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1. INTRODUCTION

In this paper we shall be mainly concerned with the existence of bounded
weak solutions of the following Dirichlet problem.
Let Q be a bounded open set of R”; we seek a function u: 2 — R, such

that
H(Q)nL™(2)
Au(x;lj H(Ox, u,;u). (L1
Here A is a linear elliptic second order operator in divergence form,
Au(x)= — Z 8.(a;(x) d,u) (1.2)

ij=1

whose coefficients a;: Q — R are measurable functions and the inequalities
EP< ) az(x)&g <4 1L (13)
ij=1
hold a.e. in Q, V& e R", for some 4 = 1.
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Concerning the function H: Q x R x R" — R, we assume the hypotheses

V(z, £)e Rx R", x — H(x, z, £) is measurable (1.4)

for a.e. xe Q, (z, &) > H(x, z, &) is continuous (1.5)

{(1.4) and (1.5) are the usual Carathéodory assumptions).

Moreover we require the following quadratical behavior of H with
respect to ¢: there exist non-decreasing functions k, k: [0, +0o0)—>
[0, + o) and measurable functions f, fe L”(2), p>n/2, such that the
inequalities

Jlxy=k(121) 1€1° < H(x, 2, &) <k(120) 1E17 + f(x) (1.6)

hold for a.e. xe Q2 and V(z, {)e R x R".

We write this last hypothesis in the form (1.6) in order to stress the
different role of f, 7, k, k in bounding the positive and the negative part of
the solution u. Let us point out that no bound on &, k is required.

Now, problem (1.1) is well defined, in the weak sense, since, if
ue H ()N L*(2), then Aue H '(Q) and H(s, u, Du)e L'(Q).

Problems of type (1.1) have been largely studied under different assump-
tions. We recall, for instance, [2, 4, 5, 1, 6]; their hypotheses imply that the
functions k, k, appearing in (1.6), have to be bounded. The special quad-
ratic growth in the gradient is treated in a series of papers by L. Boccardo,
F. Murat, and J. P. Puel, see, e.g.,, [3], where the existence of a sub- and
supersolution is assumed, and [8], where the assumptions on the right
hand side are different. We quote also the paper [7] of J. M. Rakotoson,
where the so-called “one-sided condition” is requested. For a better under-
standing of the phenomena related to unboundedness of k, k and to the
sign of f, 7 let us consider the model equation

Au+ k(lu)) |Du|*+ f(x)=0. (1.7)
By a change of variable
u=E(u)=f"exp(K(t))dt, (18)
0
where we put

K(t)=j0' k(Is]) ds, (1.9)

Equation (1.7) takes the form

4dv+ f(x) q(v)=0, (1.10)
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where

g=exp(K-E~')=E-E~". (1.11)

Note that, when k>0 is a constant, then g is linear: q(v) =1+ kv; when k
is nondecreasing and unbounded, then g(v) grows at infinity more than v
but less than any power v'** with ¢ > 0. It is apparent that the importance
of the sign of f to establish the existence of a solution.

Incidentally, note that u is nonnegative (nonpositive) if f is nonnegative
(nonpositive), by maximum principle.

If in particular k and f are constants, and Q is a ball of radius R,
centered at the origin, we obtain explicitly

f<0: u(x)=%log [(i)”éﬂxi—\/lrﬂq, (1.12)

Xl LR /K If1)

where v=n/2 — 1, and I (x) is the modified Bessel function of order v.

1 R\* J(Ix| /kf)
0: =—1 _—) = .
S0 ulx) =g Og[<|x|> JV(R\/k?)] (113

provided R \/IZ’ < j{ (the first zero of the Bessel function J,).

Thus, disregarding the sign of f, existence cannot be established without
some assumption on the smallness of |2| (the measure of Q) or of some
norm of f.

This can be checked, for nondecreasing &, in the one-dimensional case.
For, let f be constant, and Q2 be the interval (—R, + R). Then, if f <0, the
following representation holds

1 ) ¢ —-1/2
|x| =R— J X (f oK) ds) dt, (1.14)
21f] u

where u=u(0) (the height of the minimum) is implicitly defined by the
equation

foe"‘” (fre“m ds)m dr=/2|fI R (1.15)

u u

Analogously, if >0, we have

1 u(x) u —12
Ix| =R——f0 e'<<'><j 2K ds) dt (1.16)
1

N,
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and @ =u(0) (the height of the maximum) is given by

i a —12
'[ oK <J p2K(s) ds) dr = gl(g)—_-\/?fR, (1.17)

t

An inspection of the integral appearing in (1.15) shows that it goes
monotonically from 0 to + oo as u decreases from 0 to — co; so Eq. (1.15)
gives a unique solution u for every fixed right member. The integral in
(1.17), 1.e., ¥(u), starts from O and tends to a finite limit when # tends to
+ o0; more precisely, it tends to n/,/2k(o0) if k is bounded, to zero if k is
unbounded. Thus, a solution of (1.17) exists iff \/Z_f R belongs to the range
of ¥; of course this solution is not unique if & is unbounded.

The main purpose of this paper is to prove the existence of a solution to
problem (1.1) under the assumptions (1.2)---(1.6). The paper has three
sections after this introduction. In Section 2 we prove a kind of maximum
principle for the solutions of (1.1) (Theorem 2.1). The technique used in
this section (based on the investigation on the measure of particular level
sets of the solution) enables us to obtain estimates of ¥ and Du. As a conse-
quence we obtain in Section 3 an existence result (Theorem 3.2) and a
comparison result (Theorem 3.3). With some additional assumptions, in
Section 4 special results are proved.

2. A MAXIMUM PRINCIPLE

In this section we prove our main estimates for a solution of problem
(1.1) under the assumption (1.2)---(1.6). An important role will be played
by the function

W(t)=E@)/E'(1), (2.1)
where we put (as we did for the model equation (1.7))

E(r)= [ exp(K(s)) ds (22)
o
and K(s) is the primitive function of k(|s|) vanishing at the origin
(see (1.9)). E(r) and W(z) are defined in analogous way, when k is replaced
with .
Note that, when k() =k >0 is constant, then W(t)=(1/k)(1 —e *) so
that the range of W is the interval [0, 1/k).
An inspection of W shows that, when k is nondecreasing and bounded
two behaviours of W are possible: either it increases monotonically from 0
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to 1/k(c0), or it increases from O to a maximum value (attained at 7= 4,
say) then decreases monotonically to 1/k(cc).

When £ is nondecreasing and unbounded, only the second alternative is
possible; this is the interesting case, since, when k is bounded, one can
follow the methods in [3, 7] to obtain the desired estimates for « and Du.

It is convenient also to introduce the solution V of the following
Dirichlet problem:

—AV=f% on Q*

(2.3
V=0 on 0Q*. )

Here is f,. (f_) the positive (negative) part of f (f=f, —f_),
f5(x)=f*(C,|x|") is the spherical rearrangement of f, (having denoted
by f* the decreasing rearrangement of /), C, is the volume of the unit ball
in R, and 2% is the ball, centered at the origin, with the same measure |
of Q. An explicit representation of V is given by

12| , r
I«x)zn*‘C’”"L ‘”r”z*”"drﬁffﬁm)dx (2.4)

n

It is well known that, when f, € L?(Q), p>n/2, then V is bounded and

[V Loxy= V(0). In a similar way we can define ¥, when f * is replaced
by 7* in (2.3).
We can now prove the following theorem:

THEOREM 2.1. Let u be a solution of (1.1) under the assumptions
(1.2)---(1.6). Then

Wisupu )<Vl pxox (2.5)

W(SUP u_ ) < “ I7”[}(9‘*)- (26)

Remark. Clearly the bound in (2.5) becomes effective only when
[ V] Lo, <sup W. This means, in the case of interest for us, ie,

k(+00)= + 00, that | V]| g+, < W(4), where 4 is the unique maximum
point of W. We are lead to the following alternative: either

supu, <min{s: W(t)= |V cox )
or
sup u, =max{r: W(t)=|V| .« }-

An analogous remark holds for the bound (2.6).
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Proof of Theorem 2.1. u is a solution of problem (1.1) if the equality

a;(x)0,ud;pdx=| H(x,u, Du)p dx (2.7)
4 J

Q Q2

ij=1

holds for every ¢ € H{(2) A L*(2).
We first prove the estimate for the positive part u .
For >0, let us choose a special test function of the form

@ (x) = [E(u, (x)) = 1] E'(u,(x)) 14,x), (2.8)

where y, is the characteristic function of the set

E=1{xeQ: Eu,(x)>1) (2.9)

It is easy to check that, since ue H (2) N L*(Q), ¢, is a genuine test func-
tion. If we insert ¢, in (2.7), we obtain (remember that E'(u) = exp K(u))

n

Z a(;’(x)aiu+ a,ﬂu+E’(u+)-{E’(u+)+(E(u+)—t) k(u+)} dx

i j=1

:f H(x,u,,Du ) E(u,)—1t)E'(u,)dx. (2.10)

s

Let us call y(z) the right hand side of (2.10).

Claim. y(t) is an absolutely continuous function whose derivative is

wf(z)=—f H(xu,,Du.)Eu,)dx forae 1>0. (211

&

To prove (2.11) observe that, if 2> 0,

j H(x,u,, Du, )E(u,)—t—h) E'(u, ) dx

Srvh

—f H(x,u,,Du WEu,)—1t)E'(u,)dx
&
= —hf H(x,u,,Du,)E'(u,)dx
&

— H(x,u,,Du Y Ew, )—t—h)E(u,)dx

ENE 4 h

=1 +1



60 MADERNA, PAGANI, AND SALSA

On &\é, ., , we have —h< E(u, )—t— h<0; therefore
1 I
SILI<|  HGou,, D)l E'u,) dx
8 Er v

which goes to 0 when # -0, since
ENE = {x E" () <u, (x)SET'(t+h)}
so that
|66 sl >0 as A0,

For h<0 one reaches the same conclusion for ae. #>0. Since either
[{x:u_ (x)=t}|=0 or on this set Du_, =0, it follows that y is absolutely
continuous.

The claim is then completely proved.

Now we find an estimate from below for —y/'(¢).

Take again k> 0, small enough; for >0, from (2.10) we obtain

—w(z+h)+¢(z)=hj S a,(x) duu, O, E'u) ku, ) dx
=1

&y
+ Y ay(x)du, du, E'u,)

x {E'(u, )+ (E(u,)—t—h)k(u,)} dx.

Taking account of the ellipticity condition (1.3) and of the fact that, on
ENE,+py ETN(t)<u, <E™'(t+h), we can write

—P(+ R+ WO Zh | 1Du, P E () k(u,) dx

&

+|  1DuL P EET )EE ()
ENE v h

— hk(E~'(t + h))} dx.

On the other hand, by Schwarz inequality,

2
J lDu+|2dx>|éﬂ:\éa,+hi_]<J. |Du+|dx> ~ (2.12)
LA ENEryn

If we set

u(t) =14,
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we can write

—PUA R+ h [ 1Du, ) E ) k(u ) dx
8y
+E’(E’l(t)){E’(E’l(t))—hk(E*I(t+h))}

2
x (u(t) — (e +h))~! <J |Du, | dx) . (2.13)

EnEr

The Fleming—Rishel formula and the isoperimetric inequality give

-% L |Du, | dx=(E~"Y (1) P(&)=nC Y (E~YY (1) (1) =", (2.14)

where P(&,) denotes the perimeter of the set &, in the sense of De Giorgi.
Now divide by A in (2.13) and let 4 go to zero; making use of (2.14) and
recalling that (E~") (1)=[E'(E~'(t))] "' we obtain, for ae. t>0

AU L 1Du |2 E'(u ) k(u ) dx +n*Clu(e)* 2" (—p/(1)~1 (2.15)

Equation (2.15) is the desired estimate for i’. Actually we have shown the
calculations for # >0, but, as before, they can be carried out for <0 in
the same way.

Now we combine (2.15) together with (2.11) and the assumption (1.6)
(the right hand side) to obtain

WECT (1) (— (1))
<[ Ew.){H(xu,, Duy)—klu,) |Du. |} dx
<[ E(u.)fox)dx (2.16)

Set now y(x) = E(u, (x)) and ¢(y)=E'(E"'(y))= E'(u,(x)). Then

u(t)=f dx.

y>1

Furthermore, since ¢ is increasing, the decreasing rearrangement of g(y) is
given by ¢(y*(s)), 0 <s<|Q|. Then, by the Hardy-Littlewood inequality,

| Ewo s g 1o ds
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From (2.16) now we obtain

iy

1<n ZC;*z/""u(rrM‘"(—#'(:))J’U"' g(y*(s)) fx(s)ds.  (217)

By integration over r we arrive at

e
Y*HO)<n 2, f

0

| ,
drr= 2 [ g(y4s)) S (5) ds
, (2l Cer
n- 2C;2/nq(y*(0))J drr 2+2mJ ft (?) ds.
(4] 0

Recalling (2.4) (and the definition (2.1) of W) we finally obtain

O

Wisup ) =250

< V(0).

This ends the proof of (2.5).
The proof of (2.6) follows exactly the same lines, if we choose as a test
function

Glx)=(E(u_(x))—1) E'(u_(x)) gz(x),
where
E={xeQ :Eu_(x))>1} (> 0).

The proof of Theorem 1 is complete.

3. EXISTENCE AND COMPARISON

The estimate in Theorem 2.1 has, as an easy consequence, an a priori
estimate for solutions of a family of Dirichlet problems, depending on a
positive parameter . Set

H(x, z, &) when max(z,0)<4

H(x, 4, &) when max(z, 0)> A (3.1)

H,{(X, Z, é):{

Then, from (1.6), when z >0 we have

Hi(x, 2, &) <h(2) €17 + /1 (x). (32)
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Consider now, for 4> 0 fixed, the problem

u, e Hy(Q)n L*(2)
(3.3)
Auy(x)=H,(x, u;, Du;),
where A is the same operator as defined in (1.2), (1.3).
THEOREM 3.1. Let u, be a solution of (3.3). If
k(A) V(0)<1 (3.4)
then
1 —1
sup u;, sm log[1 — k(1) V(0)] (3.5)
1
j \Du, |?dx <n=2C;¥"[1—k(2) V(O)]‘zf P2
Q (i)
, 2
x (j (s) ds> dr. (3.6)
0

Proof. Estimate (3.5) is a particular case of (2.5) if we choose k(1)
constant = k(1) and take (3.4) into consideration.
To prove (3.6) observe that, from (2.14) and (2.12), we have

<2 o) ) 7 (BB )P (G [ 1w 7).
(37)

Since |, [Du; |*dx is an absolutely continuous function for >0, we can
write

sup u; | d
j |Du,~_+|2dx=J. dt(—— |Du;~+lzdx> (from 3.7)
o 0 dtls,

stupu;,* n—zc;z/n(—ﬂ’(t)) #(t)—2+2/n [E/(E*l(t))]z

d RS
X<—EL, |Du, | a’x) dr.

On the other hand, as in the proof of Theorem 2.1, we have

<_%L, 'Du,:+l2dx> [E’(E“‘(t))]zsfé, E'(u;) fo(x)dx.

505/97/1-5
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Recall now that, being k = k(4) constant, we have E(s)= (1/k(4))(e***' —1),
E'(s)=e*" and E'(E " '(t))=1+k(2)t> 1. Hence we obtain

up 4, 4+

J |Dua‘|2den"’2C" 2m '[S ’ (— (1)) #(t)——uz,m

Q 0

x <j E'(u, ) fo(x) a’x) dt
&
sup u; ) .
sn—ZC" 2/nJ~ (w/l/(l)) ﬂ(t)—2+2,/n e2k(/,)supu,.+
0

XUM f’!;(s)ds) dr

using again the Hardy-Littlewood estimate for {, f, .
Now, by using (3.5), we finally obtain (3.6).

Remark 1. 1If we set

~ H(x, z —z2,0)<
Rsnd={40 70 when manoms O
we have, when z <0, from (1.6),
Ai(x,z, &) 2 k() €7 =T _(x). (32
Let now #; be a solution of the problem
i, e HY(Q)NL™(Q) (3.3
Ait;(x)= H,(x, @;, Dit;).
Then, if
k(A V(0)<1 (3.4')
the following estimates hold
sup i, src—(lll—)log[l —k(2) P(0)]7! (3.5)

j \Dii, |2 dx<n 2C.¥"[1—Fk(1) P(0)] 2

x ij o2 (L 7% (s) ds> dr. (3.6')
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Remark 2. Let us set now

H,(x, z, ¢&) when z>20
ITI,-_(x, z, &) when z<0

Hx, z, §)={

and consider the problem, for 4> 0 fixed,

w,e H{(2)n L*(Q)

Aw,(x)= H(x, w,, Dw;).
If
max(k(4) V(0), k(1) P(0)) < 1 (3.9)

then estimates (3.5), (3.6), (3.5'), and (3.6') hold; from these estimates,
by a well-known technique (see, e.g., [3, 7]) it is possible to prove the
existence of a solution of problem (3.8).

As a consequence we have the following existence theorem.

THEOREM 3.2. Assume that, together with the usual hypotheses
(1.2)... (1.6), the inequalities hold,

o -k
O<erntte T
1 (3.10)
7(0) <sup — (1 —e ~*%)),
/ >l?) k(/‘v)

where the strict inequality sign is not necessary if k (or k) is unbounded. Then
there exists a solution u of problem (1.1).

Proof. Let 1, be such that WV(0)<(1/k(4,))(1 —e #**)) and
7(0)< (1/k(A,))(1 — e #F4)) Then (3.9) holds with A=A, and problem
(3.8) admits a solution u such that supu, <4,; one easily realizes that
such a solution also solves problem (1.1).

Let us now go back to formula (2.17). If we integrate it over (0, ¢) and
read the result in terms of decreasing rearrangement we obtain for
0<s<|Q|,

12| r

yHe)<n 2 [ drr 22 [ g(pr(n) fH A= Ti(y*Ns). (BA1)
s 0

Observe that if z(s) is a continuous solution of the integral equation

As)=T(2)(s), 0<s<|Q| (3.12)
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then the function Z(x)=z(C, |x|") is a solution in H (Q2*) L*(Q*) of
the (radial) equation

—dv=f*(x) q(v). (3.13)

It turns out that, under the assumptions of Theorem 3.2 and if
V(0)<sup,., W(r), Eq. (3.13) has exactly one solution in HyQ*)n
L™(Q%), the function Z defined above.

Our purpose is to compare Z with a solution of (1.1). This is the content
of the following theorem.

THEOREM 3.3. Let the assumptions of Theorem 3.2 hold and V(0)<
sup, ..o W(t). Then

(i) Eq. (3.13) has exactly one solution Z € H}(Q*) L*(2%*)
(it} if u is a solution of problem (1.1) the following comparison holds:

uk (x)SE YZ(x))  forae xeQ*. (3.14)

An analogous result clearly holds for u_ if Z is the unique solution of
—Adv=F*(x)q(v) in Q* and V(0)<sup,. , W(1).

Proof. Let A>0 such that V(0)< W(A) and V(0) < (1/k(4))(1 —e = ),
Then by Theorem 3.2 there exists a solution Ue H{(Q*)n L™(2*) of the
equation

—A4U=k(|U)IDUP* + f*.

Moreover for every solution we have Ul xgor < A

Recalling the discussion in Section 1 on Egs. (1.7), (1.10), we conclude
that for every solution v of Eq. (3.13) we have [|vl g+ < E(4).

On the other hand, such solutions are fixed points of the integral
equation

v(x)= L)* G(x, &) () q((v(§) dE=T(v)(x), xeQ* (3.15)

where G(x, &) is the Green’s function for Q*.

It turns out that the operator 7(v) is a contraction on the subset of
L*(Q*) given by Y= {ve L*(Q*):0<v(x) < E(1)}.

Taking this for granted we deduce the first part of the theorem. Denote
now by Z the unique solution of Eq. (3.13).

It follows that Z must coincide with the function z(C, |x|"), where z(s),
se [0, {€2]], is the unique solution of (3.12). Note that also the operator
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T,(y) defined in (3.11) is a contraction in the subset of L>=([0, |2]|]) given
by Y, ={ze L™([0, |2[]): 0<z(s) < E(4) }.

Furthermore T, is monotonically increasing with y, since g is increasing.
Starting the iteration process at zy(s)=u%(s), z,=T,z,_,, we easily infer
u* (s)< z(s) for any se [0, {£2]]. This gives (3.14).

We have only to prove that the operator T defined in (3.15) is a contrac-
tion in Y. In the same way it follows that T is a contraction in Y,.

We have, for ve Y, since V(0)< W(4)= E(A)/E'(})

T(v)(x) < q(E(4)) Lﬂ FE) G(x, &) dE<E'(4)-V(0) < E(A).

Therefore T carries Y into itself.
Observe now that the function E’(z)=exp K(¢) is convex, hence, for
0<y, <y <E(A)

q(y))—q(y,)=E(E"(y,))— E(E"'(»,)
SE"(AE '(y)—-E 'y} (3.16)
where E” denotes the left second derivative of E.
On the other hand, we have
E"(A)=E'(A) k(L)

and

1
Eil()’l)-Efl()b):E,

W()’[‘yz)g}’l_h

by the mean value theorem (ye(y,, y;)).
So, from (3.16) we obtain

9(y1) —4(y2) SE (A k(A )y — ¥2). (3.17)

It follows that the function ¢ is Lipschitz continuous on [0, E(4)].
Therefore we can write

a)=1+ fo g(s)ds=1+ L K(E_ (s)) ds.

Since kK and E~' are increasing functions, we obtain the following
inequality, stronger than (3.17)

q(y1) —q(y2) <k(A)(y,— y,) (3.18)
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Now it is easy to see from (3.18) that for v,, v, Y

[T(01) = T(W)ll L2 oxy A (A) VAO) flo) — 02l 1 n).-

Since k(4) V(0) <1 it follows that T is a contraction in Y and the proof of
the theorem is complete.

4. SpPecIAL CASES

As we have seen, problem (1.1) has a solution if some restrictions are
prescribed on the size of £, f or of |2|; but we have also seen, in the model
equation (1.7), that a solution does exist without any such restriction,
provided the known term f has the “right sign.”

For instance, let us focus our attention on estimates of the negative part
u_ of the solution; obvious changes will give analogous results for the
positive part v, .

Then we replace assumption (1.6) on H with the more restrictive
hypothesis: there exists a nondecreasing function k: [0, 4+ o) — [0, + )
and a measurable function ge L?(2), p>n/2, §=0 ae., such that the
inequality

H(x, z,&) 2 Ak(1z]) |E]° — &(x) (4.1)
holds for a.e. xe Q and every (z, £)e R_ x R".
(Note that, since k has only to be nondecreasing, in (4.1) we could omit

the ellipticity constant A simply by considering k = Ak instead of k).
To state the result set

G(t) = L exp( — R(s)) ds, (4.2)

where K is the primitive function of k vanishing at the origin.
Furthermore denote by U the solution of the Dirichlet problem

A4U=g* in Q*

(4.3
U=0 on 0Q*. )

THEOREM 4.1. Let u be a solution of (1.1) under the assumptions
(1.2), ..., (1.5), (4.1). Then

(u_)y* (x)<G(U(x)) for ae. xeQ* (4.4)
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Proof of Theorem 4.1. Let a=lim,_, , . G(t), 0 <a < + o0; choose, as
a test function, for te (0, a)

e x)=[G[U _(x))—t] G'(u _(x)) x4(x), (4.5)
where now
E=4{xeQ:Gu_(x))>1}. (4.6)

Inserting ¢, into (2.7) we obtain
jz X) 0 du Gu )W —G'u )+ (Glu_)— 1) Fu_)} dx
A

=J H(x, —u_, —Du _)G(u_)—1)G'(u_) dx.

&

Performing calculations analogous to those in the proof of Theorem 2.1, we
reach the following inequality, which holds for a.e. 1€ (0, ),

<7200 (= (1) |86 Gl (%)) d,

&
where again u(t)=|8,|.

Since on &, G'(u_(x))<G'(G (1)), we have, by Hardy-Littlewood
inequality,

<n 20, () () GG ) [ g

By integration of both members of the previous inequality over (0, s), one
obtains

s d
G*l(s)=j0 (G ) de

N ule)
<n 20, (o2 () [ g4 dr
0 0
The conclusion now follows by routine arguments.
Remark. Let hypothesis (1.6) be replaced by
—&(x) +k(I2]) [EI* < H(x, z, &) <k(|z]) |€]2 — g(x) (4.7)

for ae. xeQ and every (z, {)e Rx R", g, § being nonnegative functions.
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Then, using the right inequality in (4.7), from the results of Section 3, we
deduce that a solution u of problem (1.1) is nonpositive, and, using the left
inequality in (4.7), we obtain from Theorem 4.1, an estimate for sup v _.
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