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1. INTRODUCTION 

Let us consider the wave equation with a nonlinear dissipative term: 

together with boundary condition 

u Ia* = 0. (4 

where Q is an open bounded domain in the n-dimensional Euclidean space Rn 
and &2 is its boundary. 

Throughout the paper we shall assume: 

H The coefficients Q(X), a,,(x) are measurable and bounded functions 
on ~2, ind ‘J[ E R”, Vx E ~2, 

and 

$, %(X) 5&j 3 v--l I E I2 b > 0). 

H, . /3(x, z) is measurable in (x, 2) E Sz x R and satisfies the following 
conditions 

and 
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with some constants k, , kr > 0, and y such that 

4 
O<'<- 

n-2 
if n33 and O<y<cc, if n==l,2. 

H 3’ 

and sup i’.f(f)i;s < $-cc, 
ttR 

where 

In [I, Part IT], Amerio and Prouse investigated the bounded and the almost 
periodic solutions for the problem (l)-(2). In particular, concerning the asymp- 
totic stability of the bounded solution u(t) on R, it was proved that if z(t) is any 
solution of the problem (l)-(2) we have 

where 11 . ,‘[: denotes the total energy norm. 
Since the almost periodic solution (with respect to I/ . liE) is, of course, bounded 

solution, it satisfies the same asymptotic property. 
The object of this paper is to show that the bounded solution or the almost 

periodic solution u(t) satisfies, in fact, for any solution v(t) 

and 
I/ u(t) - v(t& < const. t-(rly) if y ‘,> 0 

j/ u(t) - v(t)lJE < const. e--Pt if y =; 0 

with a certain constant k > 0. 
The precise statement of the result will be given in Section 4. 

2. DEFINITIONS 

For the definitions of function spaces see [I] or [3]. Let A be the operator 
from H,: to H-1 defined by 

Then the problem (l)-(2) is written formally as follows: 

u”(t) i- Au(t) + P(u’(t>> ==f@), u E H,,l. (3) 
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DEFINITION I. A measurable function U(X, t) on Q x R+ is said to be a 
solution of (3) with initial data (u,, , ur) E Ho1 x L2 if 

(i) u(t) E Lm(R+; E) n C(R+; E), u’(t) E L$,f(R+; L+(Q)), where 

(ii) u(t) satisfies the variational equation 

s om {-(u’(t), h’(t)) + (Au(t)> h(t)) + (BW))~ h(t)) - (f(t), WN dt = 0 (4) 

for V test function h(t) E Ll(R+; E) n LY+~(R+; LY+~) with compact support in 
(0, co), where (v, zu) denotes 

(w, w) = Jn VW dx 

if the right-hand side is meaningful, and 

(iii) u(O) = uo 3 u’(0) = u1 . 

DEFINITION II. U(X, t) is said to be a bounded solution of (3) on R if the 
conditions (i), (ii) are satisfied with R+ replaced by R (in (4) (0, 03) is replaced 

by C--00, ~0)). 
Let us assume H, , H, , H, . In [I] it was proved that problem (3) has a unique 

solution for each initial data (U o , ur) E Ho1 x L2 in the sense of Definition I 
and that iff(t) is (/ . /(s-uniformly continuous (3) has a unique bounded solution 
u(t) in the sense of Definition II. Moreover, the bounded solution u(t) was 
shown to be E-almost periodic if f(t) is /( . //&most periodic. 

In what follows we shall study the asymptotic property of the bounded or 
almost periodic solution u(t). 

Remark 1. In [I] y is assumed for a technical reason to be such that 

0 < y < 4/(?2 - 1). 

But this is easily improved as in H, (cf. [2]). 

3. LEMMAS 

LEMMA I (Sobolev). Let y be as in H, . Then we have 

I! u llp+z G sy,, II 24 l!H 1 0 for u E Hol, (5) 
where S, is a constant depending on Q, Y, and y. 
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The following lemmas are elementary but essential for our purpose. 

LEMMA 2. Let 4(t) be a bounded positive function on R+- satisfving, for some 
constants k and 01 A 0, 

W(t) a+l<((t)-cj(t+ 1) fOYVf >o. (6) 

Then we have 

where 

4(t) < (olk(t - 1) + AJI-~)-(~.‘~’ for Vt ; 1, (7) 

Proof. Put 4(t)-” = y(t). Then 

Y(f i- 1) - 344 = l1 g (@(t + 1) + (1 - 0) C(t))-” d0 

=r --iy s l &w + 1) + (1 - 4 &W-l dW#(t + 1) - d(t)) 
0 

> nk+(t)a+1 I1 Q(t))-“-l d0 
0 

Z Nk. 

(by (6)) 

For Vt > 1, choose the integer 71 as 71 < t < n + I, and we have from above 

y(t)>y(t-n)+nolkay(t--)I-(t- l)cuk, 

and hence 

or 

C(t)-” > (t - I) cuk + $(t - r~)-~ 

(b(t) ,( (c&(t - 1) + $5(t - n)--ar)--l;’ 

< (ak(t - 1) + JPym. QED. 

LEMMA 3. Let 4(t) be as in Lemma 2, which satisfies (6) with a = 0. Then we 
have 

4(t) < Me-k’t for t 2 I, (8) 

where k’ = -log(l - k) > 0. 

Proof. By (6) with cy = 0, 

+(t -t 1) <G (1 - k)+(t) (which implies k < 1). 
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Therefore, if t >, 1, we have for the integer n with n < t < n + 1 

9w G &(f - 1) G (&“4(’ - 4 

< MU - k)-t = Metlog(l-k), 

which proves the lemma. Q.E.D. 

4. THEOREM 

In this section we shall prove our theorem. 

THEOREM. Let u(t), v(t) be any two solutions sattijying (i) and (ii). Then under 
the hypotheses H, , Ha , H, we hwe 

11 u(t) - w(t)llE < ((r/2) K(t - 1) + M-“)+I”) for t >, 1 if y > 0, (9) 

and 

11 u(t) - w(t)llE < Me-K’t fort > 1 if y =o (10) 

(K’ = - 4 log(1 - K)), where 

M = g=, II u(t) - 4t)llE and K is a positive constant 

@ding on maxtd,,,l II WlE y maxtEtO.ll \lE Wll , supteR IIfWlls and Y. 
Remark 2. The precise value of K will be given in the proof. 

Proof of Theorem. Putting w(t) = u(t) - w(t), we have 

w”(t) + Aw(t) + ,@‘(t>) - B(+>) = 0. (11) 

By Strauss [4] we know 

II +z>lk - /I 4,)lli + j”; W’(4) - B(W), w’(d) ds = 0 
for any t, , t, 3 0. 

Hence by our assumption, 
(12) 

kl 1 

t+1 

II w’(s)ll;;:z ds < II w(t)lg - II w(t + l,ll; = +W”+2. (13) t 

Thus we find that there exist two points tl E [t, t + i] and t, E [t + 3, t + l] 
such that 

II w’(t&, 2 < 24% i== 1,2. (14) 
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Since u(t) is a solution of (3) we have 

kl I t 
tt1 II u’(~)ll;% ds B /I u(qll; - II @(t + I>lii + jtt+I (f(-f>, f+)) & 

and with the aid of Young’s inequality 

where 

My = f SUP (II ells + $ (--$) 
l/Vi-l 

Ii f(~)ll’s+a’Y+l 
1 teR+ ) 

Similarly we have 

s 

t-l-1 
t Ii W~:~2 ds G Al;+‘“, 

where M2 = Ml with u(t) replaced by v(t). 
Now, multiplying (II) by w(t) and integrating over (tI , t2> we have 

(15) 

(161 

! w’(Q), w@JjJ + !(w’(t2), w(t2))! d 4& mes(QP/+z A(t) max I/ w(s)I/~ I 
sqt,t+q 

BY (13), 

s 

*a 

4 
jj zu’(~)112,~ ds < n~es(0)Y’y+2 A(t)2. 

By W, , (5), (13), (15), and (161, we have 
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From (17) and the above estimates we obtain 

where 

and 

Co = mes(s2)y/Y+2 

Cl = 4S, mes(Q;2)y/y+2 + &.S,+2(mes(J2)Y~Y+2 + M1v + M,y). 

Thus from (13) and (19) we obtain 

s t2 
// w(s)ll~ ds < mes(J2)Y’Yf2 

t1 (1 t2 
II w’(s)l/;% 

t1 
ds)l’y+2 + j”:” II w(s,l,;oz ds 

and hence there exists a point t* E [tr , t,] such that 

II f4t*>lli G 4CoA(t)2 + 2C,A(t) 8$ffll II w(s)lb * (20) 

Therefore, as in (12) and (18), 

ss$~ll II 4% G II w(t*)ll; + (+’ @W(s)) - B(W), w’(s)) ds 

G 4G4(t)2 + 2C,A(t) s$gl, II W(S)llB + C2A(Q2, 

where 

c, = Cl - 2s,c,. 

Recalling the definition of A(t) and using Young’s inequality we have from 
above 

&t’$$, II 44IIE v+2 < K-l(ll w(t)lli - II w(t + l)llk), (21) 

where 

K = R,/(8C, + 2C, + 4Cc)y+2/2. 

If I\ w(t)jlE = 0 for some t, we know w(t) = 0 by the uniqueness of solution 
of initial-value problem for (3), and (9), (10) are, of course, valid. If )/ w(t& # 0 
for all t > 0, we can apply Lemmas 2 and 3 to (21) with + = \\ w(t)\ji to obtain 
the desired result. Q.E.D. 

From the above theorem we immediately get the following 
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COROLLARY. Let u(t) be the bounded or E-almost periodic solution and v(t) be 
any soktion on [r,, , CO). Then (9) or (10) is valid for t > yO + 1 with trivial 
modz$ications. 
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