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Abstract

The Hamiltonian for quantum electrodynamics becomes non-Hermitian if the unrenormalized electricecisaaesn to
be imaginary. However, if one also specifies that the potertiain such a theory transforms as a pseudovector rather than a
vector, then the Hamiltonian beconi®§ symmetric. The resulting non-Hermitian theory of electrodynamics is the analog of
a spinless quantum field theory in which a pseudoscalar figlds a cubic self-interaction of the form3. The Hamiltonian
for this cubic scalar field theory has a positive spectrum, and it has recently been demonstrated that the time evolution of this
theory is unitary. The proof of unitarity requires the construction of a new operator @gliethich is then used to define
an inner product with respect to which the Hamiltonian is self-adjoint. In this Letter the correspahdipgrator for non-
Hermitian quantum electrodynamics is constructed perturbatively. This construction demonstrates the unitarity of the theory.
Non-Hermitian quantum electrodynamics is a particularly interesting quantum field theory model because it is asymptotically
free.
0 2005 Elsevier B.V. Open access under CC BY license

PACS. 11.30.Er; 12.20.-m; 02.30.Mv; 11.10.Lm

1. Introduction

It is common wisdom that the Hamiltonian that defines a quantum theory should be Herkhitial T, where
the symbol t, which indicates Dirac Hermitian conjugation, represents the combined operations of complex conju-
gation and matrix transposition. There are two reasons given for requiring that the Hamiltonian be Hermitian: first,
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the condition? = HT guarantees that the energy eigenvalueH afill be real. Second, this condition guarantees
that time evolution will be unitary; that is, that probability will be conserved.

However, in the past few years it has become clear that the requirements of spectral positivity and unitarity can
be met even if the Hamiltonian is not Hermitian in the Dirac sense. The first non-Hermitian Hamiltonian for which
these two properties were verified was the quantum-mechanical model

H=p>+x%ix) (¢=0). (1)

It was observed in 1998 that the spectrum of this class of Hamiltonians was positive and digcaetg it was
conjectured that spectral positivity was a consequence of the invariarf€einfler the combination of the space-
reflection operatoP and the time-inversion operat@r. Three years later, a proof of spectral positivity was given

[2]. Then, in 2002 it was shown that the Hamiltonian(i) defines a unitary time evolutiof3]. Specifically, it

was demonstrated that if tHe7 symmetry of a non-Hermitian Hamiltonian is unbroken, then it is possible to
construct a new operator callédthat commutes with the Hamiltoniali. The Hilbert space inner product with
respect to the&&P7 adjoint has a positive norm and the time evolution operatdf & unitary. Thus, from this
guantum-mechanical study it is clear that Dirac Hermiticity of the Hamiltonian is not a necessary requirement of a
guantum theory; unbrokeR7 symmetry is sufficient to guarantee that the spectruri @ real and positive and

that the time evolution is unitary.

The construction of th€ operator in Ref[3] was the key step in showing that the non-Hermitian Hamiltonian
(1) exhibits unitary time evolution. However, the difficulty with the construction given in [B&fis that the cal-
culation of theC operator required as input all the coordinate-space eigenvectors of the Hamiltonian. While this
information is, in principle, available in quantum mechanics, it is hardly available for a quantum field theory be-
cause there is no simple analog of the coordinate-space Schrédinger equation. Thus, the analyqi3]iddesf.
not extend easily to quantum field theory.

However, it was recently shown that a perturbative constructightb&t does not require the eigenfunctions of
the Hamiltonian is possible for the case of a scalar quantum field theory with a cubic self-interaction of the form
i¢3 [4]. This result is particularly important because this quantum field theory has already appeared in the literature
in studies of the Lee—Yang edge singulafy and in reggeon field theoif8]. The construction of thé operator
for the i¢® field theory shows that this quantum field theory is a fully acceptable unitary quantum theory and not
just an interesting but unrealistic mathematical curiosity.

Furthermore, an exact construction of the@perator[7] was carried out for the Lee model, a cubic quantum
field theory in which mass, wave-function, and coupling-constant renormalization can be done @{adthe
construction of th& operator for the Lee model explains a long-standing puzzle. It is known that there is a critical
value of the renormalized coupling constgntor the Lee model and that whenexceeds this critical value, the
unrenormalized coupling constant becomes pure imaginary, and hence the Hamiltonian becomes non-Hermitian.
As a consequence, a ghost state having negative Hermitian norm appearg wign, and the presence of this
ghost state causes tifematrix to be nonunitary. By constructing tldeoperator we can reinterpret the Hilbert
space for the theory. By usingG®7 inner product, the ghost state now has a positive norm and the Lee model
becomes a consistent unitary quantum field theory. This physical reinterpretation of the Lee model was anticipated
by Kleefeld in a beautiful series of papg€g.

Recently, additional progress was made in understanding tperator in the context of ag¢® quantum field
theory. It was shown that transforms as a scalar under the action of the homogeneous Lorentz[gédufm
that paper it was argued that because the HamiltoHigfor the unperturbed theorfg = 0) commutes with the
parity operatofP, the intrinsic parity operatdP; in the non-interacting theory transforms as a Lorentz scalar. (The
intrinsic parity operatorP; and the parity operatd? have the same effect on the fields, except thatloes not
reverse the sign of the spatial argument of the field.) When the coupling copssamtin-zero, the parity symmetry
of H is broken andP; is no longer a scalar. Howevét,is a scalar. Since ligi,oC =Py, one can interpret thé
operator as the complex extension of the intrinsic parity operator when the imaginary coupling constant is turned
on.
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In this Letter we examin®7 -symmetric quantum electrodynamics, a non-Hermitian quantum field theory that
is much more interesting than ag® field theory. Unlike the scalag?® field theory,P7-symmetric quantum elec-
trodynamics possesses many of the features of conventional quantum electrodynamics, including Abelian gauge
invariance. Two earlier preliminary studies of this theory have already been pub|ikhé@] The advance re-
ported in the present Letter is the construction of ¢heperator to leading order in perturbation theory for this
remarkable theory. Our construction provides strong evidenceiiasymmetric quantum electrodynamics is a
viable and consistent unitary quantum field theory.

While PT-symmetric quantum electrodynamics is similar ta @ field theory because its interaction Hamil-
tonian is cubic and its coupling constant is pure imaginary, this quantum field theory is especially interesting
because, like @7 -symmetric—¢* scalar quantum field theory in four dimensiof&7 -symmetric electrody-
namics is asymptotically fre3]. The only asymptotically free quantum field theories described by Hermitian
Hamiltonians are those that possesmja-Abelian gauge invarianceP7 symmetry allows for new kinds of as-
ymptotically free theories that do not have to possess a non-Abelian gauge invariance.

2. PT-symmetric quantum electrodynamics

In order to formulate a Lorentz covariant quantum field theory one begins by specifying the Lorentz transforma-
tion properties of the quantum fields under the proper orthochronous Lorentz group. (For example, one can specify
that the fieldg (x, r) transforms as a scalar.) In addition, one is free to specify the transformation properties of
the fields under parity reflection. (For example, one can specifyithatr) transforms as a scalar, so that it does
not change sign undév, or that it transforms as a pseudo-scalar, so that it changes signBrddaving fully
specified the transformation properties of the fields, one then formulates the (scalar) Lagrangian in terms of these
fields.

A non-Hermitian butP7 -symmetric version of electrodynamics can be constructed by assuming that the four-
vector potential transforms as arial vector[12]. As a consequence, the electromagnetic fields transform under
parity reflection like

P. E—E, B—>-B, A—A, A9 — —AC. 2)
Under time reversal, the transformations are assumed to be conventional:
T: E—E, B—>-B, A—-A, A% A0 ©)

The Lagrangian of the theory then possesses an imaginary coupling constant in order that it be invariant under the
product of these two symmetries:
1

1 1 1 .
L=—3F" Fy+ Ew*yoy“l—.aw + EmWy% +ieyTyOyryA,. @)

The corresponding Hamiltonian density is then
1
H= §(E2+BZ)+¢T[7/Ol/k(—in~|—ieAk)+my0]1p. )

The electric current appearing in both the Lagrangian and Hamiltonian dengitiesy )%y, transforms
conventionally under bot#? and7:

-0
P (x.0P = (i j)(—x, ), (6a)

e
T j*x, )T = <’ )(x, —n. (6b)
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Just as in the case of ordinary quantum electrodynar®gssymmetric electrodynamics has an Abelian gauge
invariance. In this Letter we choose to work in the Coulomb ga¥gel = 0, so the nonzero canonical equal-time
commutation relations are

{Wax. 0.9 (. D)} = 8apd (X —y), (7a)
. ViV
[A] 00, E] ()] = —i [&,- — V—;}S(x—y), (7b)
whereT denotes the transverse part,
v.-AT=v.ET =0. (8)
In the following, the symbol& andB represent the transverse parts of the electromagnetic fields, so

V.-E=V.B=0. 9

3. Calculation of the C operator

As in guantum-mechanical systems and scalar quantum field theories, weGegkmtor in the fornj4]
C= eQ'p’ (20)

whereP is the parity operator, and our objective will be to calculate the ope@tdBecause&’ must satisfy the
three defining properties

c?=1, (11a)

[C,PT]=0, (11b)

[C,H] =0, (11c)
we infer from Eq.(11a)that

0=-PQP, (12a)
and becaus®7 = 7P, we infer from(11b)that

0=-T0QT. (12b)

The two Eqgs(11a) and (11bgan be thought of as kinematical constraints@n
The third Eq.(11c), which can be thought of as a dynamical condition@nallows us to determin@ pertur-
batively. If we separate the interaction part of the Hamiltonian from the free part,

H = Hp+eHy, (13)
and seelQ in the form of a power series
Q=eQ1+e*0o+- -, (14)

then the first contribution to th@ operator is determined by
[Q1, Hol = 2H. (15)
21n Refs.[7,10] it was shown that the correct representation of @heperator has the forrd = e2 P}, whereP, is theintrinsic parity

reflection operator. (The difference betwerandP) is thatP| does not reflect the spatial arguments of the fields.) However, this is a technical
distinction for the case of a cubic interaction Hamiltonian because it does not affect the final result@oopieeator.
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As in previous studies of cubic quantum theories, the second correction commutes with the Hamiltonian,

[Q2, Hol =0, (16)

and Eq.(14) reduces to a series in odd powersof

Q0=eQ1+e%03+---, (17)

which illustrates the virtue of the exponential representaie)

To use Eq(15) to determine the operat@1, we construct the most general non-loaatatz for the operator
01 in terms of the sixteen independent Dirac tensors. There is ho condition of gauge invariance on this operator
because we have chosen to work in the Coulomb gauge. There are sixteen tensor functions in principle, which we
take to be defined by

01= / dxdydz{[ X x,y, 2 E*(x) + ¥ (x,y,20B*00]v T )y %y v (2)

[

+ [0y, DER00 + Ry, 2B 00 Jv T () Py (@)
+ [y, 2E 00 + .y, 2B 0 [T ny'v @)
+[FE Yy, 2B 0 + FX .y, 2 E* 00 Jy T )y Oy v @)
+[G ¢y, 2B (0 + GE .y, D E* 0]y )y v (2)
+[HY (%Y, 2B 00 + HE 06y, D EF 00 [y T () v (2)
+ [Ty, 2B 00 + M x,y, 2 EX 00 ]y T ) By v (@), (18)

In Eqg.(18)we have taken into account the fact that the electric and magnetic fields are trangvé&iseV-B =0

(see Eq(9)). The parity constrainfl2a)is satisfied becausg., g+, ..., are respectively even and odd functions:

f+(X,Y,2) =% fr(=X, =Y, —2). (19)

We will see that the time-reversal constrgihPb)is automatically satisfied b1 in (18).
The solution of Eq(15) is obtained by using the canonical commutation relati@i@d and(7b), which imply
that

-Ek(x), %/deZ(w)} =i(V x B)r(X), (20a)
_Bk(x), % f dw EZ(W)} = —i(V x E);(X), (20b)
. 1

/ dydz ¢y, v )Ty (). / dww*(wwoy"l—.vkw(w)}

= ’5 / dydz[(Vi + V) oy, 2y Wy lv @ + (Vi = V)b (v, 29 [, v v @], (200)

[ / dydz ¢ (y, 29 (Y)Y (2), m / dw W(w)y%(w)] =m / dydz ¢y, 2y ([, y°ly@.  (20d)

There are sixteen resulting equations for the tensor coefficients, which break up into two independent sets of eight
equations each. Since there is only one inhomogeneous term, this means that the coefficients that satisfy the set o
equations with no driving term must vanish. The remaining equations are most conveniently written in momentum
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space, where the Fourier transform is defined by

ﬂm=fW€mva» (21)

If the momenta corresponding to the coordinateg, z arep, g, r, then as a result of translational invariance
there is an overall momentum-conserving delta function, whichpsetg +r = 0. Using dyadic notation, it is not
hard to show that these equations are, in terms of the two independent yeatats=r — q, given by

px@_ +J_-t—2mhy =0, (22a)
pxhy +Fy-p+2mg_ =0, (22b)
pxj_—id_xp—G_t—2mf, =0, (22c)
pxFy—hp+ify xt=0, (22d)
pxG_+4j_-t=0, (22¢)
PxJ_—f_t+ij_xp=0, (22f)
pxHy+f-p=0, (229)
pxﬂfdﬁnd—ﬂ+p+2ﬁ_:§ﬂxp. (22h)

We may take all the coefficient tensors to be transvergeinahe first index,

p-fy=0 p.-Fy=0, p-g =0 (23)
and so on, which is consistent with the transversality of the electric and magnetic fields appearing in the construc-

tion (18) of Q1. This property then allows us to solve E¢2d)—(22g)for F.,G_, Hy, andJ_ in terms off,,
§_, hy, andj_:

. 1 . .
F+=?(—pxh+p+ipr+xt>, (24a)
- 1 .

=P xj--t (24b)

p
= 1 ~ . =
J_=—?(pxg—t—sz1_xp), (24c)
. 1 .
H+=?pr+-p. (24d)
The remaining four equations then imply that

px3-(p>—1?) +ipxj-- (P xt) —2mp*h; =0, (25a)
ipxfy-(pxt)—2mp?g_ =0, (25b)
pPxj_-(Pp—tt) —ipx §-p x t—2mp?, =0, (25¢)
pxfy-[(tt—1r%) — (pp — 1p?)] +ip x hyp x t + 2mp?_ = 2(1 x p). (25d)

Egs.(25b) and (25ajllow us to solve immediately fdy_ andh.. in terms ofj_ andf,:

g_:

> gpxh-mxo, (26a)

3 i 3 1.
h = om 2|:pXJ_-(pxt)+(t2—p2)ﬁf+~(pxt)], (26Db)
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and then from Eqg25c) and (25dyve obtain two equations fgr. andf,:

. . t t

pxj_~(tt—pp)+2mp2f+-[l+ Lz(p;)]:o, (27a)
dm<p

. 12 — p? - (pxt)(pxt)

pxfy- [(tt — 1) — (pp — 1p?) — W(p x t)(p x t)} + 2mp?_ - [ T}
=2(1x p). (27Db)
From Eg.(27a)we see that

fo-txp=0. (28)

Then we can solve E@27a)for f,. in terms ofj_, which when substituted into E{R7b)yields an equation that
can be solved easily fgr_.
In this way it is straightforward to solve for all the coefficient tensors. In terms of the denominator

A =d4m2p? 4+ K2, (29)

wherek = p x t, the nonzero tensor coefficientsdh are

F,= —pZAp x kp, (30a)

= 2

f+ = —1)2—Ap X kt, (30b)

- %’"1 <P, (30c)

J_=—ij_, (30d)

~ 2i

hy = _Kk’ (30e)

~ p- t k

Hi=2—— 30
+ p2 A’ ( f)

0-=0, (309)

~ 4m

Note that the parity constraiit9) is satisfied because the-* quantities are even undgr— —p, t — —t, while
the ‘—' quantities are odd. The time-reversal constriritb) is satisfied because of the presence of .., J_,
andh,, owing to7 being an antiunitary operator. The odd functions undergo another sign chang@uneleause
all momenta change sign (see E21)).

4. Conclusions

By constructing the first-order term in th2 operator and thus the leading approximation to heperator,
we have provided convincing evidence that fA&-symmetric quantum electrodynamics originally proposed in
Ref.[12] is unitary and that this construction enables us to obtain a uritersitrix for the theory. Therefore, there
can be little doubt that such27 -symmetric theory is self-consistent and one should now investigate whether such
a theory may be used to describe natural phenomena. Indeed, this theory provides an interesting test of Gell-Mann'’s
Totalitarian principle, which states that “Everything which is not forbidden is compulsiy].
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