Inequalities for $C-S$ seminorms and Lieb functions

Roger A. Horn ${ }^{\text {a,* }}$, Xingzhi Zhan ${ }^{\text {b,1 }}$
" Department of Mathematics, Unicersitl' of Utah, Salt Lake' City, UT 84103, USA
${ }^{1}$ Institute of Mathematics, Peking University; Bcijing 1018871. People's Repuhlic of Chma

Received 3 July 1998: accepted 3 November 1998
Submitted by R. Bhatia

Abstract

Let M_{n} be the space of $n \times n$ complex matrices. A seminorm $\|\cdot\|$ on M_{n} is said to be a C-S seminorm if $\left\|A^{*} A\right\|=\left\|A A^{*}\right\|$ for all $A \in M_{n}$ and $\|A\| \leqslant\|B\|$ whenever A, B, and $B-A$ are positive semidefinite. If $\|\cdot\|$ is any nontrivial $C-S$ seminorm on M_{n}, we show that $\||x|\|$ is a unitarily invariant norm on M_{n}, which permits many known inequalities for unitarily invariant norms to be generalized to the setting of $C-S$ seminorms. We prove a new inequality for $C-S$ seminorms that includes as special cases inequalities of Bhatia et al., for unitarily invariant norms. Finally, we observe that every $C-S$ seminorm belongs to the larger class of Lieb functions, and we prove some new inequalities for this larger class. © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

Let M_{n} be the space of $n \times n$ complex matrices and denote the matrix absolute value of any $A \in M_{n}$ by $|A| \equiv\left(A^{*} A\right)^{1 / 2}$. Horn and Mathias ([5,6]; see also $[4,3.5,22]$) gave two proofs of the following Cauchy-Schwarz inequality conjectured by Wimmer [11]

$$
\begin{equation*}
\left\|A^{*} B\right\|^{2} \leqslant\left\|A^{*} A\right\|\left\|B^{*} B\right\| \quad \text { for all } A, B \in M_{n} \tag{1}
\end{equation*}
$$

[^0]and any unitarily invariant norm $\|\cdot\|$ on M_{n}, which can also be derived from (11) and (16) in [2]. See [3] in this connection.

For Hermitian matrices $A, B \in M_{n}, A \preceq B$ (equivalently, $B \succeq A$) means that $B \cdot A$ is positive semidefinite. Every unitarily invariant norm $\|\cdot\|$ on M_{n} satisfies

$$
\begin{equation*}
\|A\| \leqslant\|B\| \text { whenever } A, B \in M_{n} \text { are Hermitian and } 0 \preceq A \preceq B \tag{2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left\|A^{*} A\right\|=\left\|A A^{*}\right\| \quad \text { for all } A \in M_{n} \tag{3}
\end{equation*}
$$

We say that a seminorm $\|\cdot\|$ on M_{n} is a C-S seminorm if it satisfies both (2) and (3); a seminorm $\|\cdot\|$ on M_{n} is nontrivial if there is some $A_{0} \in M_{n}$ such that $\left\|A_{0}\right\|>0$. For example, $\|A\|_{|r| r \mid} \equiv \sum_{i=1}^{i n}\left|\dot{a}_{i i}\right|$ is a nontrivial $C-S$ seminorm that is not a norm and is not unitary similarity invariant. See [5, Examples 4.12 and 4.13] for examples of unitary similarity invariant norms that are not $C-S$ seminorms. Any unitarily invariant norm is, of course, a nontrivial $C-S$ norm. However, the norm $\|A\|_{\infty} \equiv \max \left\{\left|a_{i j}\right|: 1 \leqslant i, j \leqslant n\right\}$ for $A=\left[a_{i j}\right] \in M_{n}$ satisfies (1) but does not satisfy (3); there is no seminorm on M_{n} that satisfies (1) but not (2):

Lemma 1. If a seminorm $\|\cdot\|$ on M_{n} satisfies (1), then it also satisfies (2).
Proof. Let $U, P \in M_{n}$ be given with U unitary and P positive semidefinite. Setting $A=P$ and $B=U P$ in (1) gives

$$
\begin{equation*}
\|P U P\| \leqslant\left\|P^{2}\right\| . \tag{4}
\end{equation*}
$$

Let $A, B \in M_{n}$ be positive semidefinite and assume B is nonsingular and $0 \preceq A \preceq B$. Then $C \equiv B^{-1 / 2} A B^{-1 / 2} \preceq I$ and $A=B^{1 / 2} C B^{1 / 2}$. Since every contraction is a convex combination of unitary matrices [4, Section 3.1, Problem 27] (in fact, it is the average of two unitary matrices), there are finitely many unitary matrices U_{i} and scalars $\alpha_{i}>0$ with $\sum_{i} \alpha_{i}=1$ such that $C=\sum_{i} \alpha_{i} U_{i}$. Using (4), we have

$$
\|A\|=\left\|B^{1 / 2} C B^{1 / 2}\right\|=\left\|\sum_{i} \alpha_{i} B^{1 / 2} U_{i} B^{1 / 2}\right\| \leqslant \sum_{i} \alpha_{i}\|B\|=\|B\| .
$$

The general case in which B can be singular now follows by continuity.
Nontriviality for a seminorm is equivalent to its nontriviality on positive definite matrices:

Lemma 2. Let $\|\cdot\|$ be a given seminorm on M_{n}. Then $\|\cdot\|$ is nontrivial if and only if there is some positive definite $P \in M_{n}$ such that $\|P\|>0$.

Proof. Using the Cartesian decomposition, one can write any square complex matrix as a linear combination of two Hermitian matrices, each of which can \therefore written as a ciifference of two positive definite matrices. Thus, for each $A \in M_{n}$ there are positive definite $P_{1} \ldots, P_{4} \in M_{n}$ such that $A=P_{1}-P_{2}$ $+i\left(P_{3}-P_{4}\right)$ and

$$
\|A\|=\left\|P_{1}-P_{2}+i\left(P_{3}-P_{4}\right)\right\| \leqslant\left\|P_{1}\right\|+\left\|P_{2}\right\|+\left\|P_{3}\right\|+\left\|P_{4}\right\| .
$$

Thus, $\|\cdot\|$ is nontrivial if and only if there is some positive definite $P \in M_{n}$ such that $\|P\|>0$. \square

We shall develop basic properties of $C-S$ seminorms, generalize (1) and other inequalities for unitarily invariant norms to $C-S$ seminorms, prove a new inequality for $C-S$ seminorms, discuss the Lieb fenctions, and prove some new inequalities for Lieb functions.

2. C-S Seminorms

For a positive semidefinite $P \in M_{n}$, let $\Lambda(P) \equiv \operatorname{diag}\left(\lambda_{1}(F), \ldots, i_{n}(P)\right)$, where $\lambda_{1}(P) \geqslant \cdots \geqslant \lambda_{n}(P)$ are the decreasingly ordered eigenvalues of P. For any $A \in M_{n}$, let $\sigma_{l}(A) \geqslant \cdots \geqslant \sigma_{n}(A)$ denote the decreasingly ordered singular values of A. Let $E_{i} \in M_{n}$ be the matrix whose only nonzero entry is a 1 in position (i, i). We first estabiish some basic properties of $C-S$ seminorms.

Theorem 1. Let $\|\cdot\|$ be a $C-S$ seminorm on M_{n} and let $P \in M_{n}$ be positive semidefinite. Then
(a) $\left\|U^{*} P U\right\|=\|P\|$ for all unitary $U \in M_{n}$. In particular, $\|P\|=\|\Lambda(P)\|$.
(b) $\lambda_{1}(P)\left\|E_{i}\right\| \leqslant\|P\| \leqslant \lambda_{1}(P)\|I\| \leqslant n \lambda_{1}(P)\left\|E_{1}\right\|$.
(c) If $\|\cdot\|$ is nontrivial and $P \neq 0$ then $\|P\|>0$.
(d) $\||A B C|\| \leqslant \sigma_{1}(A)\||B|\| \sigma_{1}(C)$ for all $A, B, C \in M_{n}$.

Proof. (a) Using (3), we have

$$
\left\|U^{*} P U\right\|=\left\|\left(P^{1 / 2} U\right)^{*}\left(P^{1 / 2} U\right)\right\|=\left\|P^{1 / 2} U U^{*} P^{1 / 2}\right\|=\|P\| .
$$

(b) Let Q_{i} denote the permutation matrix obtained by interchanging the first and i th rows of the identity matrix I. Using (a), we have $\left\|E_{i}\right\|=\left\|Q_{i} E_{1} Q_{i}^{\top}\right\|=$ $\left\|E_{1}\right\|, i=1, \ldots, n$, so $\|I\|=\left\|\sum_{i=1}^{n} E_{i}\right\| \leqslant \sum_{i=1}^{n}\left\|E_{i}\right\|=n\left\|E_{1}\right\|$. Since $0 \preceq \lambda_{1}(P) E_{1}$ $\preceq \Lambda(P) \preceq \lambda_{1}(P) I$, (a) and (2) imply (b).
(c) Lemma 2 and (b) ensure that $\left\|E_{1}\right\|>0$. If $P \neq 0$, then $\lambda_{1}(P)>0$ and (b) gives $\|P\| \geqslant \lambda_{1}(P)\left\|E_{1}\right\|>0$.
(d) The key observation is that $\sigma_{i}(A B C) \leqslant \sigma_{1}(A) \sigma_{i}(B) \sigma_{1}(C)$ for all $i=$ $1, \ldots, n[4,3.3 .18]$, which ensures that $0 \leqslant \Lambda(|A B C|) \leqslant \sigma_{1}(A) \Lambda(|B|) \sigma_{1}(C)$. Now use (2) again to compute

$$
\|A B C \mid\|=\|\Lambda(|A B C|)\| \leqslant \sigma_{1}(A)\|A(|B|)\| \sigma_{1}(C)=\sigma_{1}(A)\|B\| \| \sigma_{1}(C)
$$

Remark 1. The restricted unitary similarity invariance property in Theorem I(a) clearly implies the property (3), so these two properties of a seminorm are equivalent.

Cerollary 1. Let $\|\cdot\|$ be a given nontrivial C - S seminorm on M_{n}. The following are equivalent:
(a) $\mid E_{1} \| \geqslant 1$.
(b) $\|P\| \geqslant \dot{i}_{1}(P)$ for erery positive semidefinite $P \in M_{n}$.
(c) $\|P Q \mid\| \leqslant\|P\|\|Q\|$ for stif positive semidefin. $\cdot e P . Q \in M_{n}$.

Proof. (a) \Rightarrow (b). If P is positive semidefinite, Theorem $l(b)$ ensures that $\|P\| \geqslant \lambda_{1}(P)\left\|E_{1}\right\| \geqslant \lambda_{1}(P)$.
(b) \Rightarrow (c). If P and Q are positive semidefinite, then use Theorem 1(d) to compute $\|P Q\|\left\|\lambda_{1}(P)\right\| Q\|\leqslant\| P\|\|Q\|$.
(c) \Rightarrow (a). Using $\left\|E_{1}\right\|=\left\|E_{1} E_{:}\right\|=\left\|E_{1} E_{1}\right\| \leqslant\left\|E_{1}\right\|^{2}$, Theorem l(c) permits us to deduce that $1 \leqslant\left\|E_{1}\right\|$. \square

We now have in hand several examples of how nontrivial $C-S$ seminorms act on the positive semidefinite matrices the way unitarily invariant norms act on all of M_{n} : Theorem 1(c) says that a nontrivial C - S seminorm acts like a norm on the positive semidefinite matrices; Theorem 1 (d) is an analog of the fact that unitarily invariant norms are symmetric [4, problem 4, p. 211]; and Corollary I corresponds to the fact that a unitarily invariant norm $\|\cdot\|$ on M_{n} is submultiplicative if and only if $\|A\| \geqslant \sigma_{1}(A)$ for all $A \in M_{n}[4$, problem 3, p. 211]. The following theorem provides a basic explanation for these examples.

Definition 1. For any seminorm $\|\cdot\|$ on $M_{: i}$, define $\|\cdot\|_{\text {abs }}: M_{n} \rightarrow \mathbb{R}_{+}$by $\|A\|_{\text {abs }} \equiv$ $\||A|| |$ for all $A \in M_{n}$.

Theorem 2. If $\|\cdot\|$ is a nontrivial C - S seminorm on M_{n}, then $\|\cdot\|_{\text {abs }}$ is a unitarily invariant norm on M_{n}.

Proof. Let $A . B \in M_{n}$ and $c \in \mathbb{C}$ be given. We are assured that $\|A\|_{\text {abs }} \geqslant 0$; if $A \neq 0$ then $|A| \neq 0$, so Theorem l (c) ensures that $\|A\|_{\text {abs }}=\|||A| \|>0$. Homogeneity is easily checked: $\|c A\|_{\text {ibs }}=\| \| c A|\|=\|| c| | A|\|=|c|\|| A\left|\|=|c|\| A \|_{\mathrm{ibs}}\right.$. The triangle inequality for $\|\cdot\|_{\text {abs }}$ follows easily from Robert Thompson's matrix-valued triangle inequality ($[10]$ or $[4$, (3.1.15)]: There are unitary $U, V \in$ M_{r}, such that $|A+B| \preceq U|A| U^{+}+V|B| V^{*}$, so Theorem l(a) and (2) permit us to compute

$$
\begin{aligned}
\|A+B\|_{\mathrm{abs}} & =\||A+B|\| \leqslant\left\|U|A| U^{*}+V|B| V^{*}\right\| \\
& \leqslant\left\|U|A| U^{*}\right\|+\left\|V|B| V^{\cdot}\right\|=\||A|\|+\||B|\|=\|A\|_{\mathrm{abs}}+\left\|_{\|}^{\|} B\right\|_{\mathrm{abs}}
\end{aligned}
$$

Thus, $\|\cdot\|_{\text {abs }}$ is a norm on M_{n}; its unitary invariance follows from Theorem I(a): For any unitary $U, V \in M_{n}, \quad\left\|U A V^{\prime}\right\|_{\mathrm{a} b \mathrm{~s}}=\||U A V|\| \because=\left\|_{\mid}\left|V^{*}\right| A\left|V^{\prime}\|=\|\right| A \mid\right\|$ $=\|A\|_{\mathrm{ab},}$.

Implicit in this result is the following principle: am. theorem about unitarily invariant norms that involves onse , wositite semidefinite matrices mast hold for nomuritial C-S seminorms as "\%. We offer several examples as corollaries to Theorem 2; in each case the proof is the same: apply a known result about unitarily invariant norms to the unitarily invariant norm $\|\cdot\|_{\text {abs }}$.

Corollary 2. Let $L, M, X \in M_{n}$ be given and suppose

$$
\left[\begin{array}{cc}
L & X \\
X^{\prime} & M
\end{array}\right] \geqslant 0 .
$$

Then

$$
\begin{equation*}
l_{1}^{1}|X|^{r}\|\leqslant\| L^{m / 2}\left\|^{1 / p}\right\| M^{q / 2} \|^{1 / q} \tag{5}
\end{equation*}
$$

for every C-S seminorm $\|\cdot\|$ on M_{n} and all positite p, q, and r such that $p^{-1}+q^{-1}=1$. In particular.

$$
\begin{equation*}
\|X\|\|\leqslant\| L^{p / 2}\left\|^{1 / p}\right\| M^{q / 2} \|^{1 / 4} \tag{6}
\end{equation*}
$$

Proof. Apply Theorem 2 to [6, (2.11)].
Setting $L=A A^{*}, M=B^{*} B$, and $X=A B$ in Corollary 2 and using Theorem l(a) gives

Corollary 3. Let $A, B \in M_{n}$ be given, let $\|\cdot\|$ be a giten C-S seminorm on M_{n}, let $p, q, r \in(0, \infty)$ be given, and suppose $p^{-1}+q^{-1}=1$. Then

$$
\begin{equation*}
\left\||A B|^{r}\right\| \leqslant\left\|\left|A\left\|^{\|^{\prime \prime}}\right\|^{1 / / /}\left\|\left.| | B\right|^{q r^{\prime}}\right\|^{1 / 4} ;\right.\right. \tag{7}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
\left\|\left.A B|\|\leqslant\|| A\right|^{p}\right\|^{1 / p}\left\||B|^{4}\right\|^{1 / 4} \tag{8}
\end{equation*}
$$

One obtains (1) by setting $p=q=2$ and $r=1$ in (7), which is therefore a generalization of (1) to the larger class of $C-S$ seminorms.

Corollary 4. Let $\|\cdot\|$ be a given seminorm on M_{n} and define the function $v: M_{n} \rightarrow$ \mathbb{R}_{+}by $v(A) \equiv\left\|A^{*} A\right\|^{1.2}$. If $\|\cdot\|$ is a nontrivial C-S seminorm, then $v(\cdot)$ is a unitarily invariant norm.

Proof. The function v is clearly homogencous. Unitary invariance and positivity are ensured by Theorem l(a,c). The triangle inequality is a straightforward computation using (1).

Note that by Theorem 2, r in Corollary 4 is a Q-norm [1, p. 95].
Using the trace norm in (8) and the fact that $|\operatorname{tr} X| \leqslant\|X\|_{\text {is }}$ for any $X \in M_{n}$ gives the known inequality [9 , Theorem 6]

$$
\operatorname{tr}\left(A^{x} B^{1-x}\right) \leqslant(\operatorname{tr} A)^{x}(\operatorname{tr} B)^{1-x}
$$

for all positive semidefinite A and B and all $\alpha \in(0,1)$.
Now let $\|\cdot\|$ be any given unitarily invariant norm on M_{n}. Bhatia and Davis [3] (see also [1. Theorem IX.5.2]) showed that

$$
\begin{equation*}
\left\||A X B|^{r}\right\|^{2} \leqslant\left\|\left|A^{*} A X\right|^{r}\right\|\left\|\left|X B B^{r}\right|^{r}\right\| \tag{9}
\end{equation*}
$$

for all $A, B, X \in M_{n}$ and all $r>0$, which is equivalent to the same inequality with A and B restricted to be positive semidefinite. Kittaneh [7] (see [3] for another proof) proved that

$$
\begin{equation*}
\|A X B\| \leqslant\left\|A^{p} X\right\|^{1 / p}\left\|X B^{q}\right\|^{1 / q} \tag{10}
\end{equation*}
$$

for all positive semidefinite $A, B \in M_{n}$ and all positive p and q such that $p^{-1}+q^{-1}=1$. Our next theorem includes both (9) and (10), generalized to the setting of $C-S$ seminorms. Our proof makes use of the following lemma, whose clegant proof is in [3]. We write $x \prec_{w} y$ to denote weak (additive) majorization between nonnegative vectors [4, 3.2.9].

Lemma 3. Let A. $B \in M_{n}$ be positive semidefinite and suppose $0<s \leqslant t$. Then

$$
\prod_{i=1}^{k} \lambda_{i}^{l / s}\left(A^{y} B^{y}\right) \leqslant \prod_{i=1}^{k} i_{i}^{1 / \prime}\left(A^{\prime} B^{\prime}\right), \quad k=1,2, \ldots, n .
$$

Consequently,

$$
\begin{equation*}
\left[r_{i}^{r / s}\left(A^{y} B^{r}\right)\right]_{i=1}^{n} \prec_{w}\left[\dot{r i}_{i}^{r / t}\left(A^{\prime} B^{\prime}\right)\right]_{i=1}^{n} \text { for all } r>0 . \tag{11}
\end{equation*}
$$

Theorem 3. Let $A, B, X \in M_{n}$ be given with A and B positive semidefinite. Then

$$
\begin{equation*}
\left\||A X B|^{r}\right\| \leqslant\left\|\left|A^{p} X\right|^{r}\right\|^{1 / p}\left\|\left|X B^{\prime \prime}\right|^{r}\right\|^{1 / q} \tag{12}
\end{equation*}
$$

for every $C-S$ seminorm $\|\cdot\|$ on M_{n} and all positive p, q, and r such that $p^{-1}+q^{-1}=1$.

Proof. Let $X=U P$ be a polar decomposition of X (with U unitary and P positive semidefinite), write $A X F=\left(A U P^{1 / p}\right)\left(P^{1 / q} B\right)$, and use (7) to obtain

$$
\begin{equation*}
\left\|\left.A X B\right|^{r}\right\| \leqslant\left\|\left(P^{i / n} U A^{2} U P^{1 / p}\right)^{m / 2}\right\|^{1 / / /}\left\|\left(B P^{2 / 4} B\right)^{\mu / 2}\right\|^{1 / 4} \tag{13}
\end{equation*}
$$

Since the eigenvalues of $Y Z$ and $Z Y$ are the same for all $Y, Z \in M_{n}$, (11) ensures that

$$
\begin{align*}
\lambda_{i}^{m / 2}\left(P^{1 / p} U \cdot A^{2} U P^{1 / p}\right) & =\lambda_{i}^{m / 2}\left(\left(A^{2 p}\right)^{1 / p}\left(U P^{2} U^{\prime}\right)^{1 / p}\right) \\
& \prec_{1} i_{i}^{\prime / 2}\left(A^{2 p} U P^{2} U^{+}\right) \quad\left(\text { since } p^{-i}<1\right) \\
& =\lambda_{i}^{\prime / 2}\left(A^{2 p} X X^{\prime}\right)=\lambda_{i}^{r / 2}\left(\left(A^{p} X\right)^{\prime}\left(A^{\prime \prime} X\right)\right) \\
& =\sigma_{i}^{r}\left(A^{p} X\right) \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
\lambda_{i}^{q r / 2}\left(B P^{2 / q} B\right) & =\lambda_{i}^{4 / 2}\left(\left(P^{2}\right)^{1 / q}\left(B^{2 d}\right)^{1 / 4}\right) \\
& \prec_{w} i_{i}^{r / 2}\left(P^{2} B^{2 q}\right) \quad\left(\text { since } q^{-i}<1\right) \\
& =\lambda_{i}^{r / 2}\left(X^{*} X B^{2 q}\right)=\lambda_{i}^{r / 2}\left(\left(X B^{q}\right)^{-j}\left(X B^{\prime \prime}\right)\right) \\
& =\sigma_{i}^{r}\left(X B^{u}\right) . \tag{15}
\end{align*}
$$

The Fan Dominance Theorem [4, Corollary 3.5.9] now permits us to conclude from Eqs. (14) and (15) that

$$
\left\|\left(P^{1 / p} U^{*} A^{2} U P^{1 / p}\right)^{m / 2}\right\| \leqslant\left\|\left.A^{\prime} X\right|^{r}\right\| \quad \text { and } \quad\left\|\left(B P^{2 / q} B\right)^{r^{r / 2}}\right\| \leqslant\left\|\left.X B^{q}\right|^{r}\right\| .
$$

Combining these inequalities with (13) gives (12).
Kittaneh's inequality (10) is not valid for all $C-S$ seminorms. Consider the $C-S$ norm $\|A\| \equiv\|A\|_{F}+\|A\|_{|r|}=\left(\operatorname{tr} A^{*} A\right)^{1 / 2}+\sum_{i=1}^{n}\left|a_{i i}\right|$, the matrices

$$
A=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right], \quad X=\left[\begin{array}{ll}
0 & \frac{1}{2} \\
0 & 0
\end{array}\right], \quad B=I_{2},
$$

and $p=q=2$. Then $\|A X B\|^{2}=3+2 \sqrt{2}>2+2 \sqrt{2}=\left\|A^{2} X\right\|\left\|X B^{2}\right\|$.
There is a special subclass of the $C-S$ seminorms that satisfy a pair of conditions that is stronger than (2) and (3):

Theorem 4. If a seminorm $\|\cdot\|$ satissies (3) and

$$
\begin{equation*}
\|A\| \leqslant\|A \mid\| \text { for all } A \in M_{n} \tag{16}
\end{equation*}
$$

then it is a C-S seminorm.
Proof. We must show that conditions (16) and (3) imply (2). Since $0 \preceq \Lambda(X) \preceq$ $\Lambda(Y)$ whenever X and Y are Hermitian and $0 \preceq X \preceq Y$, it suffices to consider nonnegative diagonai matrices. Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \geqslant 0$. For $\alpha \in[0,1]$, denote $D(i, \alpha) \equiv \operatorname{diag}\left(d_{1}, \ldots, d_{i-1}, \alpha d_{i}, d_{i+1}, \ldots, d_{n}\right)$. Then (16) ensures that

$$
\begin{aligned}
\|D(i . x)\| & =\left\|\frac{1+\alpha}{2} D+\frac{1-\alpha}{2} \operatorname{diag}\left(d_{1}, \ldots, d_{i-1},-d_{i}^{\prime}, d_{i, 1}, \ldots, d_{n}\right)\right\| \\
& \leqslant \frac{1+x}{2}\|D\|+\frac{1-\alpha}{2}\left\|\operatorname{diag}\left(d_{1} \ldots . d_{i-1},-d_{i}, d_{i+1}, \ldots, d_{n}\right)\right\| \\
& \leqslant \frac{1+x}{2}\|D\|+\frac{1-x}{2}\|D\|=\|D\| .
\end{aligned}
$$

Using Remark 1 and this fact successively for $i=1 \ldots, n$ e deduce that $\|X\|=\|A(X)\| \leqslant\|A(Y)\|=\|Y\|$.

The class of seminorms satisfying conditions (3) and (16) is not the entire class of $C-S$ seminorms. For an example of a $C-S$ seminorm that does not satisfy (16), see [5. Example 4.12].

From Theorem 4 and Corollary 3 we know that if a seminorm satisfies (3) and (16) then it satisfies the Cauchy-Schwarz inequality (1).

Although every unitarily invariant norm on M_{n} is self-adjoint, there are $C-S$ seminorms on M_{n} that are not self-adjoint: On M_{2} consider

$$
\|A\| \equiv \max \left\{\left|a_{11}\right|+\left|a_{22}\right|,\left|a_{12}\right|\right\} .
$$

3. Functions in Lieb's class \mathscr{L}^{\prime}

Lieb [8] introduced the class \mathscr{L} ' of continuous complex-valued functions f on M_{n} that satisfy the following two conditions:

$$
\begin{equation*}
f(A) \geqslant f(B) \geqslant 0 \text { whenever } A \succeq B \succeq 0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}\left(A^{*} B\right)\right|^{2} \leqslant f\left(A^{*} A\right) f\left(B^{*} B\right) \text { for all } A, B \in M_{n} . \tag{18}
\end{equation*}
$$

Examples of functions in \mathscr{P} are the determinant, permanent, spectral radius, any elementary symmetric function of the eigenvalues, and any unitarily invariant norm.

The hypothesis (2) and (8) with $p=q=2$ show that the set of all $C-S$ seminorms is contained in \mathscr{L}, but this containment is proper. The following example shows that there is a function in Lieb's class \mathscr{P} that does not satisfy (6) and (8) for some p, q. The function f_{C} and the matrices in the following example are taken from [8, pp. 175 and 177], where they serve anoiher purpose.

Example 1. For any fixed positive semidefinite $C \in M_{n}$, the function $f_{C}(X) \equiv$ $\operatorname{det}(C+X)$ is in Lieb's class \mathscr{L} on M_{n}. Let

$$
C=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right], \quad A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], \quad B=I_{2}
$$

Then $f_{c}(A B)=2$, and $\left[f_{c}\left(|A|^{p}\right)\right]^{1 / p}\left[f_{c}\left(|B|^{\varphi}\right)\right]^{1 / q} \rightarrow \sqrt{2}$ as $p \rightarrow 1$ and $q \rightarrow \infty$. Thus this Lieb function does not satisfy (8). Moreover, f_{c} does not satisfy (6): just set $L=A^{*} A, M=B^{*} B, X=A^{*} B$ and let $p \rightarrow 1, q \rightarrow \infty$.

Lemma I shows that the properties (18) and (17) are not independent for seminorms.

Bhatia [1, p. 270] gave the following characterization of the class \mathscr{I}^{\prime}.
Theorem 5. Let $f: M_{n} \rightarrow \mathbb{C}$ be continuous. Then $f \in \mathscr{L}^{\prime}$ if and only if

$$
f(A) \geqslant 0 \text { for all } A \succeq 0
$$

and

$$
|f(C)|^{2} \leqslant f(A) f(B) \text { for all } A, B, C \text { such that }\left[\begin{array}{cc}
A & C^{+} \tag{19}\\
C & B
\end{array}\right] \succeq 0 .
$$

Bhatia's characterization leads to a simple proof [$[1, \mathrm{p} .270$] of the following result due to Lieb [8]. Bhatia observes that a sum of block matrices of the type in (19) is a positive semidefinite block matrix, to whose blocks the function f can then be applied to obtain an inequality of the type in (19).

Theorem 6. Let $A_{i}, B_{i} \in M_{n}, i=1, \ldots, n$. Then for any $f \in \mathscr{L}$

$$
\begin{equation*}
\left|f\left(\sum_{i=1}^{m} A_{i}^{*} B_{i}\right)\right|^{2} \leqslant f\left(\sum_{i=1}^{m} A_{i}^{*} A_{i}\right) f\left(\sum_{i=1}^{m} B_{i}^{*} B_{i}\right) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f\left(\sum_{i=1}^{m} A_{i}\right)\right|^{2} \leqslant f\left(\sum_{i=1}^{m}\left|A_{i}\right|\right) f\left(\sum_{i=1}^{m}\left|A_{i}^{*}\right|\right) \tag{21}
\end{equation*}
$$

If each A_{i} is normal, (21) reduces to

$$
\begin{equation*}
\left|f\left(\sum_{i=1}^{m} A_{i}\right)\right| \leqslant f\left(\sum_{i=1}^{m}\left|A_{i}\right|\right) \tag{22}
\end{equation*}
$$

Since the Hadamard product (denoted by $A \circ B$) of block matrices of the type in (19) is a positive semidefinite block matrix (the Schur product theorem [4, Theorem 5.2.1], applying Bhatia's observation to Hadamard products instead of sums gives the following theorem.

Theorem 7. Let $A_{i}, B_{i} \in M_{n}, i=1, \ldots$, . Then for any $f \in \mathscr{L}$ on M_{n}

$$
\begin{align*}
\left|f\left[\left(A_{1}^{*} B_{1}\right) \circ \cdots \circ\left(A_{m}^{*} B_{m}\right)\right]\right|^{2} \leqslant & f\left[\left(A_{1}^{*} A_{1}\right) \circ \cdots \circ\left(A_{m}^{*} A_{m}\right)\right] \tag{23}\\
& f\left[\left(B_{1}^{*} B_{1}\right) \circ \cdots \circ\left(B_{m}^{*} B_{m}\right)\right]
\end{align*}
$$

alld

$$
\begin{equation*}
\left|f\left(A_{1} \circ \cdots \circ A_{m}\right)\right|^{2} \leqslant f\left(\left|A_{1}\right| \circ \cdots \circ\left|A_{m}\right|\right) f\left(\left|A_{1}^{*}\right| \circ \cdots \circ\left|A_{m}^{*}\right|\right) \tag{24}
\end{equation*}
$$

If euch A_{i} is normal, (24) reduces to

$$
\begin{equation*}
\left|f\left(A_{1} \circ \cdots \circ A_{m}\right)\right| \leqslant f\left(\left|A_{1}\right| \circ \cdots \circ\left|A_{m}\right|\right) . \tag{25}
\end{equation*}
$$

The special case of (25) when $m=2$ and f is a unitarily invariant norm was observed by Horn and Mathias [6, p. 76], where an example was given to show that the hypothesis of normality is essential.

A linear map $\phi: M_{n} \rightarrow M_{m}$ is said to be positive if $\phi(A) \succeq 0$ whenever $A \succeq 0$. We have the following theorem.

Theorem 8. Let $\phi: M_{n} \rightarrow M_{m}$ be any positice linear map. Then

$$
\begin{equation*}
|f[\phi(A)]| \leqslant f[\phi(|A|)] \tag{26}
\end{equation*}
$$

for all $f \in \mathscr{L}$ on M_{m} and any nomal $A \in M_{n}$. Conversely, if a nonsingular A satisfies (26) for some pre-norm f on M_{m} and all positive linear maps $\phi: M_{n} \rightarrow M_{m}$, then A is normal.

Proof. Suppose A is normal and $\phi: M_{n} \rightarrow M_{m}$ is a positive linear map. Let $A=U D U^{*}$ be a pectral decomposition with $U=\left(u_{1}, \ldots, u_{n}\right)$ unitary and $D=$ $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, i_{n}\right)$. Then $A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{*}, \quad|A|=\sum_{i=1}^{n}\left|\lambda_{i}\right| u_{i} u_{i}^{*}, \quad \phi(A)=$ $\sum_{i=1}^{n} \lambda_{i} \phi\left(u_{i} u_{i}^{*}\right)$, and $\phi(|A|)=\sum_{i=1}^{n}\left|\lambda_{i}\right| \phi\left(u_{i} u_{i}^{*}\right)$. Each $\phi\left(u_{i} u_{i}^{*}\right) \succeq 0$ since ϕ is positive and $u_{i} u_{i}^{*} \succeq 0$, so (22) with $A_{i}=\lambda_{i} \phi\left(u_{i} u_{i}^{*}\right)$ yields (26).

Conversely, let $A \in M_{n}$ be nonsingular and satisfy (26) for some pre-norm f on M_{m} and all positive linear maps $\phi: M_{n} \rightarrow M_{m}$. Let $U \in M_{n}$ be a unitary matrix such that $U^{*} A U=T$ is upper triangular. Given $B=\left[b_{i j}\right] \in M_{n}$, denote $D_{i}(B) \equiv \operatorname{diag}\left(b_{i i} .0, \ldots, 0\right) \in M_{m}$. Define $\phi_{i}: M_{n} \rightarrow M_{m}$ by $\phi_{i}(X) \equiv D_{i}\left(U^{*} X U\right)$, $1 \leqslant i \leqslant n$. Then ϕ_{i} is a positive lincar map, $\phi_{i}(A)=D_{i}(T)$, and $\phi_{i}(|A|)=D_{i}(|T|)$.

Write $T=\left[t_{i i}\right]$ and $|T|=\left[p_{i j}\right]$. We first consider ϕ_{1}. Since $|T|^{2}=T^{*} T$, the Euclidean lengths of corresponding columns of $|T|$ and T are equal. Examining the respective first columns gives

$$
\begin{equation*}
\sum_{i=1}^{n}\left|p_{i}\right|^{2}=\left|t_{11}\right|^{2} \tag{27}
\end{equation*}
$$

On the other hand, (26) ensures that $f\left(\phi_{1}(A)\right) \leqslant f\left(\phi_{1}(|A|)\right)$, so $\left|t_{11}\right| \leqslant p_{11}$, which together with (27) gives $p_{11}=\left|p_{11}\right|$ and $p_{21}=\cdots=p_{n 1}=0$. Thus $|T|=p_{11} \oplus P_{n-1}$. From $|T|^{2}=T^{*} T$ we know that each non-diagonal entry in the first row of $T \cdot T$ equals zero, i.e., $\bar{t}_{11} f_{1 j}=0, j=2, \ldots, n$. But $f_{11} \neq 0$ since T is nonsingular, so $t_{1 j}=0, j=2, \ldots, n$. Hence $T=t_{11} \oplus T_{n-1}$. Continuing this argument with $\phi_{2}, \ldots, \phi_{n-1}$ successively shows that T is diagonal and hence A is norme:

Given $\alpha \subseteq\{1,2, \ldots, n\}$ and $A \in M_{n}$, let $|\alpha|$ denote the cardinality of α and let $A[\alpha]$ be the principal submatrix of A indexed by α. The map $\phi: M_{n} \rightarrow M_{|x|}$ given by $\phi(A) \equiv A[\alpha]$ is linear and positive. Applying Theorem 8 gives

Corollary 5. Let $A \in M_{n}$ be normal and $\alpha \subseteq\{1,2, \ldots, n\}$. Then

$$
\begin{equation*}
|f(A[\alpha])| \leqslant f(|A| \mid \alpha]) \tag{28}
\end{equation*}
$$

for all $f \in \mathscr{L}$ on $M_{[x \mid}$.
The special case of Corollary 5 when f is a unitarily invariant norm and A is Hermitian is in [12, Lemma 3].

Open Question: Can the hypothesis of nonsingularity of A in the second part of Theorem 8 be removed?

References

[1] R. Bhatia, Matrix Analysis, Springer, New York. 1997.
[2] R. Bhatia, Perturbation inequalities for the absolute value inap in norm ideuls of operators, J. Operator Theory: : (1988) 129-136.
[3] R. Bhatia, C. Davis, A Cauchy-Schwarz inequality for operators with applications, Linear Algebra Appl. 223/224 (1995) 119-129.
[4] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[5] R.A. Horn, R. Mathias, An analog of the Cauchy-Schwarz inequality for Hadamard products and unitarily invariant norms, SIAM J. Matrix Anal. Appl. 11 (1990) 481-498.
[6] R.A. Horn, R. Mathias, Cauchy-Schwarz inequalities associated with positive semidefinite matrices, Linear Algebra Appl. 142 (1990) 63-82.
[7] F. Kittaneh, Norm inequalities for fractional powers of positive operators, Lett. Math. Phys. 27 (1903) 279-285.
[8] E.H. Lieb, Inequalities for some operator and matrix functions, Advances in Math. 20 (1976) 174-178.
[9] J.R. Magnus, A representation theorem for $\left(\mathrm{tr} A^{p}\right)^{1 / p}$. Linear Algebra Appl. 95 (1937) 127-134.
[10] R.C. Thompson, Convex and concave functions of singular values of matrix sums, Pacific J. Math. 66 (1976) 285-290.
[II] H.K. Wimmer, Extremal problems for Hölder norms of matrices and realizations of linear systems, SIAM J. Matrix Anal. Appl. 9 (1988) 314-322.
[12] F. Zhang, Another proof of a singular value inequality concerning Hadamard products of matrices, Linear and Multilinear Algebra 22 (1988) 307-311.

[^0]: *Corresponding author. E-mail: rhorn(a)math.utah.edu.
 ${ }^{1}$ E-mail: zhan@sxx0.math.pku.edu.cn.

