F (M) is G-projective;
(1) For all M ∈ R-Mod, R M is G-injective if and only if S F (M) is G-injective;
(3) For all M ∈ R-Mod, R M is G-flat if and only if S F (M) is G-flat.

Proof. Easy. �
Corollary 3.8. Let R be a ring and let e ∈ R be a nonzero idempotent. If ReR = R, then

(1) M ∈ SGP(R) if and only if eR ⊗R M ∈ SGP(eRe) for all M ∈ R-Mod;
(2) M ∈ SGP(eRe) if and only if Re ⊗eRe M ∈ SGP(R) for all M ∈ eRe-Mod;
(3) M ∈ SGI(R) if and only if eR ⊗R M ∈ SGI(eRe) for all M ∈ R-Mod;
(4) M ∈ SGI(eRe) if and only if Re ⊗eRe M ∈ SGI(R) for all M ∈ eRe-Mod;
(5) M ∈ SGF(R) if and only if eR ⊗R M ∈ SGF(eRe) for all M ∈ R-Mod;
(6) M ∈ SGF(eRe) if and only if Re ⊗eRe M ∈ SGF(R) for all M ∈ eRe-Mod.
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Corollary 3.9. Let R be a ring and let n � 1 be a natural number. Then

(1) M ∈ SGP(R) if and only if Mn(R)eii ⊗R M ∈ SGP(Mn(R)) for all M ∈ R-Mod;
(2) M ∈ SGP(Mn(R)) if and only if eii Mn(R) ⊗Mn(R) M ∈ SGP(R) for all M ∈ Mn(R)-Mod;
(3) M ∈ SGI(R) if and only if Mn(R)eii ⊗R M ∈ SGI(Mn(R)) for all M ∈ R-Mod;
(4) M ∈ SGI(Mn(R)) if and only if eii Mn(R) ⊗Mn(R) M ∈ SGI(R) for all M ∈ Mn(R)-Mod;
(5) M ∈ SGF(R) if and only if Mn(R)eii ⊗R M ∈ SGF(Mn(R)) for all M ∈ R-Mod;
(6) M ∈ SGF(Mn(R)) if and only if eii Mn(R) ⊗Mn(R) M ∈ SGF(R) for all M ∈ Mn(R)-Mod,

where eii is matrix unit for all i = 1, . . . ,n.

(1) The ring S is called right R-projective in case for any right S-module M S with an S-submodule
N S , NR |MR implies N S |M S . For example, every n × n matrix ring Mn(R) is right R-projective.

(2) The ring extension S � R is called a finite normalizing extension in case there is a finite subset
{s1, . . . , sn} of S such that S = ∑n

i=1 si R and si R = Rsi for i = 1, . . . ,n.
(3) A finite normalizing extension S � R is called an excellent extension in case condition (1) is

satisfied and R S , S R are free modules with a common basis {s1, . . . , sn}. Excellent extensions
were introduced by Passman [16]. Examples include n ×n matrix rings [16], and crossed products
R ∗ G where G is a finite group with |G| − 1 ∈ R [17].

Proposition 3.10. Assume that S � R is an excellent extension. Then

(a) R M ∈ SGP(R) if and only if S ⊗R M ∈ SGP(S) for all M ∈ R-Mod;
(b) R M ∈ SGI(R) if and only if HomR(S, M) ∈ SGI(S) for all M ∈ R-Mod;
(c) MR ∈ SGF(R) if and only if M ⊗R S ∈ SGF(S) for all M ∈ Mod-R.

Proof. (a) (⇒) There exists an exact sequence 0 → M → P → M → 0 in R-Mod with P projec-
tive. Then 0 → S ⊗R M → S ⊗R P → S ⊗R M → 0 is exact in S-Mod with S ⊗R P projective. Let Q̄
be any projective left S-module. Then Q̄ is a projective left R-module, and so Exti

S(S ⊗R M, Q̄ ) ∼=
Exti

R(M, Q̄ ) = 0 by [18, p. 258, 9.21] for all i � 1. It follows that S ⊗R M ∈ SGP(S).
(⇐) There exists an exact sequence 0 → S ⊗R M → P̄ → S ⊗R M → 0 in S-Mod with P̄ projective.

Then there is a projective left S-module P̄ ′ such that P̄ ⊕ P̄ ′ = S ⊗R P̄ . Set L = ( P̄ ⊕ P̄ ′)(N) . Consider
the exact sequence 0 → (S ⊗R M)⊕ L → P̄ ⊕ L ⊕ L → (S ⊗R M)⊕ L → 0. Then 0 → S ⊗R (M ⊕ P̄ (N)) →
S ⊗R P̄ (N) → S ⊗R (M ⊕ P̄ (N)) → 0 is exact, and so 0 → M ⊕ P̄ (N) → P̄ (N) → M ⊕ P̄ (N) → 0 is exact
in R-Mod with P̄ (N) projective since S is a faithfully flat R-module. Let Q be any projective left R-
module. Then S ⊗R Q is a projective left S-module. Thus 0 = Exti

S (S ⊗R M, S ⊗R Q ) ∼= Exti
R(M, S ⊗R Q )

by [18, p. 258, 9.21], and so Exti
R(M, Q ) = 0 for all i � 1 since Q is isomorphic to a summand of

S ⊗R Q . It follows that M ∈ SGP(R).
(b) (⇒) There exists an exact sequence 0 → M → E → M → 0 in R-Mod with E injective.

Then 0 → HomR(S, M) → HomR(S, E) → HomR(S, M) → 0 is exact in S-Mod with HomR(S, E)

injective. Let Ī be any injective left S-module. Then Ī is an injective left R-module, and thus
Exti

S ( Ī,HomR(S, M)) ∼= Exti
R( Ī, M) = 0 by [18, p. 258, 9.21] for all i � 1. Hence HomR(S, M) ∈ SGP(S).

(⇐) There exists an exact sequence 0 → HomR(S, M) → Ē → HomR(S, M) → 0 in S-Mod with
Ē injective. Then there is an injective left S-module Ē ′ such that Ē ⊕ Ē ′ = HomR(S, Ē). Set H =
(Ē ⊕ Ē ′)N . Consider the exact sequence 0 → HomR(S, M) ⊕ H → Ē ⊕ H ⊕ H → HomR(S, M) ⊕ H →
0. Then 0 → HomR(S, M ⊕ ĒN) → HomR(S, ĒN) → HomR(S, M ⊕ ĒN) → 0 is exact, and so 0 →
M ⊕ ĒN → ĒN → M ⊕ ĒN → 0 is exact in R-Mod with ĒN injective. Let I be any injective left R-
module. Then HomR(S, I) is an injective left S-module. Thus 0 = Exti

S (HomR(S, I),HomR(S, M)) ∼=
Exti

R (HomR(S, I), M) by [18, p. 258, 9.21], and so Exti
R(I, M) = 0 for all i � 1 since I is isomorphic to

a summand of HomR(S, I). Hence M ∈ SGI(R).
(c) (⇒) There exists an exact sequence 0 → M → F → M → 0 in Mod-R with F flat. Then 0 →

M ⊗R S → F ⊗R S → M ⊗R S → 0 is exact in Mod-S with F ⊗R S flat. Let Ī be any injective left S-
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module and let F be a flat resolution of Ī . Then TorS
i (M ⊗R S, Ī) = Hi((M ⊗R S)⊗S F) ∼= Hi(M ⊗R F) =

TorR
i (M, Ī) = 0 for all i � 1, and so M ⊗R S ∈ SGF(S).
(⇐) There exists an exact sequence 0 → M ⊗R S → F̄ → M ⊗R S → 0 in Mod-S with F̄ flat. Then

there is a flat right S-module F̄ ′ such that F̄ ⊕ F̄ ′ = F̄ ⊗R S . Set L = ( F̄ ⊕ F̄ ′)(N) . Then 0 → M ⊕ F̄ (N) →
F̄ (N) → M ⊕ F̄ (N) → 0 is exact in Mod-R with F̄ (N) flat by analogy with the proof of (a). Let I be any
injective left R-module. Then HomR(S, I) is an injective left S-module. Let F be a flat resolution of M
over R . Then 0 = TorS

i (M ⊗R S,HomR(S, I)) = Hi((F ⊗R S) ⊗S HomR(S, I)) ∼= Hi(F ⊗R HomR(S, I)) =
TorR

i (M,HomR(S, I)) for all i � 1, and so TorR
i (M, I) = 0. Hence M ∈ SGF(R). �

Corollary 3.11. Let R ∗ G be a crossed product, where G is a finite group with |G|−1 ∈ R. Then:

(a) For any M ∈ (R ∗ G)-Mod, R M is SG-projective if and only if (R ∗ G) ⊗R M is SG-projective;
(b) For any M ∈ (R ∗ G)-Mod, R M is SG-injective if and only if HomR(R ∗ G, M) is SG-injective;
(c) For any M ∈ Mod-(R ∗ G), MR is SG-flat if and only if M ⊗R (R ∗ G) is SG-flat.

Corollary 3.12. Let R be a ring n any positive integer. Then:

(a) For any M ∈ Mn(R)-Mod, R M is SG-projective if and only if Mn(R) ⊗R M is SG-projective;
(b) For any M ∈ Mn(R)-Mod, R M is SG-injective if and only if HonR(Mn(R), M) is SG-injective;
(c) For any M ∈ Mod-Mn(R), MR is SG-flat if and only if M ⊗R Mn(R) is SG-flat.

Proposition 3.13. Let R be a ring and a a central nonzero divisor. Let M be a finitely generated R-module on
which a acts simply, that is, such that ax = 0, x ∈ M implies x = 0. Set R̄ = R/Ra and M̄ = M/aM. If M is an
SG-projective left R-module, then M̄ is an SG-projective left R̄-module.

Proof. There is an exact sequence 0 → M → P → M → 0 in R-Mod with P finitely generated projec-
tive. Then 0 → M̄ → P̄ → M̄ → 0 is exact in R̄-Mod since pdR(R̄) � 1, and P̄ is a projective R̄-module
by [15, Exercise 2]. Let −� = HomR̄(−, R̄). Consider the exact sequence 0 → Ra → R → R̄ → 0. Then
0 → R̄ → R� → Ra� → 0 is exact and 0 → Ra ⊗R M → M → R̄ ⊗R M → 0 is exact. Consider the
commutative diagram:

M�

∼=

(Ra ⊗R M)�

∼=

Ext1
R̄
(R̄ ⊗R M, R̄) Ext1

R̄
(M, R̄)

∼=

Ext1
R̄
(Ra ⊗R M, R̄)

∼=

HomR(M, R�) HomR(M, Ra�) Ext1
R(M, R̄) Ext1

R(M, R�) Ext1
R(M, Ra�).

Then Ext1
R̄
(M̄, R̄) ∼= Ext1

R̄
(R̄ ⊗R M, R̄) ∼= Ext1

R(M, R̄) = 0, and hence M̄ is an SG-projective left R̄-module
by [5, Proposition 2.12]. �

If R is a ring, then R[x] is the polynomial ring. If M is a left R-module, write M[x] = R[x] ⊗R M .
Since R[x] is a free R-module and since tensor product commutes with sums, we may regard the
elements of M[x] as ‘Vectors’ (xi ⊗R mi), i � 0, Mi ∈ M with almost all mi = 0.

Proposition 3.14. Let R be a commutative ring. If M is an SG-projective R-module, then M[x] is an SG-
projective R[x]-module.

Proof. There is an exact sequence 0 → M → P → M → 0 in R-Mod with P projective. So 0 →
M[x] → P [x] → M[x] → 0 is exact in R[x]-Mod and P [x] is a projective R[x]-module. Let Q be any
projective R[x]-module. Then Q [x] ∼= R[x] ⊗R Q ∼= R(N) ⊗R Q ∼= Q (N) . Hence Q [x] is a projective
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R[x]-module, and so Q is a projective R-module by [15, Proposition 5.11]. Thus Exti
R[x](M[x], Q ) ∼=

Exti
R(M, Q ) = 0 by [18, p. 258, 9.21] for all i � 1, and hence M[x] is an SG-projective R[x]-module. �

Corollary 3.15. Let K be a field, R a commutative noetherian K -algebra and M a finitely generated R-module.
Then M is an SG-projective R-module if and only if M[x] is an SG-projective R[x]-module.

Proof. (⇒) By Proposition 3.14.
(⇐) There is an exact sequence 0 → M[x] → P̄ → M[x] → 0 in R[x]-Mod with P̄ projective.

Then P̄ is a projective R-module by the proof of Proposition 3.14. Since Exti
R(M[x], R) ⊗R R[x] ∼=

Exti
R(R[x] ⊗R M, R) ⊗R R[x] ∼= Exti

R(M,HomR(R[x], R)) ⊗R R[x] ∼= Exti
R(M,HomR(R[x], R) ⊗R R[x]) ∼=

Exti
R(M, R[x])N ∼= Exti

R(M,HomR[x](R[x], R[x]))N ∼= Exti
R[x](M[x], R[x])N = 0 by [18, p. 258, 9.21] and

[10, Theorem 3.2.15] and R[x] is a countably generated free R-module for all i � 1, we have
M[x] ∼= M ⊗R R[x] is an SG-projective R-module by [5, Proposition 2.12], and hence M is SG-projective
by Proposition 2.11. �

Let R be a commutative ring and S a multiplicatively closed set of R . Then S−1 R = (R × S)/∼ =
{a/s | a ∈ R, s ∈ S} is a ring and S−1M = (M × S)/∼ = {x/s | x ∈ M, s ∈ S} is an S−1 R-module. If P
is a prime ideal of R and S = R − P , then we will denote S−1M , S−1 R by M P , R P respectively. The
spectrum of R is denoted by Spec(R) and the maximal spectrum of R is denoted by Max(R).

Lemma 3.16. Let R be a commutative ring and S a multiplicatively closed set of R. If S−1 R is a projective R-
module, then Ā is a projective R-module if and only if Ā is a projective S−1 R-module for any Ā ∈ S−1 R-Mod.

Proof. (⇒) Since Ā ∼= S−1 Ā by [15, Proposition 5.17], so Ā is a projective S−1 R-module by [20, Propo-
sition 2.5.10].

(⇐) Since Ā is isomorphic to a summand of S−1 R(X) for some set X , we have Ā is a projective
R-module. �
Proposition 3.17. Let R be a commutative ring and S a multiplicatively closed set of R. If S−1 R is a projective
R-module, then:

(1) If A is an SG-projective R-module, then S−1 A is an SG-projective S−1 R-module;
(2) If S−1 R is a finitely generated R-module, then B̄ is an SG-projective R-module if and only if B̄ is an SG-

projective S−1 R-module for any B̄ ∈ S−1 R-Mod.

Proof. (1) There is an exact sequence 0 → A → P → A → 0 in R-Mod with P projective. Then
0 → S−1 A → S−1 P → S−1 A → 0 is exact in S−1 R-Mod and S−1 P is a projective S−1 R-module.
Let Q̄ be any projective S−1 R-module. Then Q̄ is a projective R-module by Lemma 3.16. So
Exti

S−1 R
(S−1 A, Q̄ ) ∼= Exti

S−1 R
(S−1 R ⊗R A, Q̄ ) ∼= Exti

R(A, Q̄ ) = 0 by [18, p. 258, 9.21] for all i � 1. Hence

S−1 A is an SG-projective S−1 R-module.
(2) (⇒) By (1), since B̄ ∼= S−1 B̄ by [15, Proposition 5.17].
(⇐) There is an exact sequence 0 → B̄ → P̄ → B̄ → 0 in S−1 R-Mod with P̄ projective. Then P̄ is

a projective R-module by Lemma 3.16. Let Q be any projective R-module. Then HomR(S−1 R, Q ) is
a projective S−1 R-module since S−1 R is a finitely generated projective R-module by Lemma 3.16. So
Exti

R(B̄, Q ) ∼= Exti
R(S−1 R ⊗S−1 R B̄, Q ) ∼= Exti

S−1 R
(B̄,HomR(S−1 R, Q )) = 0 by [15, Proposition 5.17] and

[18, p. 258, 9.21] for all i � 1, and hence B̄ is an SG-projective R-module. �
Proposition 3.18. Let R be a commutative noetherian ring and S a multiplicatively closed set of R. If B̄ is a
finitely generated SG-projective S−1 R-module, then B̄ is an SG-flat R-module.

Proof. There is an exact sequence 0 → B̄ → P̄ → B̄ → 0 in S−1 R-Mod with P̄ finitely generated
projective. Then P̄ is a flat R-module by [15, Theorem 5.18]. Let I be any injective R-module. Then 0 =
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HomS−1 R(Exti
S−1 R

(B̄, S−1 R), S−1 I) ∼= TorS−1 R
i (S−1 I, B̄) ∼= TorR

i (I, B̄) ⊗R S−1 R by [10, Theorem 3.2.13],

and hence TorR
i (I, B̄) = 0 by [19, Condition O r ] for all i � 1. So B̄ is an SG-flat R-module. �

Proposition 3.19. Let R be a commutative ring and S a multiplicatively closed set of R. If S−1 R is a projective
R-module, then:

(1) If A is an SG-injective R-module, then HomR(S−1 R, A) is an SG-injective S−1 R-module;
(2) For any B ∈ R-Mod, HomR(S−1 R, B) is an SG-injective R-module if and only if HomR(S−1 R, B) is an

SG-injective S−1 R-module.

Proof. (1) There is an exact sequence 0 → A → E → A → 0 in R-Mod with E injective. Then
0 → HomR(S−1 R, A) → HomR(S−1 R, E) → HomR(S−1 R, A) → 0 is exact in S−1 R-Mod and
HomR(S−1 R, E) is an injective S−1 R-module by [10, Theorem 3.2.9]. Let Ī be any injective S−1 R-
module. Then Ī is an injective R-module by [4, Lemma 1.2]. So Exti

S−1 R
( Ī,HomR(S−1 R, A)) ∼=

Exti
R( Ī, A) = 0 by [18, p. 258, 9.21] for all i � 1, and hence HomR(S−1 R, A) is an SG-injective S−1 R-

module.
(2) (⇒) is obvious.
(⇐) There is an exact sequence 0 → HomR(S−1 R, B) → Ē → HomR(S−1 R, B) → 0 in S−1 R-Mod

with Ē injective. Then Ē is an injective R-module. Let I be any injective R-module. Then S−1 I is
an injective S−1 R-module. So Exti

R(I,HomR(S−1 R, B)) ∼= Exti
R(I,HomS−1 R(S−1 R,HomR(S−1 R, B))) ∼=

Exti
S−1 R

(S−1 I,HomR(S−1 R, B)) = 0 by [18, p. 258, 9.21] for all i � 1, and hence HomR(S−1 R, B) is an
SG-injective R-module. �
Proposition 3.20. Let R be a commutative ring and S a multiplicatively closed set of R. Then:

(a) If A is an SG-flat R-module, then S−1 A is an SG-flat R-module for any A ∈ R-Mod;
(b) If A is an SG-flat R-module, then S−1 A is an SG-flat S−1 R-module for any A ∈ R-Mod;
(c) For any B̄ ∈ S−1 R-Mod, B̄ is an SG-flat R-module if and only if B̄ is an SG-flat S−1 R-module.

Proof. (a) There is a complete flat resolution of the form F = · · · → f F → f F → f F → f · · · in R-Mod
such that A ∼= Ker f . Then S−1F = · · · →S−1 f S−1 F →S−1 f S−1 F →S−1 f S−1 F →S−1 f · · · is exact such
that S−1 A ∼= Ker(S−1 f ) and S−1 F is a flat S−1 R-module. Hence S−1 F is a flat R-module. Let I be
any injective R-module. Then I ⊗R S−1F ∼= S−1 I ⊗R F is exact by [15, Proposition 5.17] since S−1 I is
an injective R-module by [4, Lemma 1.2]. Hence S−1 A is an SG-flat R-module.

(b) There is an exact sequence 0 → A → F → A → 0 in R-Mod with F flat. Then 0 → S−1 A →
S−1 F → S−1 A → 0 is exact in S−1 R-Mod and S−1 F is a flat S−1 R-module. Let Ī be any injective
S−1 R-module. Then Ī is an injective R-module by [4, Lemma 1.2]. So TorS−1 R

i ( Ī, S−1 A) ∼= TorR
i ( Ī, A)⊗R

S−1 R = 0 for all i � 1, and hence S−1 A is an SG-flat S−1 R-module.
(c) (⇒) By (b).
(⇐) There is a complete flat resolution of the form F̄ = · · · → f̄ F̄ → f̄ F̄ → f̄ F̄ → f̄ · · · in S−1 R-

Mod such that B̄ ∼= Ker f̄ . Then F̄ is a flat R-module. Let I be any injective R-module. Then I ⊗R F̄ ∼=
S−1 I ⊗S−1 R F̄ is exact by [15, Proposition 5.17]. So B̄ is an SG-flat R-module. �
Corollary 3.21. Let R be a commutative ring and S a multiplicatively closed set of R. Then:

(a) If A is a G-flat R-module, then S−1 A is a G-flat R-module for any A ∈ R-Mod.
(b) If A is a G-flat R-module, then S−1 A is a G-flat S−1 R-module for any A ∈ R-Mod.
(c) For any B̄ ∈ S−1 R-Mod, B̄ is a G-flat R-module if and only if B̄ is a G-flat S−1 R-module.

Proof. Easy. �
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