

Linear Algebra and its Applications 291 (1999) 103-113

LINEAR ALGEBRA AND ITS APPLICATIONS

Inequalities for C-S seminorms and Lieb functions

Roger A. Horn^{a,*}, Xingzhi Zhan^{b,1}

^a Department of Mathematics, University of Utah, Salt Lake City, UT 84103. USA ^b Institute of Mathematics, Peking University, Beijing 100871, People's Republic of China

Received 3 July 1998; accepted 3 November 1998

Submitted by R. Bhatia

Abstract

Let M_n be the space of $n \times n$ complex matrices. A seminorm $\|\cdot\|$ on M_n is said to be a *C-S seminorm* if $\|A^*A\| = \|AA^*\|$ for all $A \in M_n$ and $\|A\| \le \|B\|$ whenever A, B, and B-Aare positive semidefinite. If $\|\cdot\|$ is any nontrivial *C-S* seminorm on M_n , we show that $\||A\|\|$ is a unitarily invariant norm on M_n , which permits many known inequalities for unitarily invariant norms to be generalized to the setting of *C-S* seminorms. We prove a new inequality for *C-S* seminorms that includes as special cases inequalities of Bhatia et al., for unitarily invariant norms. Finally, we observe that every *C-S* seminorm belongs to the larger class of Lieb functions, and we prove some new inequalities for this larger class. © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

Let M_n be the space of $n \times n$ complex matrices and denote the matrix absolute value of any $A \in M_n$ by $|A| \equiv (A^*A)^{1/2}$. Horn and Mathias ([5,6]; see also [4,3.5,22]) gave two proofs of the following Cauchy–Schwarz inequality conjectured by Wimmer [11]

$$||A^*B||^2 \le ||A^*A|| ||B^*B|| \quad \text{for all } A, B \in M_n \tag{1}$$

^{*}Corresponding author. E-mail: rhorn@math.utah.edu.

¹ E-mail: zhan@sxx0.math.pku.edu.cn.

^{0024-3795/99/} - see front matter © 1999 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (9 8) 1 0 2 4 5 - 8

and any unitarily invariant norm $\|\cdot\|$ on M_n , which can also be derived from (11) and (16) in [2]. See [3] in this connection.

For Hermitian matrices $A, B \in M_n$, $A \preceq B$ (equivalently, $B \succeq A$) means that $B \cdot A$ is positive semidefinite. Every unitarily invariant norm $\|\cdot\|$ on M_n satisfies

 $||A|| \leq ||B||$ whenever $A, B \in M_n$ are Hermitian and $0 \leq A \leq B$ (2) as well as

$$||A^*A|| = ||AA^*|| \quad \text{for all } A \in M_n.$$
(3)

We say that a seminorm $\|\cdot\|$ on M_n is a C-S seminorm if it satisfies both (2) and (3); a seminorm $\|\cdot\|$ on M_n is nontrivial if there is some $A_0 \in M_n$ such that $\|A_0\| > 0$. For example, $\|A\|_{|tr|} \equiv \sum_{i=1}^{n} |a_{ii}|$ is a nontrivial C-S seminorm that is not a norm and is not unitary similarity invariant. See [5, Examples 4.12 and 4.13] for examples of unitary similarity invariant norms that are not C-S seminorms. Any unitarily invariant norm is, of course, a nontrivial C-S norm. However, the norm $\|A\|_{\infty} \equiv \max\{|a_{ij}|: 1 \le i, j \le n\}$ for $A = [a_{ij}] \in M_n$ satisfies (1) but does not satisfy (3); there is no seminorm on M_n that satisfies (1) but not (2):

Lemma 1. If a seminorm $\|\cdot\|$ on M_n satisfies (1), then it also satisfies (2).

Proof. Let $U, P \in M_n$ be given with U unitary and P positive semidefinite. Setting A = P and B = UP in (1) gives

$$\|PUP\| \leqslant \|P^2\|. \tag{4}$$

Let $A, B \in M_n$ be positive semidefinite and assume B is nonsingular and $0 \leq A \leq B$. Then $C \equiv B^{-1/2}AB^{-1/2} \leq I$ and $A = B^{1/2}CB^{1/2}$. Since every contraction is a convex combination of unitary matrices [4, Section 3.1, Problem 27] (in fact, it is the average of two unitary matrices), there are finitely many unitary matrices U_i and scalars $\alpha_i > 0$ with $\sum_i \alpha_i = 1$ such that $C = \sum_i \alpha_i U_i$. Using (4), we have

$$||A|| = ||B^{1/2}CB^{1/2}|| = \left\|\sum_{i} \alpha_{i}B^{1/2}U_{i}B^{1/2}\right\| \leq \sum_{i} \alpha_{i}||B|| = ||B||.$$

The general case in which B can be singular now follows by continuity. \Box

Nontriviality for a seminorm is equivalent to its nontriviality on positive definite matrices:

Lemma 2. Let $\|\cdot\|$ be a given seminorm on M_n . Then $\|\cdot\|$ is nontrivial if and only if there is some positive definite $P \in M_n$ such that $\|P\| > 0$.

Proof. Using the Cartesian decomposition, one can write any square complex matrix as a linear combination of two Hermitian matrices, each of which can be written as a difference of two positive definite matrices. Thus, for each $A \in M_n$ there are positive definite $P_1, \ldots, P_4 \in M_n$ such that $A = P_1 - P_2 + i(P_3 - P_4)$ and

$$||A|| = ||P_1 - P_2 + i(P_3 - P_4)|| \le ||P_1|| + ||P_2|| + ||P_3|| + ||P_4||.$$

Thus, $\|\cdot\|$ is nontrivial if and only if there is some positive definite $P \in M_n$ such that $\|P\| > 0$. \Box

We shall develop basic properties of C-S seminorms, generalize (1) and other inequalities for unitarily invariant norms to C-S seminorms, prove a new inequality for C-S seminorms, discuss the Lieb functions, and prove some new inequalities for Lieb functions.

2. C-S Seminorms

For a positive semidefinite $P \in M_n$, let $A(P) \equiv \text{diag}(\lambda_1(P), \dots, \lambda_n(P))$, where $\lambda_1(P) \ge \dots \ge \lambda_n(P)$ are the decreasingly ordered eigenvalues of P. For any $A \in M_n$, let $\sigma_1(A) \ge \dots \ge \sigma_n(A)$ denote the decreasingly ordered singular values of A. Let $E_i \in M_n$ be the matrix whose only nonzero entry is a 1 in position (i, i). We first establish some basic properties of C-S seminorms.

Theorem 1. Let $\|\cdot\|$ be a C-S seminorm on M_n and let $P \in M_n$ be positive semidefinite. Then

(a) $||U^*PU|| = ||P||$ for all unitary $U \in M_n$. In particular, ||P|| = ||A(P)||.

- (b) $\lambda_1(P) ||E_1|| \leq ||P|| \leq \lambda_1(P) ||I|| \leq n\lambda_1(P) ||E_1||.$
- (c) If $\|\cdot\|$ is nontrivial and $P \neq 0$ then $\|P\| > 0$.
- (d) $|||ABC||| \leq \sigma_1(A) |||B||| \sigma_1(C)$ for all $A, B, C \in M_n$.

Proof. (a) Using (3), we have

 $||U^*PU|| = ||(P^{1/2}U)^*(P^{1/2}U)|| = ||P^{1/2}UU^*P^{1/2}|| = ||P||.$

(b) Let Q_i denote the permutation matrix obtained by interchanging the first and *i*th rows of the identity matrix *I*. Using (a), we have $||E_i|| = ||Q_iE_1Q_i^T|| =$ $||E_1||, i = 1, ..., n$, so $||I|| = ||\sum_{i=1}^n E_i|| \le \sum_{i=1}^n ||E_i|| = n||E_1||$. Since $0 \le \lambda_1(P)E_1 \le \Delta(P) \le \lambda_1(P)I$, (a) and (2) imply (b).

(c) Lemma 2 and (b) ensure that $||E_1|| > 0$. If $P \neq 0$, then $\lambda_1(P) > 0$ and (b) gives $||P|| \ge \lambda_1(P) ||E_1|| > 0$.

(d) The key observation is that $\sigma_i(ABC) \leq \sigma_1(A)\sigma_i(B)\sigma_1(C)$ for all i = 1, ..., n [4, 3.3.18], which ensures that $0 \leq \Lambda(|ABC|) \leq \sigma_1(A)\Lambda(|B|)\sigma_1(C)$. Now use (2) again to compute

 $|||ABC||| = ||A(|ABC|)|| \leq \sigma_1(A) ||A(|B|)|| \sigma_1(C) = \sigma_1(A) |||B||| \sigma_1(C). \square$

Remark 1. The restricted unitary similarity invariance property in Theorem I(a) clearly implies the property (3), so these two properties of a seminorm are equivalent.

Carollary 1. Let $\|\cdot\|$ be a given nontrivial C-S seminorm on M_n . The following are equivalent:

(a) $||E_1|| \ge 1$.

(b) $||P|| > \lambda_1(P)$ for every positive semidefinite $P \in M_n$.

(c) $|||PQ||| \leq ||P||||Q||$ for all positive semidefinite $P, Q \in M_n$.

Proof. (a) \Rightarrow (b). If *P* is positive semidefinite, Theorem 1(b) ensures that $||P|| \ge \lambda_1(P)||E_1|| \ge \lambda_1(P)$.

(b) \Rightarrow (c). If *P* and *Q* are positive semidefinite, then use Theorem 1(d) to compute $|||PQ||| \leq \lambda_1(P) ||Q|| \leq ||P||||Q||$.

(c) \Rightarrow (a). Using $||E_1|| = ||E_1E_1|| = ||E_1E_1|| \le ||E_1||^2$, Theorem 1(c) permits us to deduce that $1 \le ||E_1||$. \Box

We now have in hand several examples of how nontrivial *C-S* seminorms act on the positive semidefinite matrices the way unitarily invariant norms act on all of M_n : Theorem 1(c) says that a nontrivial *C-S* seminorm acts like a norm on the positive semidefinite matrices; Theorem 1(d) is an analog of the fact that unitarily invariant norms are *symmetric* [4, problem 4, p. 211]; and Corollary 1 corresponds to the fact that a unitarily invariant norm $\|\cdot\|$ on M_n is submultiplicative if and only if $\|A\| \ge \sigma_1(A)$ for all $A \in M_n$ [4, problem 3, p. 211]. The following theorem provides a basic explanation for these examples.

Definition 1. For any seminorm $\|\cdot\|$ on M_n , define $\|\cdot\|_{abs} \colon M_n \to \mathbb{R}_+$ by $\|A\|_{abs} \equiv \||A|\|$ for all $A \in M_n$.

Theorem 2. If $\|\cdot\|$ is a nontrivial C-S seminorm on M_n , then $\|\cdot\|_{abs}$ is a unitarily invariant norm on M_n .

Proof. Let $A, B \in M_n$ and $c \in \mathbb{C}$ be given. We are assured that $||A||_{abs} \ge 0$; if $A \ne 0$ then $|A| \ne 0$, so Theorem 1(c) ensures that $||A||_{abs} = ||A||| > 0$. Homogeneity is easily checked: $||cA||_{abs} = ||cA||| = ||c||A||| = |c|||A||| = |c|||A||_{abs}$. The triangle inequality for $||\cdot||_{abs}$ follows easily from Robert Thompson's matrix-valued triangle inequality ([10] or [4, (3.1.15)]: There are unitary $U, V \in M_r$ such that $||A + B| \le U|A||U' + V|B|V^*$, so Theorem 1(a) and (2) permit us to compute

$$\begin{aligned} \|A+B\|_{abs} &= \||A+B|\| \le \|U|A|U^*+V|B|V^*\| \\ &\le \|U|A|U^*\| + \|V|B|V^*\| = \||A|\| + \||B|\| = \|A\|_{abs} + \|B\|_{abs} \end{aligned}$$

Thus, $\|\cdot\|_{abs}$ is a norm on M_n ; its unitary invariance follows from Theorem 1(a): For any unitary $U, V \in M_n$, $||UAV||_{abs} = ||UAV|| = ||V|| |A||| = ||A||$ $= \|A\|_{abs}. \quad \Box$

Implicit in this result is the following principle: any theorem about unitarily invariant norms that involves only positive semidefinite matrices must hold for nontrivial C-S seminorms as well. We offer several examples as corollaries to Theorem 2; in each case the proof is the same: apply a known result about unitarily invariant norms to the unitarily invariant norm $\|\cdot\|_{abs}$.

Corollary 2. Let $L, M, X \in M_n$ be given and suppose

$$\begin{bmatrix} L & X \\ X^* & M \end{bmatrix} \ge 0.$$

Then

$$\||X|^{r} \| \leq \|L^{pr/2}\|^{1/p} \|M^{qr/2}\|^{1/q}$$
(5)

for every C-S seminorm $\|\cdot\|$ on M_n and all positive p, q, and r such that $p^{-1} + q^{-1} = 1$. In particular,

$$|||X||| \le ||L^{p/2}||^{1/p} ||M^{q/2}||^{1/q}.$$
(6)

Proof. Apply Theorem 2 to [6, (2.11)].

Setting $L = AA^*$, $M = B^*B$, and X = AB in Corollary 2 and using Theorem l(a) gives

Corollary 3. Let $A, B \in M_n$ be given, let $\|\cdot\|$ be a given C-S seminorm on M_n , let $p,q,r \in (0,\infty)$ be given, and suppose $p^{-1} + q^{-1} = 1$. Then

$$|||AB|^{r}|| \leq |||A|^{pr}||^{1/p}|||B|^{qr}||^{1/q};$$
(7)

in particular,

$$||AB||| \leq ||A|^{p} ||^{1/p} ||B|^{q} ||^{1/q}.$$
(8)

One obtains (1) by setting p = q = 2 and r = 1 in (7), which is therefore a generalization of (1) to the larger class of C-S seminorms.

Corollary 4. Let $\|\cdot\|$ be a given seminorm on M_n and define the function $v: M_n \rightarrow M_n$ \mathbb{R}_+ by $v(A) \equiv ||A^*A||^{1/2}$. If $||\cdot||$ is a nontrivial C-S seminorm, then $v(\cdot)$ is a unitarily invariant norm.

Proof. The function v is clearly homogeneous. Unitary invariance and positivity are ensured by Theorem 1(a,c). The triangle inequality is a straightforward computation using (1). \Box

Note that by Theorem 2, v in Corollary 4 is a *Q*-norm [1, p. 95].

Using the trace norm in (8) and the fact that $|trX| \leq ||X||_{tr}$ for any $X \in M_n$ gives the known inequality [9, Theorem 6]

 $\operatorname{tr}(A^{\mathsf{x}}B^{1-\mathsf{x}}) \leqslant (\operatorname{tr} A)^{\mathsf{x}}(\operatorname{tr} B)^{1-\mathsf{x}}$

for all positive semidefinite A and B and all $\alpha \in (0, 1)$.

Now let $\|\cdot\|$ be any given unitarily invariant norm on M_n . Bhatia and Davis [3] (see also [1, Theorem IX.5.2]) showed that

$$|||AXB|^{r}||^{2} \leq |||A^{*}AX|^{r}|||||XBB^{*}|^{r}||$$
(9)

for all $A, B, X \in M_n$ and all r > 0, which is equivalent to the same inequality with A and B restricted to be positive semidefinite. Kittaneh [7] (see [3] for another proof) proved that

$$\|AXB\| \leq \|A^{p}X\|^{1/p} \|XB^{q}\|^{1/q}$$

$$\tag{10}$$

for all positive semidefinite $A, B \in M_n$ and all positive p and q such that $p^{-1} + q^{-1} = 1$. Our next theorem includes both (9) and (10), generalized to the setting of *C-S* seminorms. Our proof makes use of the following lemma, whose clegant proof is in [3]. We write $x \prec_w y$ to denote weak (additive) majorization between nonnegative vectors [4, 3.2.9].

Lemma 3. Let $A, B \in M_n$ be positive semidefinite and suppose $0 < s \leq t$. Then

$$\prod_{i=1}^k \lambda_i^{1/s}(A^s B^s) \leqslant \prod_{i=1}^k \lambda_i^{1/t}(A^t B^t), \quad k=1,2,\ldots,n.$$

Consequently,

$$\left[\lambda_i^{r/s}(A^s B^s)\right]_{i=1}^n \prec_w \left[\lambda_i^{r/t}(A^t B^t)\right]_{i=1}^n \quad for \ all \ r > 0.$$

$$(11)$$

Theorem 3. Let $A, B, X \in M_n$ be given with A and B positive semidefinite. Then

$$|||AXB|^{r}|| \leq |||A^{p}X|^{r}||^{1/p} |||XB^{q}|^{r}||^{1/q}$$
(12)

for every C-S seminorm $\|\cdot\|$ on M_n and all positive p, q, and r such that $p^{-1} + q^{-1} = 1$.

Proof. Let $\tilde{X} = UP$ be a polar decomposition of X (with U unitary and P positive semidefinite), write $AXF = (AUP^{1/p})(P^{1/q}B)$, and use (7) to obtain

$$\|AXB|^{r}\| \leq \|(P^{i/p}U^{*}A^{2}UP^{1/p})^{pr/2}\|^{1/p}\|(BP^{2/q}B)^{qr/2}\|^{1/q}.$$
(13)

Since the eigenvalues of YZ and ZY are the same for all $Y, Z \in M_n$, (11) ensures that

$$\lambda_{i}^{pr/2}(P^{1/p}U^{*}A^{2}UP^{1/p}) = \lambda_{i}^{pr/2}((A^{2p})^{1/p}(UP^{2}U^{*})^{1/p}) \prec_{w} \lambda_{i}^{r/2}(A^{2p}UP^{2}U^{*}) \quad (\text{since } p^{-1} < 1) = \lambda_{i}^{r/2}(A^{2p}XX^{*}) = \lambda_{i}^{r/2}((A^{p}X)^{*}(A^{p}X)) = \sigma_{i}^{r}(A^{p}X)$$
(14)

and

$$\lambda_{i}^{qr/2}(BP^{2/q}B) = \lambda_{i}^{qr/2}((P^{2})^{1/q}(B^{2q})^{1/q}) \prec_{w} \lambda_{i}^{r/2}(P^{2}B^{2q}) \quad (\text{since } q^{-i} < 1) = \lambda_{i}^{r/2}(X^{*}XB^{2q}) = \lambda_{i}^{r/2}((XB^{q})^{*}(XB^{q})) = \sigma_{i}^{r}(XB^{q}).$$
(15)

The Fan Dominance Theorem [4, Corollary 3.5.9] now permits us to conclude from Eqs. (14) and (15) that

$$\left\| (P^{1/p}U^*A^2UP^{1/p})^{pr/2} \right\| \le \||A^pX|^r\|$$
 and $\left\| (BP^{2/q}B)^{qr/2} \right\| \le \||XB^q|^r\|.$

Combining these inequalities with (13) gives (12). \Box

Kittaneh's inequality (10) is not valid for all C-S seminorms. Consider the C-S norm $||A|| \equiv ||A||_F + ||A||_{|tr|} = (trA^*A)^{1/2} + \sum_{i=1}^n |a_{ii}|$, the matrices

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & 0 \end{bmatrix}, \quad B = I_2,$$

and p = q = 2. Then $||AXB||^2 = 3 + 2\sqrt{2} > 2 + 2\sqrt{2} = ||A^2X|| ||XB^2||$.

There is a special subclass of the C-S seminorms that satisfy a pair of conditions that is stronger than (2) and (3):

Theorem 4. If a seminorm $\|\cdot\|$ satisfies (3) and $\|A\| \leq \||A|\|$ for all $A \in M_n$, (16) then it is a C-S seminorm.

Proof. We must show that conditions (16) and (3) imply (2). Since $0 \leq A(X) \leq A(Y)$ whenever X and Y are Hermitian and $0 \leq X \leq Y$, it suffices to consider nonnegative diagonal matrices. Let $D = \text{diag}(d_1, \ldots, d_n) \ge 0$. For $\alpha \in [0, 1]$, denote $D(i, \alpha) \equiv \text{diag}(d_1, \ldots, d_{i-1}, \alpha d_i, d_{i+1}, \ldots, d_n)$. Then (16) ensures that

110 R.A. Horn, X. Zhew I Linear Algebra and its Applications 291 (1999) 103-113

$$\|D(i, \alpha)\| = \left\|\frac{1+\alpha}{2}D + \frac{1-\alpha}{2}\operatorname{diag}(d_1, \dots, d_{i-1}, -d_i, d_{i+1}, \dots, d_n)\right\|$$

$$\leq \frac{1+\alpha}{2}\|D\| + \frac{1-\alpha}{2}\|\operatorname{diag}(d_1, \dots, d_{i-1}, -d_i, d_{i+1}, \dots, d_n)\|$$

$$\leq \frac{1+\alpha}{2}\|D\| + \frac{1-\alpha}{2}\|D\| = \|D\|.$$

Using Remark 1 and this fact successively for i = 1, ..., n we deduce that $||X|| = ||A(X)|| \le ||A(Y)|| = ||Y||$.

The class of seminorms satisfying conditions (3) and (16) is not the entire class of C-S seminorms. For an example of a C-S seminorm that does not satisfy (16), see [5, Example 4.12].

From Theorem 4 and Corollary 3 we know that if a seminorm satisfies (3) and (16) then it satisfies the Cauchy–Schwarz inequality (1).

Although every unitarily invariant norm on M_n is self-adjoint, there are C-S seminorms on M_n that are not self-adjoint: On M_2 consider

 $||A|| \equiv \max \{ |a_{11}| + |a_{22}|, |a_{12}| \}.$

3. Functions in Lieb's class \mathscr{L}

Lieb [8] introduced the class \mathscr{L} of continuous complex-valued functions f on M_n that satisfy the following two conditions:

$$f(A) \ge f(B) \ge 0$$
 whenever $A \succeq B \succeq 0$, (17)

and

$$|f(A^*B)|^2 \leq f(A^*A)f(B^*B) \text{ for all } A, B \in M_n.$$
(18)

Examples of functions in \mathscr{L} are the determinant, permanent, spectral radius, any elementary symmetric function of the eigenvalues, and any unitarily invariant norm.

The hypothesis (2) and (8) with p=q=2 show that the set of all C-S seminorms is contained in \mathcal{L} , but this containment is proper. The following example shows that there is a function in Lieb's class \mathcal{L} that does not satisfy (6) and (8) for some p, q. The function f_C and the matrices in the following example are taken from [8, pp. 175 and 177], where they serve another purpose.

Example 1. For any fixed positive semidefinite $C \in M_n$, the function $f_C(X) \equiv \det(C+X)$ is in Lieb's class \mathscr{L} on M_n . Let

$$C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = I_2.$$

Then $f_C(AB) = 2$, and $[f_C(|A|^p)]^{1/p} [f_C(|B|^q)]^{1/q} \to \sqrt{2}$ as $p \to 1$ and $q \to \infty$. Thus this Lieb function does not satisfy (8). Moreover, f_C does not satisfy (6): just set $L = A^*A$, $M = B^*B$, $X = A^*B$ and let $p \to 1$, $q \to \infty$.

Lemma 1 shows that the properties (18) and (17) are not independent for seminorms.

Bhatia [1, p. 270] gave the following characterization of the class \mathscr{L} .

Theorem 5. Let $f: M_n \to \mathbb{C}$ be continuous. Then $f \in \mathscr{L}$ if and only if

$$f(A) \ge 0$$
 for all $A \succeq 0$

and

$$|f(C)|^{2} \leq f(A)f(B) \text{ for all } A, B, C \text{ such that } \begin{bmatrix} A & C^{*} \\ C & B \end{bmatrix} \succeq 0.$$
(19)

Bhatia's characterization leads to a simple proof [1, p. 270] of the following result due to Lieb [8]. Bhatia observes that a sum of block matrices of the type in (19) is a positive semidefinite block matrix, to whose blocks the function f can then be applied to obtain an inequality of the type in (19).

Theorem 6. Let $A_i, B_i \in M_n, i = 1, ..., m$. Then for any $f \in \mathscr{L}$

$$\left| f\left(\sum_{i=1}^{m} A_i^* B_i\right) \right|^2 \leqslant f\left(\sum_{i=1}^{m} A_i^* A_i\right) f\left(\sum_{i=1}^{m} B_i^* B_i\right)$$
(20)

and

$$\left| f\left(\sum_{i=1}^{m} A_{i}\right) \right|^{2} \leq f\left(\sum_{i=1}^{m} |A_{i}|\right) f\left(\sum_{i=1}^{m} |A_{i}^{*}|\right).$$

$$(21)$$

If each A_i is normal, (21) reduces to

$$\left| f\left(\sum_{i=1}^{m} A_{i}\right) \right| \leqslant f\left(\sum_{i=1}^{m} |A_{i}|\right).$$

$$(22)$$

Since the Hadamard product (denoted by $A \circ B$) of block matrices of the type in (19) is a positive semidefinite block matrix (the Schur product theorem [4, Theorem 5.2.1], applying Bhatia's observation to Hadamard products instead of sums gives the following theorem.

Theorem 7. Let
$$A_i, B_i \in M_n, i = 1, ..., m$$
. Then for any $f \in \mathscr{L}$ on M_n

$$|f[(A_1^*B_1) \circ \cdots \circ (A_m^*B_m)]|^2 \leq f[(A_1^*A_1) \circ \cdots \circ (A_m^*A_m)]$$

$$f[(B_1^*B_1) \circ \cdots \circ (B_m^*B_m)]$$
(23)

and

$$|f(A_1 \circ \cdots \circ A_m)|^2 \leq f(|A_1| \circ \cdots \circ |A_m|) f(|A_1^*| \circ \cdots \circ |A_m^*|).$$
(24)

If each A_i is normal, (24) reduces to

$$|f(A_1 \circ \cdots \circ A_m)| \leq f(|A_1| \circ \cdots \circ |A_m|).$$
⁽²⁵⁾

The special case of (25) when m = 2 and f is a unitarily invariant norm was observed by Horn and Mathias [6, p. 76], where an example was given to show that the hypothesis of normality is essential.

A linear map $\phi: M_n \to M_m$ is said to be *positive* if $\phi(A) \succeq 0$ whenever $A \succeq 0$. We have the following theorem.

Theorem 8. Let $\phi: M_n \to M_m$ be any positive linear map. Then

$$|f[\phi(A)]| \leq f[\phi(|A|)] \tag{26}$$

for all $f \in \mathcal{L}$ on M_m and any normal $A \in M_n$. Conversely, if a nonsingular A satisfies (26) for some pre-norm f on M_m and all positive linear maps $\phi: M_n \to M_m$, then A is normal.

Proof. Suppose A is normal and $\phi: M_n \to M_m$ is a positive linear map. Let $A = UDU^*$ be a pectral decomposition with $U = (u_1, \dots, u_n)$ unitary and $D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Then $A = \sum_{i=1}^n \lambda_i u_i u_i^*$, $|A| = \sum_{i=1}^n |\lambda_i| u_i v_i^*$, $\phi(A) = \sum_{i=1}^n \lambda_i \phi(u_i u_i^*)$, and $\phi(|A|) = \sum_{i=1}^n |\lambda_i| \phi(u_i u_i^*)$. Each $\phi(u_i u_i^*) \succeq 0$ since ϕ is positive and $u_i u_i^* \succeq 0$, so (22) with $A_i = \lambda_i \phi(u_i u_i^*)$ yields (26).

Conversely, let $A \in M_n$ be nonsingular and satisfy (26) for some pre-norm fon M_m and all positive linear maps $\phi: M_n \to M_m$. Let $U \in M_n$ be a unitary matrix such that $U^*AU = T$ is upper triangular. Given $B = [b_{ij}] \in M_n$, denote $D_i(B) \equiv \text{diag}(b_{ii}, 0, \dots, 0) \in M_m$. Define $\phi_i: M_n \to M_m$ by $\phi_i(X) \equiv D_i(U^*XU)$, $1 \leq i \leq n$. Then ϕ_i is a positive linear map, $\phi_i(A) = D_i(T)$, and $\phi_i(|A|) = D_i(|T|)$.

Write $T = [t_{ij}]$ and $|T| = [p_{ij}]$. We first consider ϕ_1 . Since $|T|^2 = T^*T$, the Euclidean lengths of corresponding columns of |T| and T are equal. Examining the respective first columns gives

$$\sum_{i=1}^{n} |p_{i1}|^2 = |t_{11}|^2.$$
(27)

On the other hand, (26) ensures that $f(\phi_1(A)) \leq f(\phi_1(|A|))$, so $|t_{11}| \leq p_{11}$, which together with (27) gives $p_{11} = |t_{11}|$ and $p_{21} = \cdots = p_{n1} = 0$. Thus $|T| = p_{11} \oplus P_{n-1}$. From $|T|^2 = T^*T$ we know that each non-diagonal entry in the first row of T^*T equals zero, i.e., $\bar{t}_{11}t_{1j} = 0, j = 2, \ldots, n$. But $t_{11} \neq 0$ since T is nonsingular, so $t_{1j} = 0, j = 2, \ldots, n$. Hence $T = t_{11} \oplus T_{n-1}$. Continuing this argument with $\phi_2, \ldots, \phi_{n-1}$ successively shows that T is diagonal and hence A is normal. \Box Given $\alpha \subseteq \{1, 2, ..., n\}$ and $A \in M_n$, let $|\alpha|$ denote the cardinality of α and let $A[\alpha]$ be the principal submatrix of A indexed by α . The map $\phi : M_n \to M_{|\alpha|}$ given by $\phi(A) \equiv A[\alpha]$ is linear and positive. Applying Theorem 8 gives

Corollary 5. Let $A \in M_n$ be normal and $\alpha \subseteq \{1, 2, ..., n\}$. Then

$$|f(A[\alpha])| \leq f(|A|[\alpha])$$
for all $f \in \mathscr{L}$ on $M_{[\alpha]}$.
$$(28)$$

The special case of Corollary 5 when f is a unitarily invariant norm and A is Hermitian is in [12, Lemma 3].

Open Question: Can the hypothesis of nonsingularity of A in the second part of Theorem 8 be removed?

References

- [1] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- [2] R. Bhatia, Perturbation inequalities for the absolute value map in norm ideals of operators, J. Operator Theory 13 (1988) 129-136.
- [3] R. Bhatia, C. Davis, A Cauchy-Schwarz inequality for operators with applications, Linear Algebra Appl. 223/224 (1995) 119–129.
- [4] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
- [5] R.A. Horn, R. Mathias, An analog of the Cauchy-Schwarz inequality for Hadamard products and unitarily invariant norms, SIAM J. Matrix Anal. Appl. 11 (1990) 481-498.
- [6] R.A. Horn, R. Mathias, Cauchy-Schwarz inequalities associated with positive semidefinite matrices, Linear Algebra Appl. 142 (1990) 63-82.
- [7] F. Kittaneh, Norm inequalities for fractional powers of positive operators, Lett. Math. Phys. 27 (1993) 279-285.
- [8] E.H. Lieb, Inequalities for some operator and matrix functions, Advances in Math. 20 (1976) 174-178.
- [9] J.R. Magnus, A representation theorem for $(trA^p)^{1/p}$, Linear Algebra Appl. 95 (1987) 127–134.
- [10] R.C. Thompson, Convex and concave functions of singular values of matrix sums, Pacific J. Math. 66 (1976) 285-290.
- [11] H.K. Wimmer, Extremal problems for Hölder norms of matrices and realizations of linear systems, SIAM J. Matrix Anal. Appl. 9 (1988) 314-322.
- [12] F. Zhang, Another proof of a singular value inequality concerning Hadamard products of matrices, Linear and Multilinear Algebra 22 (1988) 307-311.