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Abstract

Let AI" be the space of 1/ x 11 complex matrices. A seminorm /I . " on NI" is said to be a
C-S seminorm if IIA-AII = IIAA"II for all A E Mil and IIAII ~ IIBII whenever A, B, and B-A
are positive semidefinite. If II . II is any nontrivial C-S seminorm on AI", we show that
111/'111 is a unitarily invariant norm on M,n which permits many known inequalities for
unitarily invariant norms to be generalized to the setting of C-S seminorrns, We prove a
new inequality for C-S seminorms that includes as special cases inequalities of Bhatia et
al., for unitarily invariant norms. Finally. we observe that every C-S seminorm belongs
to the larger class of Lieb functions, and we prove some new inequalities for this larger
class. © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

Let M" be the space of 11 x Jl complex matrices and denote the matrix ab­
solute value of any A E M" by IA I=(A*A)1/2. Horn and Mathias ([5,6]; see also
[4,3.5,22]) gave two proofs of the following Cauchy-Schwarz inequality con­
jectured by Wimmer (11]

IIA*B1I 2
~ IIA+AIIIIB*BII for all A,B E Mfl (1)
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and any unitarily invariant norm 11·11 on M", which can also be derived from
(11) and (16) in [2]. See [3] in this connection.

For Hermitian matrices A, B E Mil, A -< B (equivalently, B >- A) means
that B· A is positive -emidetinite. Every unitarily invariant norm 11·11 on M"
satisfies

IIA II ~ IIBII whenever A,B E u, arc Hermitian and 0 -< A -< B (2)

as welJ as

IIA·AI/ == IIAA'" for all A E 1v1,1' (3)

We say that a seminorrn 11·11 on Mil is a C..S seminorm if it satisfies both (2)
and (3); a serninorm 11·11 on M" is nontrivial if there is some Ao E M; such that
IIAol1 > O. For example, IIA 11'lfl =r;~1 /aul is a nontrivial C-S seminorm that is
not a norm and is not unitary similarity invariant. See [5, Examples 4.)2 and
4.13] for examples of unitary similarity invariant norms that are not C-S
seminorms, Any unitarily invariant norm is, of course, a nontrivial C-S norm.
However, the norm IIA 1I~ =max] laul: I ~ i.] ~ n} for A = [aij] E Mil satisfies
(I) but does not satisfy (3); there is no seminorm on M" that satisfies (l) but not
(2):

Lemma 1. If a Se111l'110rJl1 11·/1 011 Mil satisfies (l), then it also satisfies (2).

Proof. Let U, P E Mn be given with U unitary and P positive semidefinite.
Setting A =P and B= UP in (1) gives

IIPVPII ~ Ilp21\. (4)

Let A,B E M; be positive semidefinite and assume B is nonsingular and
o --< A -< B. Then C =B-lll AB- 1/2 --< I and A = B1j 2CBl j2, Since every con..
traction is a convex combination of unitary matrices [4, Section 3.1, Problem
27] (in fact, it is the average 0:' two unitary matrices), there are finitely many
unitary matrices Vi and scalars z, > 0 with Li Cl.j == I such that C == Li rJ.iUj.

Using (4), we have

!IAII = IIB1
/
2CB1

/
2

11 == ~rxjBI/2UjBI/2 ~ ~C(iIlBII = IIBII.
i i

The general case in which B can be singular now follows by continuity. 0

Nontriviality for a seminorm is equivalent to its nontriviality on positive def­
inite matrices:

Lemma 2. Let" ·11 bea given seminorm all Mn• Then 11·/1 isnontrivial ifandonly if
there is some positive definite P E M, such that IIPI! > O.
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Proof. Using the Cartesian decomposition, one can write any square complex
matrix as a linear combination of two Hermitian matrices, each of which can
r~1 written as a difference of two positive definite matrices. Thus, for each
A E Mil there are positive definite P, ..... P4 E Mil such that A:= PI - P-y
+i (P~ - P4) and

jlAl1 == liP, - P2 + i(P', - P4)I' ~ lIP, II + IlP211 + IIP,II + II P4Ij·

Thus. 11,11 is nontrivial if and only if there is some positive definite PEAl" such
that IIPII > O. 0

We shall develop basic properties of C-S seminorms. generalize (I) and
other inequalities for unitarily invariant norms to C-S sC111inor111s. prove a new
inequality for C-S scminorms, discuss the Lieb ~:::r!ctions, and prove S0111e new
inequalities for Lieb functions.

2. C-S Seminorms

For a positive semidefinite P E M"1 Jet A(P) =diag(l'l (P), .... i.II(P)), where
).1 (P) ~ ... ;:= i.,,(P) are the decreasingly ordered eigenvalues of P. For any
A E Mil, let (1"1 (A) ~ ... ~ (1'/I(A) denote the decreasingly ordered singular val..
ues of A. Let E, E Mil be the matrix whose only nonzero entry is a I in position
(i, i). We first establish some basil: properties of C-S seminorms,

Theorem 1. Let II· II he a C-S seminorm on Mil and let P E Mil he positite
semidefinite. Then

(a) II irPU II ::: IIPII [or all unitary U E M". /n pur!icular. II Pil == II A(P) II·
(b) ).1 {P} IIE,II ~ IIPII ~ ).\ (P) II/II ~ H).I (P) IIEI II.
(c) If 11·11 is nontrivial and P .:j:. 0 then IIPII > O.
(d) IIIABC III ~ (J I(A )IIIBIll (J 1(C) jf)r aII A, B, C E M".

Proof. (a) Using (3), we have

II U* PU /I = II(pl/lUr(p l /2U) II == /lpl/2UU' pl/2" == liP/I.

(b) Let Q; denote the permutation matrix obtained by interchanging the first
and ith rows of the identity matrix /. Using (a), we have IIE;11 = IIQiEl Q111 :.=

IIEIII, i == I, ... .n, so 11/11 = liL;'~1 Edl ~ L;~I IIEdl = n11E111· Since 0 ~ ).1 (P)E1

-< A(P) -< ;., (P)/, (a) and (2) imply (b).
(c) Lemma 2 and (b) ensure that IIEIII > O. If P i= 0, then )., (P) > aand (b)

gives IIPI! ~ ).1 (P) liE, II > o.
(d) The key observation is that aAABC) ~ (JI (A )t1i(B)(Tt (C) for all i ==

I, ... .n [4,3.3.18], which ensures that O~A(IABCI) ~(JI(A)A(IBl)al(C). Now
use (2) again 1.0 compute
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Remark 1. The restricted unitary similarity invariance properly in Theorem
I(a) clearly implies the property (3), so these two properties of a seminorm are
equivalent.

Curollary 1. Lrt II ·11 he a giren nontriiiul C-S setninonn Oil Mil' The [allowing are
equivalent:

(a) IIE,II ~ 1.
(b) IIPlj ~;: i' l (P) [or ever... positire semidefinite P EMil'

(c) 1I1PQIl! ~ IIPIIIIQII for (1ft positive scmidefin.:« P. Q E M".

Proof. (a) ~ (b). If P is positive semidefinite, Theorem l(b) ensures that
IIPII ~ ;., (P)IIEIII ~ },I (P).

(b) =:> (c). If P and Q arc positive semidefinite, then use Theorem 1(d) to
compute IIIPQIII ~ ;'1 (P) IIQII ~ IIP!lIIQII·

(c) :;::} (a). Using IIEIII == II£,E:II == IIIEIE,11I ~ IIEtll~, Theorem I(c) permits
us to deduce that I ~ IIElll. 0

We now have in hand several examples of how nontrivial C-S seminorms act
on the positive semidefinite matrices the way unitarily invariant norms act on
all of Mil: Theorem I(c) says that a nontrivial C-Sserninorrn acts like a norm on
the positive semidefinite matrices; Theorem 1(d) is an analog of the fact that
unitarily invariant norms are symmetric [4, problem 4, p. 211]; and Corollary 1
corresponds to the fact that a unitarily invariant norm 11·11 on M" is submul­
tiplicative if and only if IIAII ~ (it (A) for all A EMil [4, problem 3, p. 211]. The
following theorem provides a basic explanation for these examples.

Definition 1. For any scminorm 11·11 on M,'I' define 1I·llabs: Mil ~ ~+ by IIA lIabs =
IIIAIII far all A E AI".

Theorem 2. flll·11 is a nontrivial C-S seminorm on Mil, then" ·llabs is a unitarily
invariant '101'111 011 ~1".

Proof. Let A.B E Mil and c E C be given. \Ve are assured that IIA Ilabs ~ 0; if
A f. 0 then IAI =1= 0, so Theorem l(e) ensures that I!AIJabs :::; IIIAIII > O. Homo­
geneity is easily checked: IlcAliabs === IlleAll1 := 11)eIIAIiI == jcllliAlIJ == IclllAllabs'
The triangle inequality for 11·11'los follows easily from Robert Thompson's
matrix-valued triangle inequality ([I0] or [4, (3.1.15)]: There are unitary U, V E

MI , such that IA +BI -< VIAIV~ + VIBI V·, so Theorem 1(a) and (2) permit us to
compute
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IIA+Bllahs == IIIA+8111 ~ IIUIAIU' + I/IBI V'II
~ IIUIAIU"lf + II VIBI V'I I::::IIIAIII + IIIBIII := IIAllah~ + ::Bllilbs'

Thus, "·ILbs is a norm on kIll: its unitary invariance follows frorn Theorem Ita):
For any unitary U, V E Nfll~ IIUAVllahs = IIIUAVIII :-~ iiV"'AIVIl == IIIAIII
== IIA llabs' 0

Itnplicit in this result is the following principle: allY theorem about unitarilv
invariant norms that involves (}"i~l' nositice setnidejinlt« matrices must hold jor
nontriiial c-s scminorms as 1\ <!//. \Vc ofTel' several examples as corollaries to
Theorem 2~ in each case the proof is the same: apply a known result about
unitarily invariant norms I.u tijC unitarily invariant norm Il,llabs'

Corollary 2. Let L,A1. X E A1/1 he giren and suppose

[;, ~] ~ O.

Then

(5)

for eoery c-s SCI11;'1OI'I1I 11·11 011 N/II and all positire p~ q, lind r such that
p-I +q-I == I. III particular.

Proof. Apply Theorem 2 to [6~ (2.11)]. o

(6)

Setting L == AA· ~ M == B~ B~ and X == AB in Corollary 2 and using Theorem
1(a) gives

Corollary 3. Let A~ B E Mil he given, let 11·11 he a given C-S sel11il10J'f11 011 MII~ let
p, q.r E (0. 00) he given, lind suppose p-I +q:' =.; 1. Theil

IIIABI"II ~ IlIA 1/II'III /,J/IIBIC,1'11
1
/

1
, ;

in particular,

IIIABIII ~ IliAIfl lll/pII181"III/'! .

(7)

(8)

One obtains (1) by setting p = q := 2 and r = 1 in (7), which is therefore a
generalization of (I) to the larger class of C-S serninorms.

Corollary 4. Let 11·11 hi: a given seminonu Oil M; lind define the function v : Mil -4

lR+ by \'(A) -IIA·AI!I.'~. If 11·11 is a 110111rivia! C-S scminortn. then v(·) is a
unitarily invariant norm.
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Proof. The function \' is clearly homogeneous, Unitary invariance and
positivity arc ensured by ThcorCI11 I (a..c). The triangle inequality is a
straightforward computation using (1). 0

Note that by TheorC111 2.. \' in Corollary 4 is a Q-norm [II p. 95].
Using the trace norm in (8) and the fact that !trXI ~ IIXIIlr for any .r E Mil

gives the known inequality [9.. Theorem 6]

tr (A xBI --1) ~ (t rA)1(trB) I - 1

for all positive semidefinite A and B and all 'J. E (0, I).
Now let 11·11 be any given unitarily invariant norm on Al". Bhatia and Davis

[3] (sec also [L Theorem IX.5.2]) showed that

(9)

for all A.B. X E Mil and all r > 0, which is equivalent to the same inequality
with A and B restricted to be positive semidefinite. Kittaneh [7] (see [3] for
another proof) proved that

(10)

for all positive semidefinite A~ B E Mil and all positive p and q such that
p-I +q:' == 1. Our next theorem includes both (9) and (10), generalized to the
setting of C-S seminorms. Our proof makes usc of the following lemma, whose
elegant proof is in [3]. We write x -<.1' y to denote weak (additive) majorization
between nonnegative vectors [4, 3.2.9].

Lemma 3. Let ,'·1. N E M; he positlre semidefinite and suppose 0 < s:S; t. Theil

k k

11;.:/.\'(A"BS
) ~ 11;.:/1 (AIB1

) . k == ).2, ... ,11.

i -.1 j. I

Consequently,

(11 )

Theorem 3. Let A, B, X E M" he giten with A and B positive semidefinite. Then

(12)

[or every C-S seminonn 11·11 011 M; atu! all positive p, q, and I' such that
p.-I +q' == 1.

Proof. Let ~f =-= UP be a polar decomposition of X (with U unitary and P
positive semidefinite).. write A)(F = (A Upl/p ) (pljqB), and use (7) to obtain
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IIAxBnl ~ ,,(p i/fll.rA2upl !I')/I/' /~III/I'II(Bp:' I(/Br/'' /:!1I1 /11. (13)

Since the eigenvalues of YZ and Z Yare the same for all Y~ Z EMil, (II ) ensures
that

;.~JI"r2(pl lJ1U·A2Upl /p ) = ;.~l//2 ((A2f1) l/i,(Up:! U·) 1/,,)

--<\I' ;.;'l2(A2"UP2Ui
) (since p --l < ~)

_ i.;'/2(A 21'XX') = ;./2 ((Af/Xr (A/IX))

== 0";' (APX) (14)

and

;.;""/2 (Bp2/tfB) == I.rt:. ((p2)) /11(821/)) !II )

~\I' i.~"/~ (p2 B2(/) (since q i .-:' I)

::::: ;.;·/~(x*xn2c/) = ;.?,~((XBqr(IYBI/))

=:: rr;'(XBf/). (15)

The Fan Dominance Theorem [4, Corollary 3.5.9] now permits us to conclude
from Eqs, (14) and (15) that

(pl/p trA2Vpl/fi)/JI'/2 ~ 1I1AI'Xnl and I (Bp2/lfB)'/I'n I ~ 111"rBI/II'II·

Combining these inequalities with (13) gives (12). 0

Kittaneh's inequality (10) is not valid for all C-S seminorms. Consider the
C·S norm IIA!I =/lAIIF + IIA!lI,rl := (trA*A)I/~ + L;locl laiil, the matrices

[2 2] [0 *1A= 2 2' x== 0 0.' 8==12,

and p=q==2. Then IIA)(BI1 2 == 3 +2/2 > 2 +2V1 = IIA 2XIIIIXB211.

There is a special subclass of the C-S seminorms that satisfy a pair of
conditions that is stronger than (2) and (3):

Theorem 4. {Fa seminorm 11·11 satisfies (3) lind

IJAII ( IlIAIII for all A E Mill

then it is a C..S seminorm.

(16)

Proof. We must show that conditions (16) and (3) imply (2). Since 0 -< A(X) -<
A(Y) whenever X and Yare Hermitian and 0 -< X --< Y, it suffices to consider
nonnegative diagonal matrices. Let D == diag(dl , .•. ,ell,)~ O. For rJ. E [0, I],
denote D(i, «) == diag(dl l ... ,di-I,adi,dj.t-I ,'" ,dll ) . Then (16) ensures that
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IIDU. :xlii = I ~ ~ D +~-~ :x omr,(d" ... .d..», - d., Iii, J," • ,dill
... -

I + :.r: I --x ,
:s; 2 IIDll + 2 IldJag(ell, ... 0 eli--I , -clio d, l· h .... d,,) II

~ I ~:x IIDII + I ~ :x IjDII = IIDII.... ...
Using Remark 1 and this fact successively for i = 1... , ,11 " <C deduce that
IIXII == IIA(X)II~ IIA(Y)11 == IIYll· 0

The class of seminorms satisfying conditions (3) and (J6) is not the entire
class of C-S seminorms. For an example of a C-S seminorm that docs not
satisfy (16), see [5. Example 4.12].

From ThcorCITI 4 and Corollary 3 we know that if a seminorm satisfies (3)
and (16) then it satisfies the Cauchy-Schwarz inequality (I).

Although every unitarily invariant norm on M; is self-adjoint, there are C-S
serninorms on Mil that are not self-adjoint: On M2 consider

3. Functions in Lieb's class !.l'

Lieb [8J introduced the class 2) of continuous complex-valued functionsfon
AI" that satisfy the following two conditions:

f(A) ~ f(8) ~ 0 whenever A >- B >- 0, (17)

and

(18)

Examples of functions in !jJ arc the determinant, permanent, spectral radius,
any elementary symmetric function of the eigenvalues, and any unitarily in­
variant norm.

The hypothesis (2) and (8) with P == q = 2 show that the set of all C-S
seminorms is contained in !fl, but this containment is proper. The following
example shows that there is a function in Lieb's class fP that does not satisfy
(6) and (8) for some p, q. The function lc and the matrices in the following
example are taken from [8, pp. 175 and 177], where they serve another purpose.

B = t;-I JI '

Example 1. For any fixed positive semidefinite C E /l1"" the function fc(X) ==
det(C +X) is in Lieb's class !P on Mil' Let

C == [ 1
-I
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Then Ic(AB) == 2, and [fc(IAII')]IIf'[t('(IBr,)]I/C/ ~ v'2 as p ~ I and if ~ 00.

Thus this Lieb function docs not satisfy n~). Moreover, Ie does not satisfy (6):
just set L == A-A, M = B+/J, X == A·B and let p -t L q ---+ ex.

Lemma I shows that the properties (18) and (J 7) arc not independent for
•senunorms,

Bhatia [1. p. 27d] gave the following characterization of the class . ~P .

Theorem 5. Let f: At" ~ C he continuous. Titell f E .ff (I' and only fl'
f(A) ~ O/brall A ~ 0

and

If(C)(~ f(A )f(8) for all A,H, C such that [~ ~']~ O. (19)

Bhatia's characterization leads to a simple proof [1, p. 270] of the following
result due to Lieb [8]. Bhatia observes that a sum of block matrices of the type
in (19) is a positive semidefinite block matrix, to whose blocks the function f
can then be applied to obtain an inequality of the type in (19).

Theorem 6. Let Ai' B, E A111 , i = 1, ... ,11'. Then for all)' f E .!I)

and

(

nJ )2 (III ) ('" ).r ~Ai «r ~IAil / ~IA;I .

If each Ai is normal, (21) reduces to

(20)

(21 )

(22)

Since the Hadamard product (denoted by A 0 B) of block matrices of the
type in (19) is a positive semidefinite block matrix (the Schur product theorem
[4, Theorem 5.2.1], applying Bhatia's observation to Hadamard products in­
stead of sums gives the following theorem.

Theorem 7. Let Ai' Hi EMil, j == 1, ... .m. Then for any f E 2/ Oil !vIII

1/[(A;B1) 0 •.. 0 (A;',Bm)]1
2
~ f[(AjA I) 0 ..• 0 (A/:,A m) ]

f[(B;B1) 0 ••. 0 (B:,B",)]
(23)



112 R. A. !lOI'I/, X. 2/wII I Linear Algchra and its AfJpliL'lllions 29/ (1999) J03- JJ3

and
,

II(A 1 0 •.• 0 AI/I)I~ ~f(IA 11 0 ···0 IAml)f(IAj 1 0 ... 0 IA,~,I).

If felch A; is normal, (24) reduces 10

If(A 1 0···0 AII/)/ ~f(IAI i0'" 0 rAIIII)·

(24)

(25)

The special case of (25) when 111 == 2 andf is 'l unitarily invariant norm was
observed by Horn and Mathias [6, p. 76], where an example was given to show
that the hypothesis of normality is essential.

A linear map (/) : M" -+ tvlm is said to bepositive if 4)(A) ~ 0 whenever A ~ O.
We have the following theorem.

Theorem 8. Let (/) : NIII -1 Alm he all)' positire lineal' 111l1jJ. Theil

(26)

for all f E !P Oil /vI", lind any normal A E AI". Conversely. if a nonsingular A
satisfies (26) for some pre-norm f 011 lvlm and all positive linear maps
4) : M" ~ /vIm' then A is 110r111al.

Proof. Suppose A is normal and </) : M" -t Mill is a positive linear map. Let
A = UDU" be a . pcctral decomposition with U = (UI, ... ,u,,) unitary and D =
diag(i.l,i.~~ .. . ,).,,). Then A == L:;~ :t i.juju;, IAI == 2:;:=1 I;.du;l~;, (j)(A):=:
L;':-.:I ).;(/)(lIjll;), and (p(IAI) = 2:~I=1 li.:!(p(ujlln. Each ¢(u;u;) >- 0 since 4) is
positive and 1I;1I; >- 0, so (22) with A; == i.jq) (U;lI,~) yields (26).

Conversely, let A E Al" be nonsingular and satisfy (26) for some pre-norm f
on Mill and all positive linear maps q): Mil -+ MII/' Let U E Mil be a unitary
matrix such that U·AU = T is upper triangular. Given B == [h ,j ] E /vI", denote
D;(B) =diag(b;;. 0, .... 0) E Mm. Define ¢; : Mil -1 Mm by (/);(X) - D;(U"XU),
I ~ i ~ n, Then (/); is a positive linear map, cPi(A) = D;(T) , and ¢;(IAI) = D;(ITI).

Write T== [I,}] and ITI == [PuJ. We first consider ¢I' Since ITI! = T" T, the
Euclidean lengths of corresponding columns of ITI and T are equal. Examining
the respective first columns gives

(27)

On the other hand, (26) ensures thatf((f)t(A)) ~f(PI(IAI)) , so I1III~PI[, which
together with (27) gives PI I = III I i and 01 = ... == PI/I ::= O. Thus
ITI = PII EB P'l-I. From ITI 2 = T* T we know that each non-diagonal entry in the
first row of T· T equals zero, i.e., til tl) = O~ j = 2, ... ,11. But !,I :f. 0 since T is
nonsingular, so tl) == O,j = 2, ... , 11 . Hence T == III 87 T,I-I. Continuing this ar­
gurnent with cp~, ... ,cPll_1successively shows that T is diagonal and hence A is
normal, 0
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Given c< C {I, 2, ... ,11} and A E Aln, let I~l denote the cardinality of rt. and let
A[rt.] be the principal submatrix of A indexed by ct. The map 4) : M" -+ MI~I

given by ¢(A) =A[cx] is linear and positive. Applying Theorem 8 gives

Corollary 5. Let A E Mil he normal lind rJ. C {I, 2, ... ,11}. Then

If(A [rJ.] )I~ f (IAI[rx] )

for allf E !I) 011 Ai1ctl•

(28)

The special case of Corollary 5 when f is a unitarily invariant norm and A is
Hermitian is in [12, Lemma 3].

Open Question: Can the hypothesis of nonsingularity of A in the second part
of Theorem 8 be removed?
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