
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 650 (2007) 331–336

www.elsevier.com/locate/physletb

Wobbling excitations at high spins in A ∼ 160
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Abstract

We found that in 156Dy and 162Yb the lowest odd spin gamma-vibrational states transform to the wobbling excitations after the backbending,
associated with the transition from axially-symmetric to nonaxial shapes. The analysis of quadrupole electric transitions determines uniquely the
sign of the γ -deformation in both nuclei after the transition point.
© 2007 Elsevier B.V.
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Thanks to novel experimental detectors, a new frontier of
discrete-line γ -spectroscopy at very high spins has been opened
in the rare-earth nuclei (see, for example, [1]). These nuclei
can accommodate the highest values of the angular momentum,
providing one with various nuclear structure phenomena. The
quest for manifestations of nonaxial deformation is one of the
driving forces in high spin physics in past few years [2]. The
identification of wobbling excitations is recognized nowadays
as a convincing proof of the nonaxiality. Wobbling excitations
were suggested first by Bohr and Mottelson for rotating even–
even nuclei [3] and studied soon within simplified microscopic
models [4] (see also Ref. [5] and references therein). Accord-
ing to the microscopic approach [6,7], the wobbling excitations
are vibrational states of the negative signature built on the pos-
itive signature yrast (vacuum) state. Their characteristic feature
is collective E2-transitions with �I = ±1h̄ between these and
yrast states. First experimental evidence of such states in odd
Lu nuclei was reported only recently [8].

The first analysis of the properties of the second triaxial su-
perdeformed band in 163Lu was based upon phenomenological
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particle-rotor calculations [9]. The absolute values of the irrota-
tional moments of inertia were fitted and so-called “γ -reversed”
dependence of these moments was introduced in order to ob-
tain a reasonable agreement with the experimental data. It was
shown in Ref. [10] that the microscopic approach [7] may gain
a better insight into the observed phenomena. In the analysis
of [10], however, the constant mean-field deformation para-
meters are used, which is not always justified. Moreover, the
authors admitted that the kinematic moment of inertia �x was
not described properly due to the strong velocity dependence
of the Nilsson potential (see discussion in Ref. [10]). We re-
call that wobbling excitations depend on all three moments of
inertia that characterize the nonaxial shape. Therefore, a self-
consistent description of moments of inertia is a prerequisite of
the microscopic analysis of the nuclear wobbling motion. The
main aim of this Letter is to analyze new data on high spin states
in 156Dy and 162Yb [11,12] within a microscopic approach [13]
based on the cranked Nilsson model plus random phase ap-
proximation (CRPA). In our approach mean-field parameters
are determined from the energy-minimization procedure. The
proper description of the moment inertia �x is achieved using
the recipe suggested in Ref. [14]. Our calculations suggest that
some excited states at high spins may represent wobbling exci-
tations.
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Our model Hamiltonian is

(1)ĤΩ = Ĥ0 −
∑
τ

λτ N̂τ − ΩĴx + V.

The term Ĥ0 = ĤN + Ĥadd contains the Nilsson Hamiltonian
ĤN and the additional term that restores the local Galilean in-
variance of the Nilsson potential, broken in the rotating frame
[14]. This term is essential to obtain a correct description of
�x -moment of inertia [13]. Although the additional term Ĥadd
breaks the rotational symmetry in the sense of Eq. (3) (see
below), this effect can be negligibly small in the RPA order.
The chemical potentials λτ (τ = n or p) are determined so
as to give correct average particle numbers 〈N̂τ 〉. Hereafter,
〈. . .〉 means the averaging over the mean field vacuum (yrast)
state at a given rotational frequency Ω . The interaction V in-
cludes separable monopole pairing, monopole–monopole, and
quadrupole–quadrupole terms to describe the positive parity
states. All multipole and spin-multipole operators have a good
isospin T and signature r = ±1 (see the properties of the matrix
elements in Ref. [15]). They are expressed in terms of doubly
stretched coordinates x̃i = (ωi/ω0)xi , which ensure the self-
consistent conditions at the equilibrium deformation. Details
about the model Hamiltonian (1) can be found in Ref. [13].

The Nilsson–Strutinsky analysis of experimental data on
high spins in 156Dy [12] indicates that the positive parity yrast
sequence undergoes a transition from the prolate towards the
oblate rotation. In our calculations the deformation parame-
ters β and γ are defined by means of the oscillator frequencies

ω2
i = ω2

0[1 − 2β

√
5

4π
cos(γ − 2π

3 i)] (i = 1,2,3 or x, y, z). To
compare our results with available experimental data [12], we
consider the mesh on the β , γ plane: from γ = 60◦ (an oblate
rotation around the y-axis) to γ = −60◦ (an oblate rotation
around the x-axis) and β = 0–0.6. At each rotational frequency,
we have determined the equilibrium deformation parameters
(β, γ ) by minimizing the mean-field energy EMF = 〈ĤΩ − V 〉
on the mesh. In the vicinity of the backbending this procedure
becomes highly unstable. In order to avoid unwanted singulari-
ties for certain values of Ω , we followed the phenomenological
prescription [16] for the definition of the pairing gap parameter
(see details in Ref. [13]). Parameters of the Nilsson potential
were taken from Ref. [17]. In our calculations we include all
shells up to N = 9. Near the transition point we extended our
configuration space up to N = 10 shells. The difference be-
tween results from the former and the latter cases was small
and all presented results are obtained with N = 0–9 shells.
In contrast to standard calculations with the Nilsson potential,
based on a “single stretched” coordinate method (cf. [18]), we
use the real (non-stretched) ls and l2 potentials, taking into
complete account �N = 2 mixing produced by them. This im-
proves the accuracy of the mean-field calculations, since the
“single stretched” ls and l2 potentials break the rotational sym-
metry.

Our results conform to the results of the Nilsson+Strutinsky
shell correction method (compare our Fig. 1 with Fig. 3c in
Ref. [12]), although we obtain slightly different values for the
equilibrium deformations. In the analysis of Ref. [12] the pair-
Fig. 1. Equilibrium deformations in β–γ plane as a function of the angular
momentum I = 〈Ĵx 〉 − 1/2 (in units of h̄). The equilibrium deformations for
156Dy provide the lower mean field energies in the region −π/3 < γ < 0 (filled
circles) in comparison with those (open squares) obtained in Ref. [13]. The
maximal difference between the minimal energies at the positive and negative
equilibrium γ -values does not exceed ∼ 1 MeV for 156Dy.

ing correlations are missing, while the hexadecapole deforma-
tion is not included in the present calculations. The triaxiality
of the mean-field sets in at the critical rotational frequency
h̄Ωc which triggers the backbending in the considered nu-
clei due to different mechanisms. We obtain h̄Ωc ≈ 0.25 MeV
(10h̄ → 12h̄) and h̄Ωc ≈ 0.3 MeV (14h̄ → 16h̄) for 162Yb and
156Dy, respectively. The contribution of the additional term was
crucial to achieve a good correspondence between the calcu-
lated and experimental values of the crossing frequency in each
nucleus. In 156Dy we obtain that the γ -vibrational excitation
(K = 2) of the positive signature tends to a zero in the rotating
frame at the transition point, in close agreement with experi-
mental data. At the transition point there are two indistinguish-
able mean-field energy minima with different shapes: axially
symmetric and strongly nonaxial. The increase of the rotational
frequency changes the axial shape to the nonaxial one with a
negative γ -deformation (γ ∼ −20◦). In contrast with 156Dy,
in 162Yb the axially symmetric configuration is replaced by
the two-quasiparticle one with a small negative γ -deformation.
There, the backbending occurs due to the rotational alignment
of a neutron i13/2 quasiparticle pair. The nonaxiality evolves
quite smoothly.

In the CRPA approach the positive (r = +1) and nega-
tive (r = −1) signature boson spaces are not mixed, since the
corresponding operators commute and HΩ = HΩ(r = +1) +
HΩ(r = −1). The self-consistency between the mean-field and
the RPA calculations is achieved by varying the strength con-
stants of the pairing and multipole interactions in the RPA. It
results in the separation of collective excitations from those,
related to the symmetries broken by the mean field. Two zero
solutions are associated with the violation of the particle num-
ber (for protons and for neutrons) [ĤΩ(r = +), N̂τ ] = 0. The
other one is related to the spherical symmetries of the mean
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field [ĤΩ(r = +), Ĵx] = 0. While the positive signature excita-
tions are analyzed in Ref. [13], the main focus of this Letter is
wobbling excitations that belong to the negative signature sec-
tor. The negative signature RPA Hamiltonian has the form

(2)ĤΩ [r = −1] = 1

2

∑
μ

Eμb+
μbμ − χ

2

∑
μ3=1,2

Q̃(−)2
μ3

,

where Eμ = εi + εj (Eīj̄ = εī + εj̄ ) are two-quasiparticle
energies and b+

μ (bμ) is a quasi-boson creation (annihilation)
operator [13]. Hereafter, the index μ runs over ij , ī j̄ and
the index μ3 is a projection on the quantization axis z. The
double stretched quadrupole operators Q̃

(−)
1 = ξQ̂

(−)
1 (ξ =

ωxωz/ω
2
0), Q̃

(−)
2 = ηQ̂

(−)
2 (η = ωxωy/ω

2
0) are defined by

means of the quadrupole operators Q̂
(r)
m = i2+m+(r+3)/2(Q̂2m +

(−1)(r+3)/2Q̂2−m)/
√

2(1 + δm0), where Q̂λm = r̂λYλm (m =
0,1,2). The symmetry broken by the external rotational field
(the cranking term) implies

(3)[HΩ, Ĵy ∓ iĴz] = ±Ω(Ĵy ∓ iĴz)

(hereafter, we use in all equations h̄ = 1). This condition is
equivalent to the condition of the existence of the negative sig-
nature solution ων = Ω created by the operator Γ̂ † = (Ĵz +
iĴy)/

√
2〈Ĵx〉 [19]. We recall that Ĥadd in Ĥ0 (Eq. (1)) breaks

Eq. (3) in general. However, to meet the condition (3) we de-
termine the strength constant from the requirement of the exis-
tence of the RPA solution ων = Ω . As a result, the violation is
unessential (see below).

We solve the RPA equations of motion for normal modes
[ĤΩ, Ô†

ν ] = ωνÔ
†
ν with Ô†

ν = ∑
μ(ψ

(ν)
μ b+

μ −φ
(ν)
μ bμ) (cf. [13]).

The solution leads to a couple of equations for unknown coeffi-
cients

(4)R̃ν
1 = − 1√

2

[
Ôν, Q̃

(−)
1

]
, R̃ν

2 = i√
2

[
Ôν, Q̃

(−)
2

]
.

Resolving these equations one obtains the secular equation

(5)F(ων) = det

(
D − 1

χ

)
= 0

that determines all negative signature RPA solutions ων . The
matrix elements Dkm(ων) = ∑

μ f̃k,μf̃m,μCkm
μ /(E2

μ − ω2
ν) in-

volve the coefficients Ckm
μ = ων for k �= m and Eμ otherwise;

f̃m,μ are two-quasiparticle matrix elements of operators Q̃
(−)
m .

Among collective solutions there are solutions that correspond
to the shape fluctuations of the system and the rotational mode
ων = Ω . With aid of Eq. (3) the system for the unknown co-
efficients R̃ν

1,2 can be cast in the form similar to the classical
expression for the wobbling mode

(6)ων=w = Ω

√√√√ [�x − �eff
2 ][�x − �eff

3 ]
�eff

2 �eff
3

with microscopic effective moments of inertia [7]

(7)�eff
2,3 = �y,z + ΩS

�x − �y,z − ω2
νS/Ω

�z,y + ΩS
Fig. 2. Top panels: the kinematic �x = 〈Ĵx 〉/Ω (solid line), the rigid body

�(rig)
1 = 2

5 mAR2(1 −
√

5
4π

β cos(γ − 2π
3 )) (dashed line) and the hydrodynam-

ical �(irr)
1 = 3

2π
mAR2β2 sin2(γ − 2π

3 ) (dash-dotted line) moments of inertia
are compared with the experimental values (filled squares). Experimental val-
ues �x = I/Ω are connected by dashed line to guide eyes (h̄Ω = Eγ /2).
Bottom panels display the rotational dependence of the kinematic moment of
inertia (solid line), effective moments of inertia �eff

2 (dashed line) and �eff
3

(dash-dotted line) for the first RPA solution ν = 1 obtained from Eq. (5).

that depend on the RPA frequency. Here, �x = 〈Ĵx〉/Ω , S =∑
μ J

y
μJ z

μ/(E2
μ − ω2

ν) and �y,z = ∑
μ Eμ(J

y,z
μ )2/(E2

μ − ω2
ν).

Eq. (6) does not contain the solution ων = Ω .
We obtain quite a remarkable correspondence between the

experimental and calculated values for the kinematic moment
of inertia for both nuclei (see top panels in Fig. 2). The irrota-

tional fluid moment of inertia �(irr)
1 does not reproduce neither

the rotational dependence nor the absolute values of the ex-
perimental one as a function of equilibrium deformations (see
Fig. 2). The rigid body values provide the asymptotic limit of
fast rotation without pairing, if shell effects are smeared out
(see discussion on shell effects at fast rotation in Ref. [20]). Ev-
idently, the difference between the rigid body and the calculated
kinematic moments of inertia in both nuclei decreases with the
increase of the rotational frequency, although it remains visible
at high spins. At very fast rotation h̄Ω > 0.45 MeV the pair-
ing correlations are reduced due to multiple alignments, and,
therefore, the difference is moderated. It is evident that for the
rotation around the axis x the wobbling excitations with differ-
ent collectivity could be found from Eq. (6), if �x > �eff

2 ,�eff
3

(or �x < �eff
2 ,�eff

3 ). The rotational behavior of the effective mo-
ments of inertia for the first RPA solution of Eq. (5) (see Fig. 2)
suggests that this solution may be associated with a wobbling
mode.

To identify the wobbling mode among the solutions of
Eq. (5) it is instructive to introduce new variables, similar to
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ones in [5]: rν
1 = R̃ν

1/(ξA), rν
2 = R̃ν

2/(ηB), where A = 〈Q̂2 +√
3Q̂0〉, B = 2〈Q̂2〉. By means of Eqs. (4) and Ôν=Ω ≡ Γ̂ ,

we obtain exact definitions for the unknowns rΩ
1,2 associated

with the redundant mode ων = Ω : rΩ
1 = −1/2

√
〈Ĵx〉, rΩ

2 =
1/2

√
〈Ĵx〉. With aid of these definitions, exploiting the fact that

the components of the quadrupole tensor commute, one can de-
fine the unknowns

(8)rw
1 = 1

2
√

〈Ĵx〉

(
W2

W3

)1/4

, rw
2 = 1

2
√

〈Ĵx〉

(
W3

W2

)1/4

and show (cf. Ref. [5]) that they are associated with the wob-
bling mode. Here, W2 = (1/�eff

2 − 1/�x), W3 = (1/�eff
3 −

1/�x). It is convenient to use the variables cν = 4〈Ĵx〉rν
1 rν

2 .
From the definitions of rΩ

1,2, rw
1,2 it follows that

(9)cν=Ω ≡ −1, cν=w ≡ 1.

Solving only the secular equation for the quadrupole operators,
Eq. (5), the condition (9) enables us to identify the redundant
and the wobbling modes. Note that the variables rν

1,2 (or cν )
can be only defined for nonaxial shapes.

The experimental level sequences for all observed up-to-date
rotational bands in 162Yb and 156Dy are taken from Ref. [11].
All rotational states are classified by quantum number α which
is equivalent to our signature r . The negative signature states
(r = −1) correspond to α = 1 and are associated with odd
spin states in even–even nuclei. All considered bands are of the
positive parity π = +. To elucidate the structure of observed
states, we define the experimental excitation energy in the ro-
tating frame h̄ων(Ω)exp = Rν(Ω) − Ryr(Ω) as a function of
the rotational frequency Ω [21]. Here, the Routhian function
Rν(Ω) = Eν(Ω) − h̄ΩIν(Ω). The energy h̄ων(Ω)exp can be
compared with the RPA results, h̄ων(Ω), calculated at a given
rotational frequency.

Top panels of Fig. 3 display the redundant mode and four
lowest RPA solutions of Eq. (5) as a function of the rotational
frequency. We recall that these solutions are found at different
equilibrium deformations (see Fig. 1). Indeed, in both nuclei
the criteria (9) uniquely determines the redundant and the wob-
bling modes. In Fig. 3 the redundant mode is manifested as
a straight line (see top panels), while the corresponding coef-
ficient cΩ = −1 (see bottom panels). The redundant mode is
separated clearly from the vibrational modes.

In 162Yb it is known only one negative signature γ -vibra-
tional state. The first RPA solution (ν = 1) is a negative sig-
nature gamma-vibrational mode (with odd spins) till h̄Ω ≈
0.28 MeV. With the increase of the rotational frequency it is
transformed to the wobbling mode at h̄Ω ≈ 0.32 MeV (ac-
cording to the criterion (9)). Our results for ν = 1 solution
may be used as a guideline for possible experiments on iden-
tification of the wobbling excitations near the yrast line. The
first negative signature RPA solution in 156Dy can be associ-
ated with the negative signature gamma-vibrational excitations
with odd spins. After the transition from the axial to nonaxial
rotation, at h̄Ω ≈ 0.3 MeV, according to the criteria (9), the
Fig. 3. Top panels: rotational dependence of the negative signature RPA solu-
tions with odd spins (π = +, α = 1). The redundant mode ων = Ω is denoted
as “0” and is displayed by the dotted line. Number in a circle denotes the RPA
solution number: 1 is the first ν = 1 RPA solution, etc. Different symbols dis-
play the experimental data associated with B1, B2, . . . bands (the band labels
are taken in accordance with the definitions given in Ref. [11]). Bottom pan-
els: the rotational dependence of the coefficients cν ∼ rν

1 rν
2 (see text) that are

determined by the solutions of Eq. (5).

first negative signature RPA solution describes the wobbling
excitations. The mode holds own features with the increase
of the rotational frequency up to h̄Ω ≈ 0.55 MeV. There is
a good agreement (see Fig. 3, top right panel) between the
RPA solution and the experimental Routhian of band B10 (or
(+,1)1 band according to Ref. [12]). On this basis we pro-
pose to consider the B10 band as the wobbling band in the
range of values 0.45 MeV < h̄Ω < 0.55 MeV (33h̄ � I � 39h̄

for this band). Note that the band B10 contains the states
with 31h̄–53h̄. However, our conclusion is reliable only for
the states with I = 33h̄–39h̄ (or up to h̄Ω < 0.55 MeV). At
h̄Ω ≈ 0.55 MeV a crossing of the negative parity and negative
signature (positive simplex) B6 band with the yrast band B8 is
observed. Therefore, for h̄Ω > 0.55 MeV (or for I > 39h̄ for
the B10 band) one may expect the onset of octupole deforma-
tion in the yrast states. The octupole deformation is beyond the
scope of our analysis and will be discussed in forthcoming pa-
per.

In the microscopic approach [5] the electric transition prob-
abilities from the wobbling states take the same form as in the
macroscopic rotor model [3]. Indeed, for interband transitions
(from one-phonon to yrast states) we have (cf. [13,19])



J. Kvasil, R.G. Nazmitdinov / Physics Letters B 650 (2007) 331–336 335
B(E2; Iν → I ± 1 yr)

(10)≈
∣∣∣∣ i√

2

[
Õ

(−)(E)
2 , Ô†

ν

]
/η ∓ 1√

2

[
Õ

(−)(E)
1 , Ô†

ν

]
/ξ

∣∣∣∣
2

.

Here, M̂(E) = (eZ/A)M̂ . In virtue of Eqs. (4), (8), one can
obtain for the quadrupole transitions from the one-phonon wob-
bling state to the yrast states

B(E2; Iw → I ± 1 yr)

(11)≈ 1

4〈Ĵx〉

∣∣∣∣
(

W2

W3

) 1
4

A(E) ∓
(

W3

W2

) 1
4

B(E)

∣∣∣∣
2

.

For intraband transitions we have (see [19] and Eq. (43) in
Ref. [13])

(12)B(E2; Iν → I − 2ν) ≈ 1

8

∣∣√3
〈
Q̂

(E)
0

〉 − 〈
Q̂

(E)
2

〉∣∣2
.

Expressions (10), (11), (12) are obtained in high spin limit
I � 1. To understand a major trend of the quadrupole transi-
tions, we employ relations from the pairing-plus-quadrupole
model: mω2

0ε2 cosγ ′ = χ〈Q0〉, mω2
0ε2 cosγ ′ = −χ〈Q2〉 (cf.

Ref. [2]). By means of these relations and a definition of the
quadrupole isoscalar strength χ = 4πmω2

0/5〈r2〉 ≈ 4πmω2
0/

(3AR2) (R ≈ 1.2A1/3 fm) one obtains from Eq. (11)

B(E2; Inw = 1 → I ± 1 yr)

(13)≈ Θε2
2

〈Ĵx〉
[(

W2

W3

) 1
4

sin

(
π

3
− γ ′

)
±

(
W3

W2

) 1
4

sinγ ′
]2

,

where Θ = (9/16π2)e2Z2R4. Eq. (13) yields the following se-
lection rules for the quadrupole transitions from the one-phonon
wobbling band to the yrast one (for W2,3 > 0):

(a) −60◦ < γ < 0:
B(E2; Inw → I − 1 yr) > B(E2; Inw → I + 1 yr),

(b) 0 < γ < 60◦:
(14)B(E2; Inw → I + 1 yr) > B(E2; Inw → I − 1 yr).

For the intraband transitions we obtain

(15)B(E2; Inw → I − 2nw) ≈ 1

2
Θε2

2 cos2
(

π

6
− γ ′

)
.

One observes from Eq. (15) that for the transitions along the
yrast line (nw = 0) the onset of the positive (negative) values of
γ -deformation leads to the increase (decrease) of the transition
probability along the yrast line. Moreover, the decay from one-
phonon wobbling states to the yrast line R(±) = B(E2; Inw =
1 → I ± 1 yr)/B(E2; Inw → I − 2nw) ∼ 1/I (〈Ĵx〉 ≈ I � 1)

decreases with the increase of the angular momentum for a
constant deformation γ . However, the rotational evolution of
the nonaxiality may affect this tendency. We predict almost a
constant behavior for the ratio R(−) ≈ 0.1 for both nuclei at
h̄Ω > 0.35 MeV due to the increase of the nonaxial deforma-
tion.

At small rotational frequency, in both nuclei, transitions
probabilities from the first one-phonon states are much weaker
than quadrupole transitions along the yrast line (compare with
Fig. 4. B(E2)- (top) and B(M1)- (bottom) reduced transition probabilities from
the one-phonon bands to the yrast band. The negative signature phonon band
is described by the first RPA solution (r = −1). The transitions, calculated

by means of the ψ
(ν=1)
μ and φ

(ν=1)
μ phonon amplitudes, are connected by

solid lines. The results obtained by means of Eqs. (11), (17) (with the aid of
the variables W2,3) are connected by thin lines, starting from the rotational
frequency h̄Ω ∼ 0.3 MeV. This point is associated in our analysis with the
appearance of wobbling excitations. One observes a strong dominance of the
B(E2)- and B(M1)-transitions from the wobbling states (r = −1) with spin I
to the yrast states with spin I ′ = I − 1 starting from the rotational frequency
h̄Ω � 0.3 MeV.

Fig. 11 in Ref. [13]). At h̄Ω ∼ 0.05 MeV the transition strength
from the first one-phonon state to the yrast state: ∼ 330e2 fm4

(∼ 500e2 fm4) in 162Yb (156Dy). We obtain a good correspon-
dence between the shape evolution and the selection rules (14)
for both nuclei (see top panels of Figs. 4 and 1). The transition
probabilities, Eq. (10), are calculated by means of the ψ

(ν)
μ and

φ
(ν)
μ phonon amplitudes. The results for the first negative signa-

ture RPA solution (which is associated with a wobbling mode)
are compared with those obtained with the aid of the effective
moments of inertia (see Eqs. (7), (11)). Evidently, if the “spuri-
ous” solution (the redundant mode) would be not removed from
Eq. (5), two estimations (10) and (11) (based on different secu-
lar equations (5) and (6), respectively) would produce different
numerical values. A good agreement between both results (see
Fig. 4) is the most valuable proof of the self-consistency of our
calculations. The observed negligible differences are due to the
approximate fulfillment of the conservation laws (3), caused by
the additional term. In 162Yb, starting from h̄Ω ∼ 0.28 MeV
(after the transition point), the negative signature phonon band
changes the decay properties. The interband quadrupole transi-
tions from the one-phonon state to the yrast ones with a lower
spin dominate in the decay (�I = 1, the case Eq. (14)(a)). Sim-
ilar results for the first negative signature one-phonon band are
obtained in 156Dy. At low angular momenta (h̄Ω � 0.3 MeV)
this band populates with approximately equal probabilities the
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yrast states with I ′ = I ± 1 (I is the angular momentum of
the excited state). At h̄Ω ∼ 0.3 MeV a shape-phase transition
occurs, that leads to the triaxial shapes with the negative γ -
deformation. In turn, the phonon band decays stronger on the
yrast states with angular momenta I ′ = I − 1 (�I = 1, the case
Eq. (14)(a)), starting from h̄Ω � 0.32 MeV.

In the CRPA the magnetic transitions are defined as (cf. [19,
22])

B(M1; Iν → I ± 1 yr)

(16)≈ 1

2

∣∣i[M̂(M)
1μ3=1, Ô

†
ν

] ∓ [
M̂

(M)
1μ3=0, Ô

†
ν

]∣∣2
.

Here, M̂(M)
1μ3

= μN

√
3
∑A

i=1 ( 1
2g

(i,eff)
s [σ ⊗Yl=0]1μ3 +g

(i,eff)
l [l⊗

Yl=0]1μ3 ) is a magnetic dipole operator; μN is the nucleon

magnetons, g
(eff)
s , g

(eff)
l are the spin and orbital effective gyro-

magnetic ratios, respectively. Our results evidently demonstrate
the dominance of B(M1; InW → I − 1 yr) (see bottom panels
in Fig. 4) in both nuclei. In the rigid rotor model, one can obtain
for the magnetic transitions from the wobbling to yrast states

B(M1; Iν → I ± 1 yr)

(17)≈ 1

4〈Ĵx〉
(
√

W3 ∓ √
W2)

2

√
W2W3

∣∣〈M̂(M)
1ν3=1[r = +1]〉∣∣2

.

The full derivation will be presented elsewhere. Note that the
dipole magnetic moment 〈M̂(M)

1ν3=1[+]〉 increases quite drasti-
cally, if a nucleus is undergoing the backbending [22]. For the
wobbling states with W2,3 > 0, Eq. (17) yields

(18)B(M1; InW → I − 1 yr) > B(M1; InW → I + 1 yr).

At high spin limit I � 1, the microscopic and rigid body val-
ues of the variables W2,3 are very close. Thus, the macroscopic
model supports the results of microscopic calculations for the
magnetic transitions. It appears that the magnetic transitions
with �I = 1h̄ always dominate from the wobbling to the yrast
states, independently from the sign of the γ -deformation of ro-
tating nonaxial nuclei.

In summary, we predict that the lowest excited negative
signature and positive parity band in 162Yb transforms to the
wobbling band at h̄Ω ∼ 0.3 MeV. We found that at h̄Ω >

0.25 MeV strong E2-transitions from this band start to pop-
ulate yrast states, with the branching ratio B(E2; Iw → I −
1 yr)/B(E2; Iw → I + 1 yr) > 1. Similar transition occurs in
156Dy after the backbending as well, at h̄Ω > 0.3 MeV. A good
agreement between our results and experimental Routhians al-
lows us to conclude that the experimental states, associated with
(+,1)1 band in 156Dy [12], are wobbling excitations at the ro-
tational frequency values 0.45 MeV < h̄Ω < 0.55 MeV. These
states fulfill all requirements, specific for the wobbling excita-
tions of rotating triaxial nuclei with the negative γ -deformation.
It is quite desirable, however, to measure the interband B(E2)-
transitions to draw a definite conclusion and we hope it will
done in future. We predict the dominance of �I = 1h̄ magnetic
transitions from the wobbling to the yrast states, independently
from the sign of the γ -deformation.
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