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Abstract

The Hamiltonian for quantum electrodynamics becomes non-Hermitian if the unrenormalized electric chargee is taken to
be imaginary. However, if one also specifies that the potentialAµ in such a theory transforms as a pseudovector rather th
vector, then the Hamiltonian becomesPT symmetric. The resulting non-Hermitian theory of electrodynamics is the anal
a spinless quantum field theory in which a pseudoscalar fieldϕ has a cubic self-interaction of the formiϕ3. The Hamiltonian
for this cubic scalar field theory has a positive spectrum, and it has recently been demonstrated that the time evoluti
theory is unitary. The proof of unitarity requires the construction of a new operator calledC, which is then used to defin
an inner product with respect to which the Hamiltonian is self-adjoint. In this Letter the correspondingC operator for non-
Hermitian quantum electrodynamics is constructed perturbatively. This construction demonstrates the unitarity of th
Non-Hermitian quantum electrodynamics is a particularly interesting quantum field theory model because it is asymp
free.
 2005 Elsevier B.V.

PACS: 11.30.Er; 12.20.-m; 02.30.Mv; 11.10.Lm

1. Introduction

It is common wisdom that the Hamiltonian that defines a quantum theory should be HermitianH = H †, where
the symbol †, which indicates Dirac Hermitian conjugation, represents the combined operations of comple
gation and matrix transposition. There are two reasons given for requiring that the Hamiltonian be Hermitia
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the conditionH = H † guarantees that the energy eigenvalues ofH will be real. Second, this condition guarante
that time evolution will be unitary; that is, that probability will be conserved.

However, in the past few years it has become clear that the requirements of spectral positivity and unita
be met even if the Hamiltonian is not Hermitian in the Dirac sense. The first non-Hermitian Hamiltonian for
these two properties were verified was the quantum-mechanical model

(1)H = p2 + x2(ix)ε (ε � 0).

It was observed in 1998 that the spectrum of this class of Hamiltonians was positive and discrete[1] and it was
conjectured that spectral positivity was a consequence of the invariance ofH under the combination of the spac
reflection operatorP and the time-inversion operatorT . Three years later, a proof of spectral positivity was giv
[2]. Then, in 2002 it was shown that the Hamiltonian in(1) defines a unitary time evolution[3]. Specifically, it
was demonstrated that if thePT symmetry of a non-Hermitian Hamiltonian is unbroken, then it is possibl
construct a new operator calledC that commutes with the HamiltonianH . The Hilbert space inner product wit
respect to theCPT adjoint has a positive norm and the time evolution operator eiH t is unitary. Thus, from this
quantum-mechanical study it is clear that Dirac Hermiticity of the Hamiltonian is not a necessary requirem
quantum theory; unbrokenPT symmetry is sufficient to guarantee that the spectrum ofH is real and positive an
that the time evolution is unitary.

The construction of theC operator in Ref.[3] was the key step in showing that the non-Hermitian Hamilton
(1) exhibits unitary time evolution. However, the difficulty with the construction given in Ref.[3] is that the cal-
culation of theC operator required as input all the coordinate-space eigenvectors of the Hamiltonian. Wh
information is, in principle, available in quantum mechanics, it is hardly available for a quantum field theo
cause there is no simple analog of the coordinate-space Schrödinger equation. Thus, the analysis in Ref[3] does
not extend easily to quantum field theory.

However, it was recently shown that a perturbative construction ofC that does not require the eigenfunctions
the Hamiltonian is possible for the case of a scalar quantum field theory with a cubic self-interaction of th
iφ3 [4]. This result is particularly important because this quantum field theory has already appeared in the l
in studies of the Lee–Yang edge singularity[5] and in reggeon field theory[6]. The construction of theC operator
for the iφ3 field theory shows that this quantum field theory is a fully acceptable unitary quantum theory a
just an interesting but unrealistic mathematical curiosity.

Furthermore, an exact construction of theC operator[7] was carried out for the Lee model, a cubic quant
field theory in which mass, wave-function, and coupling-constant renormalization can be done exactly[8]. The
construction of theC operator for the Lee model explains a long-standing puzzle. It is known that there is a c
value of the renormalized coupling constantg for the Lee model and that wheng exceeds this critical value, th
unrenormalized coupling constant becomes pure imaginary, and hence the Hamiltonian becomes non-H
As a consequence, a ghost state having negative Hermitian norm appears wheng > gcrit, and the presence of th
ghost state causes theS matrix to be nonunitary. By constructing theC operator we can reinterpret the Hilbe
space for the theory. By using aCPT inner product, the ghost state now has a positive norm and the Lee m
becomes a consistent unitary quantum field theory. This physical reinterpretation of the Lee model was an
by Kleefeld in a beautiful series of papers[9].

Recently, additional progress was made in understanding theC operator in the context of anigφ3 quantum field
theory. It was shown thatC transforms as a scalar under the action of the homogeneous Lorentz group[10]. In
that paper it was argued that because the HamiltonianH0 for the unperturbed theory(g = 0) commutes with the
parity operatorP , the intrinsic parity operatorPI in the non-interacting theory transforms as a Lorentz scalar.
intrinsic parity operatorPI and the parity operatorP have the same effect on the fields, except thatPI does not
reverse the sign of the spatial argument of the field.) When the coupling constantg is non-zero, the parity symmetr
of H is broken andPI is no longer a scalar. However,C is a scalar. Since limg→0C = PI , one can interpret theC
operator as the complex extension of the intrinsic parity operator when the imaginary coupling constant i
on.
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In this Letter we examinePT -symmetric quantum electrodynamics, a non-Hermitian quantum field theor
is much more interesting than aniφ3 field theory. Unlike the scalariφ3 field theory,PT -symmetric quantum elec
trodynamics possesses many of the features of conventional quantum electrodynamics, including Abelia
invariance. Two earlier preliminary studies of this theory have already been published[11,12]. The advance re
ported in the present Letter is the construction of theC operator to leading order in perturbation theory for t
remarkable theory. Our construction provides strong evidence thatPT -symmetric quantum electrodynamics is
viable and consistent unitary quantum field theory.

While PT -symmetric quantum electrodynamics is similar to aniφ3 field theory because its interaction Ham
tonian is cubic and its coupling constant is pure imaginary, this quantum field theory is especially inte
because, like aPT -symmetric−φ4 scalar quantum field theory in four dimensions,PT -symmetric electrody
namics is asymptotically free[13]. The only asymptotically free quantum field theories described by Herm
Hamiltonians are those that possess anon-Abelian gauge invariance;PT symmetry allows for new kinds of as
ymptotically free theories that do not have to possess a non-Abelian gauge invariance.

2. PT -symmetric quantum electrodynamics

In order to formulate a Lorentz covariant quantum field theory one begins by specifying the Lorentz trans
tion properties of the quantum fields under the proper orthochronous Lorentz group. (For example, one ca
that the fieldφ(x, t) transforms as a scalar.) In addition, one is free to specify the transformation proper
the fields under parity reflection. (For example, one can specify thatφ(x, t) transforms as a scalar, so that it do
not change sign underP , or that it transforms as a pseudo-scalar, so that it changes sign underP .) Having fully
specified the transformation properties of the fields, one then formulates the (scalar) Lagrangian in terms
fields.

A non-Hermitian butPT -symmetric version of electrodynamics can be constructed by assuming that th
vector potential transforms as anaxial vector[12]. As a consequence, the electromagnetic fields transform u
parity reflection like

(2)P: E → E, B → −B, A → A, A0 → −A0.

Under time reversal, the transformations are assumed to be conventional:

(3)T : E → E, B → −B, A → −A, A0 → A0.

The Lagrangian of the theory then possesses an imaginary coupling constant in order that it be invariant u
product of these two symmetries:

(4)L= −1

4
FµνFµν + 1

2
ψ†γ 0γ µ 1

i
∂µψ + 1

2
mψ†γ 0ψ + ieψ†γ 0γ µψAµ.

The corresponding Hamiltonian density is then

(5)H = 1

2

(
E2 + B2) + ψ†[γ 0γ k(−i∇k + ieAk) + mγ 0]ψ.

The electric current appearing in both the Lagrangian and Hamiltonian densities,jµ = ψ†γ 0γ µψ , transforms
conventionally under bothP andT :

(6a)Pjµ(x, t)P =
(

j0

−j

)
(−x, t),

(6b)T jµ(x, t)T =
(

j0

−j

)
(x,−t).



100 C.M. Bender et al. / Physics Letters B 613 (2005) 97–104

uge
e

nical
Just as in the case of ordinary quantum electrodynamics,PT -symmetric electrodynamics has an Abelian ga
invariance. In this Letter we choose to work in the Coulomb gauge,∇ · A = 0, so the nonzero canonical equal-tim
commutation relations are

(7a)
{
ψa(x, t),ψ

†
b (y, t)

} = δabδ(x − y),

(7b)
[
AT

i (x),ET
j (y)

] = −i

[
δij − ∇i∇j

∇2

]
δ(x − y),

whereT denotes the transverse part,

(8)∇ · AT = ∇ · ET = 0.

In the following, the symbolsE andB represent the transverse parts of the electromagnetic fields, so

(9)∇ · E = ∇ · B = 0.

3. Calculation of the C operator

As in quantum-mechanical systems and scalar quantum field theories, we seek aC operator in the form[4]

(10)C = eQP,

whereP is the parity operator, and our objective will be to calculate the operatorQ.2 BecauseC must satisfy the
three defining properties

(11a)C2 = 1,

(11b)[C,PT ] = 0,

(11c)[C,H ] = 0,

we infer from Eq.(11a)that

(12a)Q = −PQP,

and becausePT = T P , we infer from(11b)that

(12b)Q = −T QT .

The two Eqs.(11a) and (11b)can be thought of as kinematical constraints onQ.
The third Eq.(11c), which can be thought of as a dynamical condition onQ, allows us to determineQ pertur-

batively. If we separate the interaction part of the Hamiltonian from the free part,

(13)H = H0 + eH1,

and seekQ in the form of a power series

(14)Q = eQ1 + e2Q2 + · · · ,
then the first contribution to theQ operator is determined by

(15)[Q1,H0] = 2H1.

2 In Refs.[7,10] it was shown that the correct representation of theC operator has the formC = eQPI , wherePI is the intrinsic parity
reflection operator. (The difference betweenP andPI is thatPI does not reflect the spatial arguments of the fields.) However, this is a tech
distinction for the case of a cubic interaction Hamiltonian because it does not affect the final result for theQ operator.
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As in previous studies of cubic quantum theories, the second correction commutes with the Hamiltonian,

(16)[Q2,H0] = 0,

and Eq.(14) reduces to a series in odd powers ofe,

(17)Q = eQ1 + e3Q3 + · · · ,
which illustrates the virtue of the exponential representation(10).

To use Eq.(15) to determine the operatorQ1, we construct the most general non-localansatz for the operator
Q1 in terms of the sixteen independent Dirac tensors. There is no condition of gauge invariance on this
because we have chosen to work in the Coulomb gauge. There are sixteen tensor functions in principle, w
take to be defined by

Q1 =
∫

dxdydz
{[

f kl+ (x,y, z)Ek(x) + f kl− (x,y, z)Bk(x)
]
ψ†(y)γ 0γ lψ(z)

+ [
gk+(x,y, z)Ek(x) + gk−(x,y, z)Bk(x)

]
ψ†(y)γ 0γ 5ψ(z)

+ [
hk+(x,y, z)Ek(x) + hk−(x,y, z)Bk(x)

]
ψ†(y)γ 5ψ(z)

+ [
jkl+ (x,y, z)Ek(x) + jkl− (x,y, z)Bk(x)

]
ψ†(y)γ lψ(z)

+ [
Fkl+ (x,y, z)Bk(x) + Fkl− (x,y, z)Ek(x)

]
ψ†(y)γ 0γ 5γ lψ(z)

+ [
Gk+(x,y, z)Bk(x) + Gk−(x,y, z)Ek(x)

]
ψ†(y)γ 0ψ(z)

+ [
Hk+(x,y, z)Bk(x) + Hk−(x,y, z)Ek(x)

]
ψ†(y)ψ(z)

(18)+ [
J kl+ (x,y, z)Bk(x) + J kl− (x,y, z)Ek(x)

]
ψ†(y)γ 5γ lψ(z)

}
.

In Eq.(18)we have taken into account the fact that the electric and magnetic fields are transverse,∇ ·E = ∇ ·B = 0
(see Eq.(9)). The parity constraint(12a)is satisfied becausef±, g±, . . . , are respectively even and odd function

(19)f±(x,y, z) = ±f±(−x,−y,−z).

We will see that the time-reversal constraint(12b)is automatically satisfied byQ1 in (18).
The solution of Eq.(15) is obtained by using the canonical commutation relations(7a)and(7b), which imply

that

(20a)

[
Ek(x),

1

2

∫
dwB2(w)

]
= i(∇ × B)k(x),

(20b)

[
Bk(x),

1

2

∫
dwE2(w)

]
= −i(∇ × E)k(x),

[∫
dydz φ(y, z)ψ†(y)Γ ψ(z),

∫
dwψ†(w)γ 0γ k 1

i
∇kψ(w)

]

(20c)= i

2

∫
dydz

[(∇z
k + ∇y

k

)
φ(y, z)ψ†(y)

{
Γ,γ 0γ k

}
ψ(z) + (∇z

k − ∇y
k

)
φ(y, z)ψ†(y)

[
Γ,γ 0γ k

]
ψ(z)

]
,

(20d)

[∫
dydz φ(y, z)ψ†(y)Γ ψ(z),m

∫
dw ψ†(w)γ 0ψ(w)

]
= m

∫
dydz φ(y, z)ψ†(y)

[
Γ,γ 0]ψ(z).

There are sixteen resulting equations for the tensor coefficients, which break up into two independent sets
equations each. Since there is only one inhomogeneous term, this means that the coefficients that satisfy
equations with no driving term must vanish. The remaining equations are most conveniently written in mom
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(21)f̃ (p) =
∫

dx e−ip·xf (x).

If the momenta corresponding to the coordinatesx,y, z arep,q, r, then as a result of translational invarian
there is an overall momentum-conserving delta function, which setsp + q + r = 0. Using dyadic notation, it is no
hard to show that these equations are, in terms of the two independent vectorsp andt = r − q, given by

(22a)p × g̃− + J̃− · t − 2mh̃+ = 0,

(22b)p × h̃+ + F̃+ · p + 2mg̃− = 0,

(22c)p × j̃− − iJ̃− × p − G̃−t − 2mf̃+ = 0,

(22d)p × F̃+ − h̃+p + i f̃+ × t = 0,

(22e)p × G̃− + j̃− · t = 0,

(22f)p × J̃− − g̃−t + i j̃− × p = 0,

(22g)p × H̃+ + f̃+ · p = 0,

(22h)p × f̃+ − iF̃+ × t − H̃+p + 2mj̃− = 2

p2
1 × p.

We may take all the coefficient tensors to be transverse top in the first index,

(23)p · f̃+ = 0, p · F̃+ = 0, p · g̃− = 0,

and so on, which is consistent with the transversality of the electric and magnetic fields appearing in the c
tion (18) of Q1. This property then allows us to solve Eqs.(22d)–(22g)for F̃+, G̃−, H̃+, andJ̃− in terms off̃+,
g̃−, h̃+, andj̃−:

(24a)F̃+ = 1

p2
(−p × h̃+p + ip × f̃+ × t),

(24b)G̃− = 1

p2
p × j̃− · t,

(24c)J̃− = − 1

p2
(p × g̃−t − ip × j̃− × p),

(24d)H̃+ = 1

p2
p × f̃+ · p.

The remaining four equations then imply that

(25a)p × g̃−
(
p2 − t2) + ip × j̃− · (p × t) − 2mp2h̃+ = 0,

(25b)ip × f̃+ · (p × t) − 2mp2g̃− = 0,

(25c)p × j̃− · (pp − tt) − ip × g̃−p × t − 2mp2f̃+ = 0,

(25d)p × f̃+ · [(tt − 1t2) − (
pp − 1p2)] + ip × h̃+p × t + 2mp2j̃− = 2(1 × p).

Eqs.(25b) and (25a)allow us to solve immediately for̃g− andh̃+ in terms ofj̃− andf̃+:

(26a)g̃− = 1

2mp2
ip × f̃+ · (p × t),

(26b)h̃+ = i

2mp2

[
p × j̃− · (p × t) + (

t2 − p2) 1

2m
f̃+ · (p × t)

]
,
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(27a)p × j̃− · (tt − pp) + 2mp2f̃+ ·
[

1 + (p × t)(p × t)
4m2p2

]
= 0,

p × f̃+ ·
[(

tt − 1t2) − (
pp − 1p2) − t2 − p2

4m2p2
(p × t)(p × t)

]
+ 2mp2j̃− ·

[
1 + (p × t)(p × t)

4m2p2

]

(27b)= 2(1 × p).

From Eq.(27a)we see that

(28)f̃+ · (t × p) = 0.

Then we can solve Eq.(27a)for f+ in terms ofj−, which when substituted into Eq.(27b)yields an equation tha
can be solved easily forj−.

In this way it is straightforward to solve for all the coefficient tensors. In terms of the denominator

(29)
 = 4m2p2 + k2,

wherek = p × t, the nonzero tensor coefficients inQ1 are

(30a)F̃+ = 2i

p2

p × kp,

(30b)f̃+ = − 2

p2

p × kt,

(30c)j̃− = 4m



1 × p,

(30d)J̃− = −ij−,

(30e)h̃+ = −2i



k,

(30f)H̃+ = 2
p · t
p2

k



,

(30g)g̃− = 0,

(30h)G̃− = 4m

p2

p × k.

Note that the parity constraint(19) is satisfied because the ‘+’ quantities are even underp → −p, t → −t, while
the ‘−’ quantities are odd. The time-reversal constraint(12b) is satisfied because of the presence ofi in F̃+, J̃−,
andh̃+, owing toT being an antiunitary operator. The odd functions undergo another sign change underT because
all momenta change sign (see Eq.(21)).

4. Conclusions

By constructing the first-order term in theQ operator and thus the leading approximation to theC operator,
we have provided convincing evidence that thePT -symmetric quantum electrodynamics originally proposed
Ref.[12] is unitary and that this construction enables us to obtain a unitaryS matrix for the theory. Therefore, the
can be little doubt that such aPT -symmetric theory is self-consistent and one should now investigate whethe
a theory may be used to describe natural phenomena. Indeed, this theory provides an interesting test of Ge
Totalitarian principle, which states that “Everything which is not forbidden is compulsory”[14].
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