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Abstract

Let M, be the space of # x n complex matrices. A seminorm || - || on M, is said to be a
C-S seminorm if ||A*A)| = ||44°|| for all 4 € M, and ||4|| < ||B|| whenever 4, B, and B-A
are positive semidefinite. If || - || is any nontrivial C-S seminorm on M,, we show that
|4l is a unitarily invariant norm on M,, which permits many known inequalities for
unitarily invariant norms to be generalized to the setting of C-§ seminorms. We prove &
new inequality for C-S seminorms that includes as special cases inequalities of Bhatia et
al., for unitarily invariant norms. Finally, we observe that every C-S seminorm belongs
to the larger class of Lieb functions, and we prove some new inequalities for this larger
class. © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

Let M, be the space of #n x n complex matrices and denote the matrix ab-
solute value of any 4 € M, by |4| = (4°4)"*. Horn and Mathias ([5,6]; see also
[4,3.5,22]) gave two proofs of the following Cauchy-Schwarz inequality con-
jectured by Wimmer [11]

|4*B|” < ||4°4)||B*B|| for all 4,B € M, (1)
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and any unitarily invariant norm ||-|| on M,, which can also be derived from
(11) and (16) in [2]. See [3] in this connection.

For Hecrmitian matrices 4,8 € M,, A < B (equivalently, B > A) means
that B-A is positive semidefinite. Every unitarily invariant norm ||| on M,
salisfies

4]l < ||B!| whenever 4,8 € M, arc Hermitian and 0 <4 < B (

[
—

as well as
|4"4|| = ||44"]] for all 4 € M,. (3)

We say that a seminorm ||-|| on M, is « C-S seminorm if it satisfies both (2)
and (3); a seminorm ||-|| on M, is nontrivial if there is some Ay € M, such that
l4ul| > 0. For example, [|4||,,, = Y., |a;| is a nontrivial C-S seminorm that is
not a norm and is not unitary similarity invariant. See [5, Examples 4.12 and
4.13] for examples of unitary similarity invariant norms that are not C-S
seminorms. Any unitarily invariant norm is, of course, a nontrivial C-S norm.
However, the norm ||4]|, = max{lay|: 1 <i,j<n} for 4 = [a;] € M, satisfies
(1) but does not satis(y (3); there is no seminorm on M, that satisfies (1) but not

(2):

Lemma 1. If a seminorm ||-|| on M, satisfies (1), then it also satisfies (2).

Proof. Let U,P € M, be given with U unitary and P positive semidefinite.
Setting A=P and B= UP in (1) gives

IPUP| < [P 4)

Let A,B € M, be positive semidefinite and assume B is nonsingular and
0<A=<B. Then C=B""°4B""> <[ and A = B'2CB'?, Since every con-
traction is a convex combination of unitary matrices [4, Section 3.1, Problem
27] (in fact, it is the average oI two unitary matrices), there are finitely many
unitary matrices U; and scalars x; > 0 with ) a; = | such that C =), U,
Using (4), we have

41 = 828 =

ZQJBI'QU;BIR

< Bl =],
The general case in which B can be singular now follows by continuity, [

Nontriviality for a seminorm is equivalent to its nontriviality on positive dei-
inite matrices:

Lemma 2. Let ||| be a given seminorm on M,,. Then ||| is nontrivial if and only if
there is some positive definite P € M, such that ||P|| > 0.
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Proof. Using the Cartesian decomposition, one can write any square complex
matrix as a linear combination of two Hermitian matrices, each of which can
tuowritten as a dgifference of two positive definite matrices. Thus, for each
AeM, there are positive definite Py.. .., P,eM, such that A=P - P
+i(Py— Py) and

l4JE = 1Ay = P4 i(Py = PO P+ 1Pl 4 155l 1P

Thus. |1 1s nontrivial if and only if there is some positive definite P € M, such
that ||P|| > 0. O

We shall develop basic properties of C-S seminorms, generalize (1) and
other inequalities for unitarily invariant norms to C-S scminorms, prove a4 new
inequality for C-S seminorms, discuss the Licb finctions, and prove some new
inequalities for Lieb functions.

2. C-S Seminorms

For a positive semidefinite P € M,,, let A(P) = diag(4(P),....2,(P)), where
AM{P) 2 -+ = 4,(P) are the decreasingly ordered eigenvalues of P. For any
AeM, leta(4) 2 --- 2 a,(4) denote the decreasingly ordered singular val-
ues of A. Let £; € M, be the matrix whose only nonzero entry is a | in position
(i, 7). We first ¢stabiish some basic properties of C-S seminorms,

Theorem 1. Let ||-|| be a C-S seminorm on M, and let P € M, he positive
semidefinite. Then

(a) |UPU| = ||P|| for all wnitary U € M,. In particular, |P|| = || A(P)]|.

(b) 21 (PE < P < (P < i (PYIES.

() If ||-|| is nontrivial and P # 0 then ||P|| > 0.

(d) |||4BC||| <o (4)|||B]||e1(C) for all 4,B,C € M,.

Proof. (a) Using (3), we have
|U*PU|| = ||(P2U)(P'?U)|| = ||P2UU P = ||P)).

(b) Let Q; denote the permutation matrix obtained by interchanging the first
and ith rows of the identity matrix /. Using (a), we have || = [Q.E Q]| =
IE |l i=1,....n 50 1] = [0, £ < X0, NEl = nll£4]]. Since 0 = 4(P)E
=< A(P) =2 2 (P)I, (a) and (2) imply (b).

(c) Lemma 2 and (b) ensure that ||E;|| > 0. If P # 0, then 4, (P) > 0 and (b)
gives || P[] = A (P)||Ey] > 0.

(d) The key observation is that ¢;(A4BC) < a\(d)o;(B)a(C) for all i=
l,...,n[4, 3.3.18), which ensures that 0 < A(|4BC|) < 5,(4)A(|B|)o,(C). Now
use (2) again 1o compute
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[14BCI|| = [A(|4BC)|| < a1 (A)[|A(|B]) ||o1 (C) = a1 (A)[|[Bl[|o2(C). O

Remark 1. The restricted unitary similarity invariance property in Theorem
I{a) clearly implies the property (3), so these two properties of a seminorm are
equivalent.

Curollary 1. Let ||-|| be a given nontrivial C-S seminorm on M,,. The following are
equivalent:

(@) & = L.

(b) || P|| == A1 (P} for every positive semidefinite P € M,,.

() [[|POII < ||PIHIQ@I Tor «li positive semidefin'e P.Q € M,,.

Proof. (a) = (b). If P is positive semidefinite, Theorem I(b) ensures that
[P = A (P)IE]| 2 £((P).

(b) = (¢). If P and Q are positive semidefinite, then use Theorem 1(d) to
compute [||PQ|[| < A(P)IGI < |PIIIQ. i

(€) = (a). Using |E\|| = |E\E]] = ||EVEq|| € ||EA]°, Theorem 1(c) permits
us 1o deduce that 1 <||Ey|]. O

We now have in hand several examples of how nontrivial C-S seminorms act
on the positive semidefinite matrices the way unitarily invariant norms act on
all of M,: Theorem 1(c) says that a nontrivial C-S seminorm acts like a norm on
the positive semidefinite matrices; Theorem 1(d) is an analog of the fact that
unitarily invariant norms are symmetric [4, problem 4, p. 211]; and Corollary |
corresponds to the fact that a unitarily invariant norm ||-|| on M, is submul-
tiplicative if and only if ||4|| > o,(4) for all 4 € M, [4, problem 3, p. 211]. The
following theorem provides a basic explanation for these examples.

Definition 1. For any seminorm ||-|| on M,, define |||, : My — R, by [ 4]l =
l41ll for all 4 € M,.

Theorem 2. If' ||-|| is « nontrivial C-S seminorm on M, then ||-|| . is a unitarily
incariant norm on M,.

Proof. Let A.B € M, and ¢ € C be given. We are assured that ||4][,,, = 0; if
A # 0 then [A4] # 0, so Theorem 1(c) ensures that ||4}],.. = |||4]|| > 0. Homo-
geneity is easily checked: [lcdll, = [cdlll = |lellAll = el 41l = lell 4],
The triangle inequality for ||, follows easily from Robert Tiiompson’s
matrix-valued triangle inequality ([10] or [4, (3.1.15)]: There are unitary U,V €
M, such that |4 + B| < UlA|U" + V|B|V*, so Theorem (a) and (2) permit us to
compute
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[ A+B|| = Il A+B[I| < NUIAU +V|B]V ||
'~<\ “U|A|U.H + ” V’BlV H:H|‘4I“ + “|B|” = ||A||élhh +- HB”iIhS'

Thus, |||, 1S @ norm on M,,: its unitary invariance follows from Theorem I(a):
For any unitary U,V eM, (UAV]| . = ||[UAV||| = iV 1AV = |||4])]
= HA“uhs- u

Implicit in this result is the following principle: any theorem about unitarily
mvariant norms that involves oriy positive semidefinite matrices must hold for
nontrivial C-S semiorms as w2l We offer several examples as corollaries to
Theorem 2; in cach case the proof is the same: apply a known result about
unitarily invariant norms fo tue unitarily invariant norm ||| ..

Corollary 2. Let LM . X € M, be given and suppose

L X
[X’ MJ 2.

Then
2 ]/’[i”ﬂ{q’./z 1,"({ (5)

for cvery C-S seminorm ||| on M, and all positive p, ¢, and r such that
p~' +q7' = 1. In particular,

”|X||[ < “L;;/JHI/;J“Mq/z i/«!. (6)

Proof. Apply Theorem 2 to [6, (2.11)]. O

Setting L = AA*, M = B'B, and X = AB in Corollary 2 and using Theorem
1(a) gives

Corollary 3. Let A, B € M, be given, let ||-|| be a given C-S seminorm on M, let
p.q,r € (0,00) he given, and suppose p=' + =" = 1. Then

r wyl/p gryl/
NABI Y < 1411 1181 ) (7)
in particular,
IABII< AP 1B, (8)
One obtains (1) by setting p=¢g=2 and #=1 in (7), which is therefore a

generalization of (1) to the larger class of C-S seminorms.

Corollary 4. Let ||| ln a given seminornt on M, and define the function v : M, —
R, by v(d) = ||AA)°. If |1 is @ nontrivial C-S seminorm, then v(-) is a

unitarily invariant norm.
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Proof. The function v is clearly homogencous. Unitary invariance and
positivity are ensured by Theorem I(a.c). The triangle inequality is a
straightforward computation using (1). J

Note that by Theorem 2, v in Corollary 4 is a Q-norm [, p. 93].
Using the trace norm in (8) and the fact that [trX|< || X ||, for any X € M,
gives the known inequality [9, Theorem 6]

tr(4*8'7) < (trd) (1rB)' ™
for all positive semidefinite A and B and all z € (0,1).

Now let ||| be any given unitarily invariant norm on M,. Bhatia and Davis
[3] (sec also [I. Theorem IX.5.2]) showed that

I[AXBI'||” < [l 4" AXT Y I XBB°['] (9)
for all A,.B,.X € M, and all r > 0, which is equivalent to the same inequality
with 4 and B restricted to be positive semidcfinite. Kittaneh [7] (see [3] for
another proof) proved that

g (10)

for all positive semidefinite 4.8 € M, and all positive p and ¢ such that
p' 4+ g7 = 1. Our next theorem includes both (9) and (10), generalized to the
setting of C-§ seminorms. Qur proof makes use of the following lemma, whose
clegant proof is in [3]. We write x <, ¥ to denote weak (additive) majorization
between nonnegative vectors [4, 3.2.9].

Lemma 3. Let 1.:2 € M, be positive semidefinite and suppose 0 < s <t. Then

k k
H "‘AB‘ /,]"'AB’ k=1.2,...,n
y

il i-

Consequently,

)] < [/‘.:.'/'(A’B’)]__] Jor all r > 0. (11)

Theorem 3. Let A, B, X € M, be given with A and B positive semidefinite. Then
r s lip s 111/

14Xl < Il Amx) () ) (12)

/m ever 1' C-S seminorm ||-|| on M, and dll positive p, ¢, and v such that

plitg =1

Proof. Let X'= UP be a polar decomposition of X (with U unitary and P
positive semidefinite), write AXF = (AUP'/r)(P"/B), and use (7) to obtain
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”AXB’!” < ” Pi/p(j«AZ(/PI,/p /2 I/p” BP:/,,B qr'/.?”h’q. (13)

Since the cigenvalues of YZ and ZY are the same forall ¥, Z € M, (11) ensures
that

ﬁ,?,-fz(pl/ﬂu*,qzUpl,fp) _ ;Jlrgr/:((Azp)I/,,(Upgu,)I/,,)
< A7 (APUPMUY)  (sincept < 1)

= LP(ATXXY) = B ((AX) (A"X)

= a4 (14)

t

and
"'/’(BPU"B) - rﬂ/ ((pl)lf’q(Bl’q)'/u)
<y 4 .’./j(P“BE'f) (sinccg ™’ < 1)
XYY = A7) (YBY))
,.(,w;«). (15)
The Fan Dominance Theorem [4, Corollary 3.5.9] now permits us to conclude
from Egs. (14) and (15) that

“(P‘/”U*AzUP'/”)”"/: H <|Il47XT| and “(Bpﬂfffg)'f"”u <IIIXB'].
Combining these inequalities with (13) gives (12). O

Kittaneh’s inequality (10) is not valid for all C-S seminorms. CODbldCl‘ the
C-S norm [|A]| = [ Ally + | Allyy = (ed"4)"” + S0 lal,

2 2 0 B
A‘[z 2]’ X = [o 0] B=1,

and p=g=2. Then ||AXB|* = 3 +2V2 > 2+ 2v2 = ||42X||||XB*].
There is a special subclass of the C-S seminorms that satisfy a pair of
conditions that is stronger than (2) and (3):

td

Theorem 4. [f a seminorm ||-|| satisfies (3) and
141l < {il4l| for all 4 € M,, (16)

then it is a C-S seminorm.

Proof. We must skow that conditions (16) and (3) imply (2). Since 0 < A(X) =
A(Y) whenever X and Y are Hermitian and 0 <X <Y, it suffices to consider
nonnegative diagonai matrices. Let D = diag(d,,...,d,) = 0. For o €[0,1],
denote D(i,«) = diag(d,,...,d;_,ad;, d;,y,...,d,). Then (16) ensures that



10 R Mo, X Zlwase | Linear Algebra and ity Applications 291 (1999) 103 113

i l ~
1202 --l 220+ L oty - e )|
l
> ||D|] ——Hdldg dp. ... dioy,~didig,. ... d)
_+
<2+ 152 ) = 1oy,
Using Renuuk I and this fact successively for i =1.. ¢ deduce that
X = A <A = 1Y)l O

The class of seminorms satisfying conditions (3) and (16) is not the entire
class of C-S seminorms. For an example of a C-§ seminorm that does not
satisfy (16), see [5. Example 4.12).

From Theorem 4 and Corollary 3 we know that if a seminorm satisfies (3)
and (16) then 1t satisfies the Cauchy-Schwarz inequality (1).

Although every unitarily invariant norm on M, is sclf-adjoint, there are C-S
seminorms on M, that are not self-adjoint: On M, consider

14|l = max {{an| + |a2a], |2}

3. Functions in Lieb’s class &

Lieb [€] introduced the class 2 of continuous complex-valued functions fon
M, that satisfy the following two conditions:

f(A) = f(B) = 0 whenever 4 = B > 0, (17)
and
/(A B)P <[4 A)f (B B) for all 4,8 € M, (18)

Examples of functions in ¢’ are the determinant, permanent, spectral radius,
any elementary symmetric function of the eigenvalues, and any unitarily in-
variant norm.

The hypothesis (2) and (8) with p=¢=2 show that the set of all C-§
seminorms is contained in %, but this containment is proper. The following
example shows that there is a function in Lieb’s class & that does not satisfy
(6) and (8) for some p, ¢. The function f and the matrices in the following
example are taken from [8, pp. 175 and 177], where they serve anoiher purpose.

Example 1. For any fixed positive semidefinite C € M,, the function f-(X) =
det(C + X) is in Lieb’s class .¢° on M,,. Let

REE o1 _
S A A L R,
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Then f-(4B) =2, and [fc(J4]")]'"[f-(1B])]'* —= V2 as p— 1 and ¢ — 0.
Thus this Lieb function does not satisfy (8). Moreover, f¢ does not satisfy (6):
wstset L=A"A M=BB, X=ABandletp— 1, g— ox,

Lemma | shows that the properties (18) and (17) are not independent for

seminorm:s.
Bhatia [1. p. 27J] gave the following characterization of the class .7’

Theorem 5. Let f: M, — C he continuous. Then [ € & if and only if
f(A) 20 forall A >0

and

[_f(C')I2 < Sf(A)f(B) for all A,B,C such that [/C" % } > (), (19)
Bhatia’s characterization leads to a simple proof [, p. 270] of the following
result due to Lieb [8). Bhatia observes that a sum of block matrices of the type

in (19) is a positive semidefinite block matrix, to whose blocks the function f
can then be applied 1o obtain an inequality of the type in (19).

Theorem 6. Let A, B, € M, i=1,....n. Then forany [ € ¥

i(Ssam)| <r(S30m)s (S ) @
i=1 i=1 i1
and

‘f(ZA) s.f(z'"jm,-l)./‘(ifi;r). (21)
i=1 iz | i1

If each A; is normal, (21) reduces to

f(ZA) </ (iw). (22)
i=1 i=]

Since the Hadamard product (denoted by A o B) of block matrices of the
type in (19) is a positive semidefinite block matrix (the Schur product theorem
[4, Theorem 5.2.1], applying Bhatia’s observation to Hadamard products in-
stead of sums gives the following theorem.

Theorem 7. Let A, B, e M, i=1,....m. Then for any f € & on M,

(4B 0 -+ 0 (A8 < SAiA) 0+ 0 (4} dn)] 23)
fUBBY) o0 (B,B.)
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and

F Ao o) <Ll oo ldu)f (4]0 ola]). (24)
If euch A, is normal, (24) reduces to
I/(Al Qo OAm)I \<-./(|A| | -0 ,Aml)- (25)

The special case of (25) when s = 2 and f'is @ unitarily invariant norm was
observed by Hern and Mathias [6, p. 70], where an example was given Lo show
that the hypothesis of normality is essential.

A lincar map ¢ : M, — M,, is said to be positive if ¢p(4) > 0 whenever 4 > 0.

We have the following theorem.

Theorem 8. Let b 2 M, — M,, he any positive linear map. Then

/()] < STb(14D)] (26)

for all € on M, and any normal A € M,. Conversely, if a nonsingular A
satisfies (26) for some pre-norm [ on M, and dall positive linear maps
h: M, — M, then A is normal.

Proof. Suppose A is normal and ¢ : M, — M,, is a positive linear map. Let
A = UDU"* be a . pectral decomposition with U = (uy, ..., u,) unitaly and D =
diag(Zy, 2av. . 2y). Then A =57 Awu, |4 = Z" i, p(d) =
Sy (), and P(|A]) = S0, |4 (uin;). Each (/)(u,u,) >0 since ¢ is
positive and w;u; = 0, so (22) with 4; = 4;p(uu; ) yields (26).

Conversely, let 4 € M, be nonsin;,uldr and satisfy (26) for some pre-norm f
on M, and all positive linear maps ¢: M, — M,,. Let U € M, be a unitary
matrix such that U'AU = T is upper lrlangular Given B = [b;] € M,, denote
Di(B) = diag(h;.0,...,0) € M,,. Define ¢, : M, — M, by ¢;(X) = (U*XU),
| <ign Then (/), is a posmve lincar map, ¢,(4) = D;(T), and ¢, (]AI) Di{|T]).

Write 7 = [1;] and |T| = [p;]. We first consider ¢,. Since T = T*T the
Euclidean lengths of corresponding columns of | 7| and T are equal. Examining
the respective first columns gives

N Il =l (27)
i=1

On the other hand, (26) ensures that f(¢,(4)) gf((/),(lAI)), so || < pir, which
together with (27) givc pi=jin| and py=---=py=0. Thus
IT| = piy & P,—,. From ]Tl == T*T we know that each non- dxagondlentry in the
first row of 7°T equals zero, i.e., fyf); =0,/ =2,...,n But 4 # 0 since T is
nonsingular, so f; =0,j = 2,...,n. Hence T = ¢, @ T,-,. Continuing this ar-
gument with ¢, ..., ¢, _, successively shows that T is diagonal and hence 4 1s
norme:. O
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Givena C {1,2,...,n} and 4 € M,, let |a| denote the cardinality of « and let
Alo) be the principal submatrix of A4 indexed by a. The map ¢: M, — M,
given by ¢(4) = Ao] is linear and positive. Applying Theorem 8 gives

Corollary S. Let A € M, be normal and o C {1,2,...,n}. Then
£ (A[])] < f(|4][o]) (28)
Jor all f € & on My.

The special case of Corollary 5 when f is & unitarily invariant norm and 4 is
Hermitian is in {12, Lemma 3].

Open Question: Can the hypothesis of nonsingularity of 4 in the second part
of Theorem 8 be removed?
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