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Abstract

Let AI" be the space of 1/ x 11 complex matrices. A seminorm /I . " on NI" is said to be a
C-S seminorm if IIA-AII = IIAA"II for all A E Mil and IIAII ~ IIBII whenever A, B, and B-A
are positive semidefinite. If II . II is any nontrivial C-S seminorm on AI", we show that
111/'111 is a unitarily invariant norm on M,n which permits many known inequalities for
unitarily invariant norms to be generalized to the setting of C-S seminorrns, We prove a
new inequality for C-S seminorms that includes as special cases inequalities of Bhatia et
al., for unitarily invariant norms. Finally. we observe that every C-S seminorm belongs
to the larger class of Lieb functions, and we prove some new inequalities for this larger
class. © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

Let M" be the space of 11 x Jl complex matrices and denote the matrix ab
solute value of any A E M" by IA I=(A*A)1/2. Horn and Mathias ([5,6]; see also
[4,3.5,22]) gave two proofs of the following Cauchy-Schwarz inequality con
jectured by Wimmer (11]

IIA*B1I 2
~ IIA+AIIIIB*BII for all A,B E Mfl (1)
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and any unitarily invariant norm 11·11 on M", which can also be derived from
(11) and (16) in [2]. See [3] in this connection.

For Hermitian matrices A, B E Mil, A -< B (equivalently, B >- A) means
that B· A is positive -emidetinite. Every unitarily invariant norm 11·11 on M"
satisfies

IIA II ~ IIBII whenever A,B E u, arc Hermitian and 0 -< A -< B (2)

as welJ as

IIA·AI/ == IIAA'" for all A E 1v1,1' (3)

We say that a seminorrn 11·11 on Mil is a C..S seminorm if it satisfies both (2)
and (3); a serninorm 11·11 on M" is nontrivial if there is some Ao E M; such that
IIAol1 > O. For example, IIA 11'lfl =r;~1 /aul is a nontrivial C-S seminorm that is
not a norm and is not unitary similarity invariant. See [5, Examples 4.)2 and
4.13] for examples of unitary similarity invariant norms that are not C-S
seminorms, Any unitarily invariant norm is, of course, a nontrivial C-S norm.
However, the norm IIA 1I~ =max] laul: I ~ i.] ~ n} for A = [aij] E Mil satisfies
(I) but does not satisfy (3); there is no seminorm on M" that satisfies (l) but not
(2):

Lemma 1. If a Se111l'110rJl1 11·/1 011 Mil satisfies (l), then it also satisfies (2).

Proof. Let U, P E Mn be given with U unitary and P positive semidefinite.
Setting A =P and B= UP in (1) gives

IIPVPII ~ Ilp21\. (4)

Let A,B E M; be positive semidefinite and assume B is nonsingular and
o --< A -< B. Then C =B-lll AB- 1/2 --< I and A = B1j 2CBl j2, Since every con..
traction is a convex combination of unitary matrices [4, Section 3.1, Problem
27] (in fact, it is the average 0:' two unitary matrices), there are finitely many
unitary matrices Vi and scalars z, > 0 with Li Cl.j == I such that C == Li rJ.iUj.

Using (4), we have

!IAII = IIB1
/
2CB1

/
2

11 == ~rxjBI/2UjBI/2 ~ ~C(iIlBII = IIBII.
i i

The general case in which B can be singular now follows by continuity. 0

Nontriviality for a seminorm is equivalent to its nontriviality on positive def
inite matrices:

Lemma 2. Let" ·11 bea given seminorm all Mn• Then 11·/1 isnontrivial ifandonly if
there is some positive definite P E M, such that IIPI! > O.
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Proof. Using the Cartesian decomposition, one can write any square complex
matrix as a linear combination of two Hermitian matrices, each of which can
r~1 written as a difference of two positive definite matrices. Thus, for each
A E Mil there are positive definite P, ..... P4 E Mil such that A:= PI - P-y
+i (P~ - P4) and

jlAl1 == liP, - P2 + i(P', - P4)I' ~ lIP, II + IlP211 + IIP,II + II P4Ij·

Thus. 11,11 is nontrivial if and only if there is some positive definite PEAl" such
that IIPII > O. 0

We shall develop basic properties of C-S seminorms. generalize (I) and
other inequalities for unitarily invariant norms to C-S sC111inor111s. prove a new
inequality for C-S scminorms, discuss the Lieb ~:::r!ctions, and prove S0111e new
inequalities for Lieb functions.

2. C-S Seminorms

For a positive semidefinite P E M"1 Jet A(P) =diag(l'l (P), .... i.II(P)), where
).1 (P) ~ ... ;:= i.,,(P) are the decreasingly ordered eigenvalues of P. For any
A E Mil, let (1"1 (A) ~ ... ~ (1'/I(A) denote the decreasingly ordered singular val..
ues of A. Let E, E Mil be the matrix whose only nonzero entry is a I in position
(i, i). We first establish some basil: properties of C-S seminorms,

Theorem 1. Let II· II he a C-S seminorm on Mil and let P E Mil he positite
semidefinite. Then

(a) II irPU II ::: IIPII [or all unitary U E M". /n pur!icular. II Pil == II A(P) II·
(b) ).1 {P} IIE,II ~ IIPII ~ ).\ (P) II/II ~ H).I (P) IIEI II.
(c) If 11·11 is nontrivial and P .:j:. 0 then IIPII > O.
(d) IIIABC III ~ (J I(A )IIIBIll (J 1(C) jf)r aII A, B, C E M".

Proof. (a) Using (3), we have

II U* PU /I = II(pl/lUr(p l /2U) II == /lpl/2UU' pl/2" == liP/I.

(b) Let Q; denote the permutation matrix obtained by interchanging the first
and ith rows of the identity matrix /. Using (a), we have IIE;11 = IIQiEl Q111 :.=

IIEIII, i == I, ... .n, so 11/11 = liL;'~1 Edl ~ L;~I IIEdl = n11E111· Since 0 ~ ).1 (P)E1

-< A(P) -< ;., (P)/, (a) and (2) imply (b).
(c) Lemma 2 and (b) ensure that IIEIII > O. If P i= 0, then )., (P) > aand (b)

gives IIPI! ~ ).1 (P) liE, II > o.
(d) The key observation is that aAABC) ~ (JI (A )t1i(B)(Tt (C) for all i ==

I, ... .n [4,3.3.18], which ensures that O~A(IABCI) ~(JI(A)A(IBl)al(C). Now
use (2) again 1.0 compute
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Remark 1. The restricted unitary similarity invariance properly in Theorem
I(a) clearly implies the property (3), so these two properties of a seminorm are
equivalent.

Curollary 1. Lrt II ·11 he a giren nontriiiul C-S setninonn Oil Mil' The [allowing are
equivalent:

(a) IIE,II ~ 1.
(b) IIPlj ~;: i' l (P) [or ever... positire semidefinite P EMil'

(c) 1I1PQIl! ~ IIPIIIIQII for (1ft positive scmidefin.:« P. Q E M".

Proof. (a) ~ (b). If P is positive semidefinite, Theorem l(b) ensures that
IIPII ~ ;., (P)IIEIII ~ },I (P).

(b) =:> (c). If P and Q arc positive semidefinite, then use Theorem 1(d) to
compute IIIPQIII ~ ;'1 (P) IIQII ~ IIP!lIIQII·

(c) :;::} (a). Using IIEIII == II£,E:II == IIIEIE,11I ~ IIEtll~, Theorem I(c) permits
us to deduce that I ~ IIElll. 0

We now have in hand several examples of how nontrivial C-S seminorms act
on the positive semidefinite matrices the way unitarily invariant norms act on
all of Mil: Theorem I(c) says that a nontrivial C-Sserninorrn acts like a norm on
the positive semidefinite matrices; Theorem 1(d) is an analog of the fact that
unitarily invariant norms are symmetric [4, problem 4, p. 211]; and Corollary 1
corresponds to the fact that a unitarily invariant norm 11·11 on M" is submul
tiplicative if and only if IIAII ~ (it (A) for all A EMil [4, problem 3, p. 211]. The
following theorem provides a basic explanation for these examples.

Definition 1. For any scminorm 11·11 on M,'I' define 1I·llabs: Mil ~ ~+ by IIA lIabs =
IIIAIII far all A E AI".

Theorem 2. flll·11 is a nontrivial C-S seminorm on Mil, then" ·llabs is a unitarily
invariant '101'111 011 ~1".

Proof. Let A.B E Mil and c E C be given. \Ve are assured that IIA Ilabs ~ 0; if
A f. 0 then IAI =1= 0, so Theorem l(e) ensures that I!AIJabs :::; IIIAIII > O. Homo
geneity is easily checked: IlcAliabs === IlleAll1 := 11)eIIAIiI == jcllliAlIJ == IclllAllabs'
The triangle inequality for 11·11'los follows easily from Robert Thompson's
matrix-valued triangle inequality ([I0] or [4, (3.1.15)]: There are unitary U, V E

MI , such that IA +BI -< VIAIV~ + VIBI V·, so Theorem 1(a) and (2) permit us to
compute
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IIA+Bllahs == IIIA+8111 ~ IIUIAIU' + I/IBI V'II
~ IIUIAIU"lf + II VIBI V'I I::::IIIAIII + IIIBIII := IIAllah~ + ::Bllilbs'

Thus, "·ILbs is a norm on kIll: its unitary invariance follows frorn Theorem Ita):
For any unitary U, V E Nfll~ IIUAVllahs = IIIUAVIII :-~ iiV"'AIVIl == IIIAIII
== IIA llabs' 0

Itnplicit in this result is the following principle: allY theorem about unitarilv
invariant norms that involves (}"i~l' nositice setnidejinlt« matrices must hold jor
nontriiial c-s scminorms as 1\ <!//. \Vc ofTel' several examples as corollaries to
Theorem 2~ in each case the proof is the same: apply a known result about
unitarily invariant norms I.u tijC unitarily invariant norm Il,llabs'

Corollary 2. Let L,A1. X E A1/1 he giren and suppose

[;, ~] ~ O.

Then

(5)

for eoery c-s SCI11;'1OI'I1I 11·11 011 N/II and all positire p~ q, lind r such that
p-I +q-I == I. III particular.

Proof. Apply Theorem 2 to [6~ (2.11)]. o

(6)

Setting L == AA· ~ M == B~ B~ and X == AB in Corollary 2 and using Theorem
1(a) gives

Corollary 3. Let A~ B E Mil he given, let 11·11 he a given C-S sel11il10J'f11 011 MII~ let
p, q.r E (0. 00) he given, lind suppose p-I +q:' =.; 1. Theil

IIIABI"II ~ IlIA 1/II'III /,J/IIBIC,1'11
1
/

1
, ;

in particular,

IIIABIII ~ IliAIfl lll/pII181"III/'! .

(7)

(8)

One obtains (1) by setting p = q := 2 and r = 1 in (7), which is therefore a
generalization of (I) to the larger class of C-S serninorms.

Corollary 4. Let 11·11 hi: a given seminonu Oil M; lind define the function v : Mil -4

lR+ by \'(A) -IIA·AI!I.'~. If 11·11 is a 110111rivia! C-S scminortn. then v(·) is a
unitarily invariant norm.
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Proof. The function \' is clearly homogeneous, Unitary invariance and
positivity arc ensured by ThcorCI11 I (a..c). The triangle inequality is a
straightforward computation using (1). 0

Note that by TheorC111 2.. \' in Corollary 4 is a Q-norm [II p. 95].
Using the trace norm in (8) and the fact that !trXI ~ IIXIIlr for any .r E Mil

gives the known inequality [9.. Theorem 6]

tr (A xBI --1) ~ (t rA)1(trB) I - 1

for all positive semidefinite A and B and all 'J. E (0, I).
Now let 11·11 be any given unitarily invariant norm on Al". Bhatia and Davis

[3] (sec also [L Theorem IX.5.2]) showed that

(9)

for all A.B. X E Mil and all r > 0, which is equivalent to the same inequality
with A and B restricted to be positive semidefinite. Kittaneh [7] (see [3] for
another proof) proved that

(10)

for all positive semidefinite A~ B E Mil and all positive p and q such that
p-I +q:' == 1. Our next theorem includes both (9) and (10), generalized to the
setting of C-S seminorms. Our proof makes usc of the following lemma, whose
elegant proof is in [3]. We write x -<.1' y to denote weak (additive) majorization
between nonnegative vectors [4, 3.2.9].

Lemma 3. Let ,'·1. N E M; he positlre semidefinite and suppose 0 < s:S; t. Theil

k k

11;.:/.\'(A"BS
) ~ 11;.:/1 (AIB1

) . k == ).2, ... ,11.

i -.1 j. I

Consequently,

(11 )

Theorem 3. Let A, B, X E M" he giten with A and B positive semidefinite. Then

(12)

[or every C-S seminonn 11·11 011 M; atu! all positive p, q, and I' such that
p.-I +q' == 1.

Proof. Let ~f =-= UP be a polar decomposition of X (with U unitary and P
positive semidefinite).. write A)(F = (A Upl/p ) (pljqB), and use (7) to obtain
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IIAxBnl ~ ,,(p i/fll.rA2upl !I')/I/' /~III/I'II(Bp:' I(/Br/'' /:!1I1 /11. (13)

Since the eigenvalues of YZ and Z Yare the same for all Y~ Z EMil, (II ) ensures
that

;.~JI"r2(pl lJ1U·A2Upl /p ) = ;.~l//2 ((A2f1) l/i,(Up:! U·) 1/,,)

--<\I' ;.;'l2(A2"UP2Ui
) (since p --l < ~)

_ i.;'/2(A 21'XX') = ;./2 ((Af/Xr (A/IX))

== 0";' (APX) (14)

and

;.;""/2 (Bp2/tfB) == I.rt:. ((p2)) /11(821/)) !II )

~\I' i.~"/~ (p2 B2(/) (since q i .-:' I)

::::: ;.;·/~(x*xn2c/) = ;.?,~((XBqr(IYBI/))

=:: rr;'(XBf/). (15)

The Fan Dominance Theorem [4, Corollary 3.5.9] now permits us to conclude
from Eqs, (14) and (15) that

(pl/p trA2Vpl/fi)/JI'/2 ~ 1I1AI'Xnl and I (Bp2/lfB)'/I'n I ~ 111"rBI/II'II·

Combining these inequalities with (13) gives (12). 0

Kittaneh's inequality (10) is not valid for all C-S seminorms. Consider the
C·S norm IIA!I =/lAIIF + IIA!lI,rl := (trA*A)I/~ + L;locl laiil, the matrices

[2 2] [0 *1A= 2 2' x== 0 0.' 8==12,

and p=q==2. Then IIA)(BI1 2 == 3 +2/2 > 2 +2V1 = IIA 2XIIIIXB211.

There is a special subclass of the C-S seminorms that satisfy a pair of
conditions that is stronger than (2) and (3):

Theorem 4. {Fa seminorm 11·11 satisfies (3) lind

IJAII ( IlIAIII for all A E Mill

then it is a C..S seminorm.

(16)

Proof. We must show that conditions (16) and (3) imply (2). Since 0 -< A(X) -<
A(Y) whenever X and Yare Hermitian and 0 -< X --< Y, it suffices to consider
nonnegative diagonal matrices. Let D == diag(dl , .•. ,ell,)~ O. For rJ. E [0, I],
denote D(i, «) == diag(dl l ... ,di-I,adi,dj.t-I ,'" ,dll ) . Then (16) ensures that
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IIDU. :xlii = I ~ ~ D +~-~ :x omr,(d" ... .d..», - d., Iii, J," • ,dill
... -

I + :.r: I --x ,
:s; 2 IIDll + 2 IldJag(ell, ... 0 eli--I , -clio d, l· h .... d,,) II

~ I ~:x IIDII + I ~ :x IjDII = IIDII.... ...
Using Remark 1 and this fact successively for i = 1... , ,11 " <C deduce that
IIXII == IIA(X)II~ IIA(Y)11 == IIYll· 0

The class of seminorms satisfying conditions (3) and (J6) is not the entire
class of C-S seminorms. For an example of a C-S seminorm that docs not
satisfy (16), see [5. Example 4.12].

From ThcorCITI 4 and Corollary 3 we know that if a seminorm satisfies (3)
and (16) then it satisfies the Cauchy-Schwarz inequality (I).

Although every unitarily invariant norm on M; is self-adjoint, there are C-S
serninorms on Mil that are not self-adjoint: On M2 consider

3. Functions in Lieb's class !.l'

Lieb [8J introduced the class 2) of continuous complex-valued functionsfon
AI" that satisfy the following two conditions:

f(A) ~ f(8) ~ 0 whenever A >- B >- 0, (17)

and

(18)

Examples of functions in !jJ arc the determinant, permanent, spectral radius,
any elementary symmetric function of the eigenvalues, and any unitarily in
variant norm.

The hypothesis (2) and (8) with P == q = 2 show that the set of all C-S
seminorms is contained in !fl, but this containment is proper. The following
example shows that there is a function in Lieb's class fP that does not satisfy
(6) and (8) for some p, q. The function lc and the matrices in the following
example are taken from [8, pp. 175 and 177], where they serve another purpose.

B = t;-I JI '

Example 1. For any fixed positive semidefinite C E /l1"" the function fc(X) ==
det(C +X) is in Lieb's class !P on Mil' Let

C == [ 1
-I
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Then Ic(AB) == 2, and [fc(IAII')]IIf'[t('(IBr,)]I/C/ ~ v'2 as p ~ I and if ~ 00.

Thus this Lieb function docs not satisfy n~). Moreover, Ie does not satisfy (6):
just set L == A-A, M = B+/J, X == A·B and let p -t L q ---+ ex.

Lemma I shows that the properties (18) and (J 7) arc not independent for
•senunorms,

Bhatia [1. p. 27d] gave the following characterization of the class . ~P .

Theorem 5. Let f: At" ~ C he continuous. Titell f E .ff (I' and only fl'
f(A) ~ O/brall A ~ 0

and

If(C)(~ f(A )f(8) for all A,H, C such that [~ ~']~ O. (19)

Bhatia's characterization leads to a simple proof [1, p. 270] of the following
result due to Lieb [8]. Bhatia observes that a sum of block matrices of the type
in (19) is a positive semidefinite block matrix, to whose blocks the function f
can then be applied to obtain an inequality of the type in (19).

Theorem 6. Let Ai' B, E A111 , i = 1, ... ,11'. Then for all)' f E .!I)

and

(

nJ )2 (III ) ('" ).r ~Ai «r ~IAil / ~IA;I .

If each Ai is normal, (21) reduces to

(20)

(21 )

(22)

Since the Hadamard product (denoted by A 0 B) of block matrices of the
type in (19) is a positive semidefinite block matrix (the Schur product theorem
[4, Theorem 5.2.1], applying Bhatia's observation to Hadamard products in
stead of sums gives the following theorem.

Theorem 7. Let Ai' Hi EMil, j == 1, ... .m. Then for any f E 2/ Oil !vIII

1/[(A;B1) 0 •.. 0 (A;',Bm)]1
2
~ f[(AjA I) 0 ..• 0 (A/:,A m) ]

f[(B;B1) 0 ••. 0 (B:,B",)]
(23)
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and
,

II(A 1 0 •.• 0 AI/I)I~ ~f(IA 11 0 ···0 IAml)f(IAj 1 0 ... 0 IA,~,I).

If felch A; is normal, (24) reduces 10

If(A 1 0···0 AII/)/ ~f(IAI i0'" 0 rAIIII)·

(24)

(25)

The special case of (25) when 111 == 2 andf is 'l unitarily invariant norm was
observed by Horn and Mathias [6, p. 76], where an example was given to show
that the hypothesis of normality is essential.

A linear map (/) : M" -+ tvlm is said to bepositive if 4)(A) ~ 0 whenever A ~ O.
We have the following theorem.

Theorem 8. Let (/) : NIII -1 Alm he all)' positire lineal' 111l1jJ. Theil

(26)

for all f E !P Oil /vI", lind any normal A E AI". Conversely. if a nonsingular A
satisfies (26) for some pre-norm f 011 lvlm and all positive linear maps
4) : M" ~ /vIm' then A is 110r111al.

Proof. Suppose A is normal and </) : M" -t Mill is a positive linear map. Let
A = UDU" be a . pcctral decomposition with U = (UI, ... ,u,,) unitary and D =
diag(i.l,i.~~ .. . ,).,,). Then A == L:;~ :t i.juju;, IAI == 2:;:=1 I;.du;l~;, (j)(A):=:
L;':-.:I ).;(/)(lIjll;), and (p(IAI) = 2:~I=1 li.:!(p(ujlln. Each ¢(u;u;) >- 0 since 4) is
positive and 1I;1I; >- 0, so (22) with A; == i.jq) (U;lI,~) yields (26).

Conversely, let A E Al" be nonsingular and satisfy (26) for some pre-norm f
on Mill and all positive linear maps q): Mil -+ MII/' Let U E Mil be a unitary
matrix such that U·AU = T is upper triangular. Given B == [h ,j ] E /vI", denote
D;(B) =diag(b;;. 0, .... 0) E Mm. Define ¢; : Mil -1 Mm by (/);(X) - D;(U"XU),
I ~ i ~ n, Then (/); is a positive linear map, cPi(A) = D;(T) , and ¢;(IAI) = D;(ITI).

Write T== [I,}] and ITI == [PuJ. We first consider ¢I' Since ITI! = T" T, the
Euclidean lengths of corresponding columns of ITI and T are equal. Examining
the respective first columns gives

(27)

On the other hand, (26) ensures thatf((f)t(A)) ~f(PI(IAI)) , so I1III~PI[, which
together with (27) gives PI I = III I i and 01 = ... == PI/I ::= O. Thus
ITI = PII EB P'l-I. From ITI 2 = T* T we know that each non-diagonal entry in the
first row of T· T equals zero, i.e., til tl) = O~ j = 2, ... ,11. But !,I :f. 0 since T is
nonsingular, so tl) == O,j = 2, ... , 11 . Hence T == III 87 T,I-I. Continuing this ar
gurnent with cp~, ... ,cPll_1successively shows that T is diagonal and hence A is
normal, 0
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Given c< C {I, 2, ... ,11} and A E Aln, let I~l denote the cardinality of rt. and let
A[rt.] be the principal submatrix of A indexed by ct. The map 4) : M" -+ MI~I

given by ¢(A) =A[cx] is linear and positive. Applying Theorem 8 gives

Corollary 5. Let A E Mil he normal lind rJ. C {I, 2, ... ,11}. Then

If(A [rJ.] )I~ f (IAI[rx] )

for allf E !I) 011 Ai1ctl•

(28)

The special case of Corollary 5 when f is a unitarily invariant norm and A is
Hermitian is in [12, Lemma 3].

Open Question: Can the hypothesis of nonsingularity of A in the second part
of Theorem 8 be removed?
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