Panton—Valentine leukocidin-positive methicillin-resistant *Staphylococcus aureus* outbreak among healthcare workers in a long-term care facility

H.C. Maltezou\(^a\), S. Vourli\(^b\), P. Katerelos\(^a\), A. Maragos\(^a\), S. Kotsalidou\(^c\), E. Remoudaki\(^a\), T. Papadimitriou\(^a\), A.C. Vatopoulos\(^b\)

\(^a\) Department for Interventions in Healthcare Facilities, Hellenic Center for Disease Control and Prevention, 42 3rd Septemvriou Street, Athens 10433, Greece
\(^b\) Department of Microbiology, National School of Public Health, Athens, Greece
\(^c\) Long-term Care Institution “Aghia Zoni”, Athens, Greece

Received 12 September 2008; received in revised form 26 January 2009; accepted 4 February 2009

Corresponding Editor: Michael Whitby, Brisbane, Australia

Summary

Background: We investigated an outbreak of community-acquired methicillin-resistant *Staphylococcus aureus* (MRSA) infections that occurred among healthcare workers (HCWs) but not among residents of a long-term care facility (LTCF).

Methods: Cases of *S. aureus* infection were sought by reviewing the medical records of residents and HCWs. In order to identify risk factors for the development of an *S. aureus* infection, an unmatched case—control study was conducted. Cases were all HCWs with a clinically compatible *S. aureus* infection; controls were HCWs with no history of a clinically compatible *S. aureus* infection. Cases and controls were interviewed and anterior nasal swabs were collected.

Results: Over a period of 14 months, a total of eight cases were identified among practice nurses, giving an attack rate of 10% for this category of profession. All isolates were identified as MRSA Panton—Valentine leukocidin (PVL)-producing SCCmec type IV. By multivariate analysis, working in a specific zone and being a practice nurse were found to be statistically significant risk factors for infection.

Conclusions: The current outbreak indicates that HCWs may serve as vehicles for the entry of PVL-positive MRSA strains from the community into LTCFs, and that deficient hygiene practices and unrecognized carriage may facilitate spread. Given the increasing prevalence of PVL-positive MRSA infections worldwide, guidelines for the eradication of PVL-positive MRSA carriage within closed communities should be established and efforts to obtain cultures from compatible infections should be made.

© 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

* Corresponding author. Tel.: +30 210 8899 000; fax: +30 210 8899 330.
 E-mail address: helen-maltezou@ath.forthnet.gr (H.C. Maltezou).
Introduction

During the last decade, community-acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) infections among young persons without healthcare-associated (HCA) risk factors have emerged worldwide and are becoming prevalent in several communities. These infections are caused by strains that almost exclusively carry the staphylococcal cassette chromosome (SCC) mec type IV and the Panton–Valentine leukocidin (PVL) genes and, unlike HCA-MRSA strains, are not multi-resistant. Most infections caused by PVL-producing MRSA strains are mild skin or soft tissue infections, however severe life-threatening cases of necrotizing pneumonia and sepsis have been reported. Outbreaks of CA-MRSA have been reported in wrestling and football teams, daycare centers, institutionalized adults with developmental disabilities, military recruits, jail inmates, and men who have sex with men. There are recent reports of transmission and outbreaks of CA-MRSA infections within healthcare facilities.

In Greece, from June 2005 and following reports of high rates of CA-MRSA in children, CA-MRSA infections became officially notifiable to the Hellenic Center for Disease Control and Prevention (HCDCP). In November 2007 we were notified of a cluster of skin infections that had occurred among healthcare workers (HCWs) working in a long-term care facility (LTCF) in Athens. We describe herein the investigations and interventions that occurred during this outbreak.

Methods

Setting

The outbreak occurred in a LTCF that provides care to handicapped patients, mostly of advanced age. At the time of notification (November 2007), there were 228 residents cared for by 209 HCWs. Residents were distributed across four zones (zones A to D). Practice nurses, cleaners, and waiters were assigned to one zone. Physicians, nurses, and administrative and technical personnel worked in all zones.

Epidemiologic investigation

Cases of S. aureus infection were sought by reviewing the medical records of residents and HCWs following receipt of ethical permission. Microbiological confirmation in cases was not sought before our visit, thus a case of S. aureus infection was defined as a clinical skin or soft tissue infection compatible with S. aureus infection.

In order to identify risk factors for the development of an S. aureus infection, an unmatched case–control study was conducted. Cases were all HCWs with a clinically compatible S. aureus infection. Controls were HCWs with no history of clinically compatible S. aureus infection. The list of controls was generated by systematically selecting one in every five HCWs from an alphabetical list. Forty-one HCWs were selected as controls, of whom 36 agreed to participate. Cases and controls were interviewed. The data shown in Table 1 were collected. Poor personal hygiene was defined as sharing clothes or towels with other HCWs, hand-washing with plain soap, not using liquid antiseptic for hand-washing, and/or poor hygiene while using the toilet facilities (e.g., sitting directly on the basins without using a disinfectant or a waterproof paper). Informed consent was obtained from all participants. The work was approved by the HCDCP.

Microbiologic investigation

During the investigation, clinical specimens were taken from one HCW with an active infection. Anterior nasal swabs were collected from all cases and controls and from 30 randomly selected residents. Environmental cultures from surfaces were sampled with moistened cotton swabs. Swabs were inoculated in mannitol salt agar plates and examined at 48 h. S. aureus isolates were screened for oxacillin susceptibility by the standard disk diffusion method. Detection of the mecA gene and SCC mec typing were performed by PCR. PVL determinants were detected by PCR. Smal restriction fragments of genomic DNA were separated by pulsed field gel electrophoresis (PFGE).

Statistical analysis

Statistical analysis was performed using SPSS version 11 (SPSS Inc., Chicago, IL, USA). Chi-squared and Fisher’s exact tests were used for comparisons between categorical variables and the t-test and Mann–Whitney U-test for comparisons between continuous variables. Logistic regression analysis was applied to indicate factors significantly associated with the development of S. aureus infection. p-Values of 0.05 or less were considered statistically significant.

Results

Outbreak characteristics

A review of the medical records revealed that the first case of S. aureus infection occurred in November 2006. From November 1, 2006 through December 31, 2007, eight cases of S. aureus infection were identified among HCWs, all concerning practice nurses, giving a 10% attack rate among practice nurses (8/81 practice nurses). All cases but one worked in zone A. The attack rate among practice nurses from zone A was 35% (7/20 practice nurses). Among the residents, only one case was identified (attack rate 0.4%).

Infections were furuncles and small subcutaneous abscesses located in the axilla or breast (six cases), lower extremities (two cases), and face, abdomen, and upper extremities (one case each). Full recovery was documented in all cases. No complication or invasive S. aureus infection occurred.

Microbiology

PVL-positive MRSA belonging to SCCmec type IV was isolated from the lesions of the HCW with the active infection. S. aureus nasal carriage was found in four (50%) of the cases, of whom three (37.5%) were colonized by PVL-positive MRSA SCCmec type IV and one by methicillin-susceptible S. aureus (MSSA). In addition, S. aureus nasal carriage was found in 12 (33.3%) of the 36 controls, of whom only one was identified as PVL-positive MRSA SCCmec type IV. Cases were more likely to
be colonized with PVL-positive MRSA than controls (37.5% vs. 2.8%, \(p = 0.018 \)).

Nasal \textit{S. aureus} carriage was also detected in 16.7% of the 30 randomly screened residents. None of the screened residents carried a PVL-positive MRSA strain. All environmental cultures were negative for \textit{S. aureus}.

PFGE revealed a common pattern for all MRSA isolates tested. This pattern is the main PFGE pattern circulating in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Distribution of cases in the practice nurses’ locker room.}
\end{figure}
Greece, and similar to the PFGE pattern of the MLST80 strain that appears to be spreading through Europe. All isolates were susceptible to mupirocin.

Case—control study

In the univariate analysis (Table 1), factors associated with the development of S. aureus infection were female gender, profession of practice nurse, working in zone A, fewer working years in the same zone, direct contact with patients, poor personal hygiene, and carriage of PVL-positive MRSA. At the multivariate analysis level, only being a practice nurse and working in zone A remained statistically significant risk factors for infection.

Hygiene inspection

Our visit to the LTCF revealed that alcohol-based antiseptic was not available to HCWs. Most HCWs washed their hands with plain soap. The distribution of the lockers within the practice nurses locker room revealed two clusters (Figure 1). Practice nurses often washed their underwear at the water basins with plain soap in common use. Sharing clothes was also a frequent practice among them.

Interventions

Hygiene education was conducted and written material on MRSA, hand hygiene using antiseptics, and contact precautions was distributed among HCWs. HCWs with active lesions were advised to abstain from patient contact. Because of the high MRSA carriage rate among HCWs and the potential of further spread within the LTCF, intranasal mupirocin was administered (twice daily for 5 days) concomitantly to all HCWs and residents. Nasal swab cultures were repeated one month later in 20 of 21 HCWs and residents who initially tested positive. Persistent MSSA carriage was found in one resident, thus the eradication rate for S. aureus was 95%.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Case—control study of healthcare workers at the long-term care facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Cases (%) (n = 8)</td>
</tr>
<tr>
<td>Female gender</td>
<td>8 (100)</td>
</tr>
<tr>
<td>Mean age, years (±SD)</td>
<td>44.5 (±8.7)</td>
</tr>
<tr>
<td>Mean BMI (±SD)</td>
<td>27.9 (±7.9)</td>
</tr>
<tr>
<td>Underlying disease</td>
<td>4 (50)</td>
</tr>
<tr>
<td>Profession</td>
<td></td>
</tr>
<tr>
<td>Practice nurse</td>
<td>8 (100)</td>
</tr>
<tr>
<td>Physician/nurse</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Cleaner</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Cook/waiter</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Administration/technical</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Mean duration in the facility, years</td>
<td>11.5</td>
</tr>
<tr>
<td>Department (zone)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>7 (87.5)</td>
</tr>
<tr>
<td>B</td>
<td>0 (0)</td>
</tr>
<tr>
<td>C</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>D</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Mean duration in department, years</td>
<td>4.1</td>
</tr>
<tr>
<td>Direct contact with patients</td>
<td>8 (100)</td>
</tr>
<tr>
<td>Use of illegal IV drugs</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Use of steroids</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Antibiotics in the last 12 months</td>
<td>4 (50)</td>
</tr>
<tr>
<td>Hospitalization in the last 12 months</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>Admission to ICU in the last 12 months</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Surgery in the last 12 months</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Mean number of family members</td>
<td>3.5</td>
</tr>
<tr>
<td>Mean number of children in the family</td>
<td>1.5</td>
</tr>
<tr>
<td>Mean number of rooms in the house</td>
<td>3.3</td>
</tr>
<tr>
<td>S. aureus infection in family member</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Good personal hygiene</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Axilla shaving</td>
<td>7 (87.5)</td>
</tr>
<tr>
<td>Contact sports</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Nasal S. aureus carriage</td>
<td>4 (50)</td>
</tr>
<tr>
<td>PVL-positive MRSA</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td>MSSA</td>
<td>1 (12.5)</td>
</tr>
</tbody>
</table>

NS, not significant; SD, standard deviation; BMI, body mass index; ICU, intensive care unit; PVL, Panton–Valentine leukocidin; MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-susceptible Staphylococcus aureus.
Discussion

Outbreaks of PVL-positive CA-MRSA in LTCFs have been reported only scantily, with carriage rates of up to 9.7% reported among residents and HCWs. To our knowledge, this is the first reported outbreak of PVL-positive MRSA strains in a healthcare facility involving exclusively HCWs. No MRSA carriage was traced in the residents and this may be attributed to their higher age compared with HCWs, as found in other studies. We did not screen HCW hands and resident groin areas, thus it is possible that a few carriers were missed.

The causative strain was most probably introduced from the community into the LTCF through a colonized practice nurse who subsequently spread it directly to her colleagues. Poor personal hygiene among practice nurses was documented. The fact that cases were more likely to carry PVL-positive MRSA strains than controls is consistent with the association of CA-MRSA carriage with the development of skin and soft tissue infections. PVL is a toxin that acts through leukocyte destruction and mediation of tissue necrosis, and has been associated with skin and soft tissue infections, but occasionally with severe necrotizing pneumonia and invasive infections.

Unrecognized PVL-positive MRSA carriers among HCWs may represent an important reservoir for infection. Once a PVL-positive MRSA strain is introduced into a healthcare facility, it may be transmitted nosocomially. In a recent outbreak that involved nine healthy children with severe infections caused by PVL-producing CA-MRSA strains including one lethal case, the infection was transmitted by an asymptomatic colonized HCW during vaccination. Admissions of unrecognized carriers, prolonged asymptomatic colonization, inadequate laboratory identification, and poor adherence to hand hygiene measures may facilitate the spread of PVL-positive MRSA within hospitals.

The sustained elimination of MRSA carriage within a healthcare facility may prove difficult and take several courses. A recent meta-analysis concluded that there is insufficient evidence to support topical or systemic therapy for eradicating MRSA carriage. In the current outbreak, our decision for blanket decolonization of all residents and staff with mupirocin could be regarded as excessive, especially given the paucity of evidence of transmission other than between practice nurses, the absence of severe disease, and no evidence of onward transmission to residents. However, it appears that mupirocin, in association with infection control measures, was effective for PVL-positive MRSA and MSSA eradication. Similar to our results, the total MRSA prevalence decreased from 11.3% to 5.5% and PVL-positive MRSA prevalence from 9.1% to 3.3% following treatment with mupirocin in a healthcare associated PVL-positive MRSA outbreak in Germany. We suggest that intranasal mupirocin should be considered in order to contain MRSA outbreaks within closed settings, in association with infection control measures.

In conclusion, our results indicate that HCWs may serve as vehicles for the entry of such strains from the community, and that deficient hygiene practices and unrecognized carriage may facilitate spread. Given the increasing prevalence of PVL-positive MRSA infections worldwide, guidelines for the eradication of PVL-positive MRSA carriage within closed communities should be established and efforts to obtain cultures from compatible infections should be made.

Acknowledgement

The current study was supported in part by funds from the Hellenic Center for Disease Control and Prevention (Athens, Greece).

Conflict of interest: No conflict of interest to declare.

References

