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Abstract

A finite element-based beam analysis for anisotropic beams with arbitrary-shaped cross-sections is developed with the
aid of a formal asymptotic expansion method. From the equilibrium equations of the linear three-dimensional (3D) elas-
ticity, a set of the microscopic 2D and macroscopic 1D equations are systematically derived by introducing the virtual
work concept. Displacements at each order are split into two parts, such as fundamental and warping solutions. First
we seek the warping solutions via the microscopic 2D cross-sectional analyses that will be smeared into the macroscopic
1D beam equations. The variations of fundamental solutions enable us to formulate the macroscopic 1D beam problems.
By introducing the orthogonality of asymptotic displacements to six beam fundamental solutions, the end effects of a
clamped boundary are kinematically corrected without applying the sophisticated decay analysis method. The boundary
conditions obtained herein are applied to composite beams with solid and thin-walled cross-sections in order to demon-
strate the efficiency and accuracy of the formal asymptotic method-based beam analysis (FAMBA) presented in this paper.
The numerical results are compared to those reported in literature as well as 3D FEM solutions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Slender beam structures made of composite materials have found many useful applications in aerospace
engineering, civil engineering and the automobile industry. One of the active research fields is the modelling
of composite rotor blades used on helicopters and tiltrotor aircrafts (Hodges, 1990; Jung et al., 1999; Volovoi
et al., 2001). In general, one may successfully apply a classical beam theory (i.e., the beam deformation is
defined by the classical strain measure associated with extension, bending, and torsion) if the beam is suffi-
ciently slender, i.e., �! 0 (� is the ratio of the maximum dimension of a beam cross-section to the character-
istic length of the beam). It is, however, not adequate for an analysis of the beam made of a strongly
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anisotropic composite, especially one weak in shear. Thus refined beam theories have been developed to
improve the prediction of behavior of composite beams. It has been, however, turned out to be unnecessary
to develop refined beam theories for composite box beams studied extensively in literature (Volovoi et al.,
2001), since the slenderness of composite box beams selected is within the validity of a classical beam theory.
In spite of that, several refined theories have failed to accurately predict the elastostatic behavior of such
beams. This is quite different from plate and shell theories. Indeed, unlike plate and shell structures in which
Poisson’s effect is dominant in the reduced dimension (i.e., thickness), the thin-walled structure exhibits more
complex deformations on the cross-section such as bending deformation and distortion of thin-walls.

Although a classical beam theory is adequate for many engineering applications (Trabucho and Viãno,
1996), one may need to obtain high accuracy for other applications such as high frequency vibrations, sand-
wich beams and thin-walled open-section beams. In general, a Rankine–Timoshenko-type beam theory is
required for most engineering applications. The Vlasov theory is, however, more important than the Ran-
kine–Timoshenko one when the considered beam falls into the category of thin-walled open-section beams.
A treatment of torsional warping restrained effect belongs to the boundary layer problems in the asymptotic
sense (Balch and Steele, 1987). As far as the interior solutions are concerned, considering such an effect may
need a special treatment. For instance, one can promote the order of magnitude of the warping function
related to the cross-sectional distortion mode (Yu et al., 2005). In this paper, we shall focus on Rankine–Tim-
oshenko corrections to elementary (or classical) beam theory by using a formal asymptotic expansion method.

An asymptotic method is a mathematically rigorous means to analyze beam structures. There are two types
of asymptotic methods at least; one is a formal asymptotic expansion method (FAM) (Trabucho and Viãno,
1996) and the other is a variational-asymptotic method (VAM) pioneered by Berdichevsky (1981). It is, how-
ever, troublesome in both methods to obtain the higher-order effects, such as transverse shear deformations, in
the 1D beam response because it requires a proper set of boundary conditions. In order to circumvent this,
Hodges and his co-workers (Cesnik et al., 1996; Popescu and Hodges, 2000; Yu et al., 2002) have devoted
to deriving a Rankine–Timoshenko-like beam theory based on the finite element cross-sectional analysis by
applying the VAM. The most recent version of such efforts has been made by Yu et al. (2002) via the so-called
Timoshenko-like energy transformation. These have been referred to as variational-asymptotic beam sectional
analysis (VABS) since the work of Cesnik and Hodges (1997).

On the other hand, there have been several efforts (Duva and Simmonds, 1991; Fan and Widera, 1992;
Buannic and Cartraud, 2000; Buannic and Cartraud, 2001b) to obtain the exact interior solution using a for-
mal asymptotic method by finding asymptotically correct boundary conditions with the aid of a decay analysis
method developed by Gregory and Wan (1984). It is, however, too difficult to find these boundary conditions
by applying a decay method for engineering applications. One can avoid such difficulty by obtaining simplified
boundary conditions while providing reasonable accuracy (i.e., Rankine–Timoshenko corrections to elemen-
tary beam theory). Such boundary conditions were derived by Horgan and Simmonds (1991) and applied to
orthotropic beams weak in shear (Duva and Simmonds, 1992). In Section 5, these simplified boundary con-
ditions will be discussed in detail.

In this paper, we follow and generalize the way described in Buannic and Cartraud (2000, 2001a) via the
virtual work concept as well as finite element method. A formal asymptotic method-based beam analysis
(FAMBA) is developed to analyze anisotropic beams with arbitrary cross-sections, which is completely real-
ized with 2D four-noded and 1D three-noded finite elements for microscopic and macroscopic problems,
respectively. Simplified boundary conditions mentioned in the above are generalized by introducing an orthog-
onality of asymptotic displacements to six beam fundamental displacements as constraint equations. In this
way, a set of recursive beam equations along with proper boundary conditions are obtained in the weak form,
which yields comparable results to the Rankine–Timoshenko theory. The results obtained herein are asymp-
totically correct up to Oð�2Þ and are compared to those available in literature and 3D FEM solutions for a
sandwich beam with solid cross-section and thin-walled composite box beams.

2. Formal asymptotic expansion method

A 3D slender beam is considered in this study, which has arbitrary cross-section geometry and material
anisotropy (Fig. 1). In order to apply the asymptotic expansion method by taking the advantage of slenderness
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Fig. 1. A 3D slender composite structure.
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of beam structures, one needs to define the small parameter, �, first. To this end, the beam cross-section is
scaled in the following manner:
y1 ¼ x1; y2 ¼
x2

�
; y3 ¼

x3

�
; ð1Þ
in which a small parameter, �, is defined as
� ¼ h
lc
; ð2Þ
where h and lc represent the maximum dimension of the beam cross-section and the characteristic length of the
beam, respectively.

The axial coordinate, x1, is chosen to be passing through the centroid of cross-sections (Trabucho and
Viãno, 1996). It has the following properties
hx2i ¼ hx3i ¼ hx2x3i ¼ 0; ð3Þ
where h�i ¼
R

S �dS.
2.1. 3D formulation and asymptotic expansions

By employing the scaled coordinates presented in Eq. (1), the 3D static problem of a linear elasticity, which
consists of equilibrium equations, strain–displacement relationships and constitutive equations, can be
expressed as follows:
rij;j þ ~bi ¼ 0! 1

�
Lt

23rþ Lt
1r;1 þ ~b ¼ 0;

eij ¼
1

2
ðui;j þ uj;iÞ ! e ¼ 1

�
L23uþ L1u;1;

rij ¼ cijklekl ! r ¼ 1

�
CL23uþ CL1u;1;

ð4Þ
where a superscript t denotes the transpose of a matrix or vector, cijkl represent components of the 3D elas-
ticity tensor, a body force vector ~b ¼ b~b1

~b2
~b3ct, and a displacement vector u ¼ bu1 u2 u3ct. The stress and strain

tensors are expressed in the vector form
e ¼ b e11 e22 e33 2e23 2e13 2e12 ct;
r ¼ b r11 r22 r33 r23 r13 r12 ct:

ð5Þ
The linear differential operator L23 and linear operator L1 are defined as
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L23 ¼

0 0 0

0 ðÞ;2 0

0 0 ðÞ;3
0 ðÞ;3 ðÞ;2
ðÞ;3 0 0

ðÞ;2 0 0

2666666664

3777777775
; L1 ¼

1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0

2666666664

3777777775
; ð6Þ
in which ðÞ;i ¼
oðÞ
oyi

.
The boundary conditions considered herein are given as follows: the lateral surface is subject to the traction

such that
rijnj ¼ ~gi on oS � ½0; l�; ð7Þ
where n is the normal unit vector to the lateral surface. The ends of a beam are subject to either the
traction
rijnr
j ¼ ~pi on Sr ¼ S � f0gr or S � flgr ð8Þ
or the prescribed displacement
u ¼ �u on Su ¼ S � f0gu or S � flgu; ð9Þ

in which nr is the normal unit vector to the end surface of a beam.

The order of magnitude of the body forces and applied forces, which yields the behavior of a beam (Cimet-
iere et al., 1988; Buannic and Cartraud, 2001a; Irago and Viãno, 2002), is presupposed as follows:
~b1ðxiÞ ¼ �b1ðyiÞ; ~b2ðxiÞ ¼ �2b2ðyiÞ; ~b3ðxiÞ ¼ �2b3ðyiÞ;

~g1ðxiÞ ¼ �2g1ðyiÞ; ~g2ðxiÞ ¼ �3g2ðyiÞ; ~g3ðxiÞ ¼ �3g3ðyiÞ;

~p1ðxiÞ ¼ �p1ðyiÞ; ~p2ðxiÞ ¼ �2p2ðyiÞ; ~p3ðxiÞ ¼ �2p3ðyiÞ:

ð10Þ
There are two different scales associated with the displacement, which are related to convergence results of the
asymptotic method and are well discussed in the work of Buannic and Cartraud (2001a). Here we adopt the
following scale of the displacement used in references Kolpakov (1991), Fan and Widera (1992), and Buannic
and Cartraud (2000),
uðxiÞ ¼ uð0Þðy1Þ þ
X1
n¼1

�nuðnÞðyiÞ; ð11Þ
where uð0Þ ¼ 0 uð0Þ2 uð0Þ3

j kt
and uðnÞ ¼ uðnÞ1 uðnÞ2 uðnÞ3

j kt
. By plugging the preceding displacement into the

stress and strain, their asymptotic expansions are now read as:
eðxiÞ ¼ eð0ÞðyiÞ þ
X1
n¼1

�neðnÞðyiÞ;

rðxiÞ ¼ rð0ÞðyiÞ þ
X1
n¼1

�nrðnÞðyiÞ:
ð12Þ
2.2. Recursive formulation of the problem and fundamental solution

In this subsection, the recursive formulations, which include the equilibrium equations, applied loadings
and boundary conditions given in the previous subsection, are presented. By substituting Eqs. (10) and (11)
into Eqs. (4), (7), and (8) and collecting the same order of the small parameter �, one can obtain a set of
the recursive equations as follows:
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Lt
23r
ðkþ1Þ ¼ �Lt

1r
ðkÞ
;1 � bðkÞ;

eðkþ1Þ ¼ L23uðkþ2Þ þ L1u
ðkþ1Þ
;1 ;

rðkþ1Þ ¼ Ceðkþ1Þ;

rðkþ1Þ
ij nj ¼ gðkþ1Þ

i on oS � ½0; l�;

8>>>><>>>>: k P �1; ð13Þ
in which bðkÞ and gðkþ1Þ
i vanish unless k ¼ 1 or 2, and boundary conditions at both ends of a beam are given by
uðkþ1Þ ¼ �uðkþ1Þ on Su;

rðkþ1Þ
ij nr

j ¼ pðkþ1Þ
i on Sr;

(
k P �1; ð14Þ
where pðkÞi ¼ 0 if k 6¼ 1 or 2, and �uð0Þ ¼ b0 �u2 �u3 ct; �uð1Þ ¼ b�u1 0 0 ct and �uðkÞ ¼ 0; k P 1 (Buannic and
Cartraud, 2001a). Here it is worth while to mention that the treatment of displacement boundary conditions
is not trivial. In general, there is no way to strictly satisfy them without obtaining the boundary layer solutions
(Duva and Simmonds, 1991). This will be discussed in Section 5.

The first microscopic 2D problem, which corresponds to k ¼ �1, has an analytical form of solutions,
because rð0Þ ¼ 0 (Buannic and Cartraud, 2000, 2001a). The next order displacement can be now found from
the strain–displacement relation such that
eð0Þ ¼ L23uð1Þ þ L1u
ð0Þ
;1 ¼ 0; ð15Þ
which renders
uð1Þp ¼ �b1 0 0 ct y2uð0Þ2;1 þ y3uð0Þ3;1

� �
: ð16Þ
The solution of the microscopic problem is defined up to a rigid body displacement ðuRÞ. This forms the fun-
damental solution such that
~uð1ÞðyiÞ ¼ uð1Þp ðyiÞ þ u
ð1Þ
R ðyiÞ ¼ Hðy2; y3Þ~vð1Þðy1Þ � uð1ÞðyiÞ; ð17Þ
where u
ð1Þ
R ðyiÞ ¼ Wðy2; y3Þvð1Þðy1Þ, which has the property such that L23uR ¼ 0,
Wðy2; y3Þ ¼
1 0 0 0

0 1 0 �y3

0 0 1 y2

264
375; Hðy2; y3Þ ¼

1 0 0 0 �y2 �y3

0 1 0 �y3 0 0

0 0 1 y2 0 0

264
375; ð18Þ
and j k j k

vð1Þðy1Þ ¼ uð1Þ1 uð1Þ2 uð1Þ3 /ð1Þ

t
; ~vð1Þðy1Þ ¼ vð1Þt uð0Þ2;1 uð0Þ3;1

t
:

As shown in Eq. (15), this fundamental solution does not produce any deformation on the cross-section. In
other words, it explains six fundamental behaviors of the beam with the rigid cross-section and is used to kine-
matically correct the end effects as well as to derive the 1D macroscopic equations, which will be discussed in
Section 4.

3. Microscopic 2D problems via finite element method

In this section, we seek the solution of microscopic 2D problems with the aid of the finite element method.
A way to overcome the singularity of cross-sectional matrices is described, and the solution of higher than
third microscopic problem is generalized. Thus one can obtain the higher-order cross-sectional deformation
mode neither by solving the 3D problem nor by considering the complicated 1D beam boundary conditions.
This can provide us the in-depth understanding of the 3D behavior of a beam as well as the physical insight.

3.1. Solution of the second microscopic problem

Now let us consider the second microscopic problem that corresponds to k ¼ 0 in Eq. (13). The solution of
the second microscopic problem, uð2Þ, can be decomposed into two parts as
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uð2ÞðyiÞ ¼ ~uð2ÞðyiÞ þ uð2Þw ðyiÞ; ð19Þ

where the first term consists of a trivial solution (i.e., the fundamental solution) and the second term represents
a nontrivial solution accounting for the cross-sectional deformation or the warping function.

A nontrivial solution should be now sought via the virtual work concept with traction-free cross-sectional
boundary conditions. The virtual work form of the second microscopic problem can be expressed as follows:
Z

S
duð2ÞtLt

23r
ð1Þ dS ¼ 0: ð20Þ
By applying the integration by parts and considering the cross-sectional boundary conditions via the diver-
gence theorem, one can obtain
Z

S
dðL23~u

ð2ÞÞtrð1Þ dS þ
Z

S
dðL23uð2Þw Þ

trð1Þ dS ¼ 0; ð21Þ
where the underlined term provides the part of macroscopic equations that will be shown in Section 4.
To solve the second term given in Eq. (21), one needs to calculate the strain first. Substituting Eq. (19) into

the first-order strain yields the following expression:
eð1Þ ¼ L1Uðy2; y3Þeð1Þ þ L23uð2Þw ; ð22Þ

where eð1Þ ¼ uð1Þ1;1 uð0Þ2;11 uð0Þ3;11 /ð1Þ;1

j kt
,

Uðy2; y3Þ ¼
1 �y2 �y3 0

0 0 0 �y3

0 0 0 y2

264
375: ð23Þ
Here one can see that the first-order strain eð1Þ includes the classical beam strain measure eð1Þ that consists of an
extensional strain, two bending curvatures and a torsional strain. A similar expression can be found in Buan-
nic and Cartraud (2000, 2001a).

3.2. Finite element discretization of the second microscopic problem

The finite element discretization is now applied to the second term in Eq. (21) using the QM6 element devel-
oped by Taylor et al. (1976). This element is based on the standard four-noded isoparametric shape functions,
in which the displacement related to the strain includes the incompatible function to improve the performance,
and the integration rule is modified to pass the patch test. The warping solution is then discretized as follows:
uw ¼ Nu�uw; ð24Þ

where N u is the shape function matrix, and �uw is the nodal vector.

The discretized linear system equations are obtained by plugging Eq. (24) into Eqs. (21) and (22).
K�uð2Þw þ F23Eeð1Þ ¼ 0; ð25Þ

where the matrices are defined by
K ¼ hðL23NuÞtCðL23NuÞi; F23E ¼ hðL23NuÞtCðL1UÞi: ð26Þ

The preceding equation should be solved under the constraints such that
Z

S
ðduð2Þw Þ

t � uR dS ¼ 0; ð27Þ
because the warping solution on the cross-section should be orthogonal to the rigid body displacement. To this
end, the rigid displacement uR is discretized by W ¼ NuW. Substituting it into Eq. (27) yields
ðd�uð2Þw Þ
t
HWv ¼ 0; ð28Þ
where H ¼
R

S Nt
uNu dS.
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By combining Eqs. (25) and (28), one can obtain
K�uð2Þw þ F23Eeð1Þ ¼ HWv; ð29Þ
where v can be regarded as the Lagrange multipliers, which represents the magnitude of rigid body modes and
has the similar meaning as l in Cesnik et al. (1996). Multiplying Eq. (29) by Wt yields
v ¼ ðWtHWÞ�1Wt K�uð2Þw þ F23Eeð1Þ
� �

: ð30Þ
causes Eq. (29) to become
eI K�uð2Þw þ F23Eeð1Þ
� �

¼ 0; ð31Þ
where eI ¼ fI�HWðWtHWÞ�1Wtg. Note that the matrix eI cannot be simply eliminated since it is a singular
matrix.

The matrix eIK still possesses four zero eigenvalues which correspond to the rigid body modes (three trans-
lations and one rotation on the cross-section). There are two methods to remove them; one is to apply four
point constraints (Giavotto et al., 1983; Cesnik et al., 1996), and the other is to apply the penalty function
based on eigenvectors corresponding to zero eigenvalues (Peters and Hackl, 2005). Here we adopt the latter
one since it is numerically efficient and such eigenvectors are already known (i.e., W). One can rewrite Eq.
(31) as:
bK�uð2Þw ¼ �eIF23Eeð1Þ; ð32Þ
in which bK ¼ ðeIKþ aWWtÞ, where a is the penalty parameter which can be systematically determined via an
eigenvalue analysis, i.e., the largest eigenvalue of the matrix, eIK.

Consequently the solution of Eq. (32) is represented by
�uð2Þw ¼ Cð1Þe eð1Þ; ð33Þ
where
Cð1Þe ¼ �bK�1eIF23E: ð34Þ
Note that each column of Cð1Þe corresponds to four cross-sectional deformations such as extension, two bend-
ing and torsion. In general, for an isotropic beam with a solid cross-section, extension and two bending modes
represent the 3D in-plane Poisson’s effects, and a torsion mode represents the out-of-plane Saint–Venant’s tor-
sional warping.

3.3. Solution of the third and higher microscopic problem

Unlike first two microscopic problems, a body force vector bð1Þ and a lateral surface traction vector gð2Þ are
presented in the third microscopic problem, k ¼ 1 in Eq. (13). Here we make the assumption that these forces
vary only along the axial coordinate y1, which means that their distributions on the cross-section are constant
along the coordinate y1, so as to separate them into two functions such that
bð1ÞðyiÞ ¼ Bð1Þðy2; y3Þb̂ð1Þðy1Þ;
gð2ÞðyiÞ ¼ Gð2Þðy2; y3Þĝð2Þðy1Þ:

ð35Þ
For the solution of the third microscopic problem, uð3Þ ¼ ~uð3Þ þ uð3Þw , by applying the procedure described in
Section 3.1, the virtual work form is expressed as
Z

S
dðL23uð3ÞÞtrð2Þ dS ¼

Z
S

duð3ÞtLt
1r
ð1Þ
;1 dS þ

Z
S

duð3ÞtBð1Þ dSb̂ð1Þ þ
Z

oS
duð3ÞtGð2Þ dSĝð2Þ; ð36Þ
where the terms related to d~uð3Þ contribute to the 1D macroscopic equations, and the terms related to duð3Þw

form the 2D microscopic equations.
By applying the procedure described in Section 3.2 to Eq. (36), the discretized linear system equations can

be obtained as follows:
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K�uð3Þw ¼ �F23Eeð2Þ þ F11Ee
ð1Þ
;1 þ ðFt

231 � F231Þ�uð2Þw;1 þ F
ð1Þ
B b̂ð1Þ þ F

ð2Þ
G ĝð2Þ; ð37Þ
where the new matrices are defined by
F11E ¼ hðL1NuÞtCðL1UÞi; F231 ¼ hðL23NuÞtCðL1NuÞi;
F
ð1Þ
B ¼ hðNuÞtBð1Þi; F

ð2Þ
G ¼ hðNuÞtGð2ÞioS ;

ð38Þ
where h�ioS ¼
R

oS �dS.
By following the same way described in Section 3.2, the solution of Eq. (37) is now represented by
�uð3Þw ¼ Cð1Þe eð2Þ þ Cð2Þe e
ð1Þ
;1 þ �u

ð3Þ
f ; ð39Þ
where
�u
ð3Þ
f ¼ eFð1Þb b̂ð1Þ þ eFð2Þg ĝð2Þ ð40Þ
and
Cð2Þe ¼ bK�1eI F11E þ ðFt
231 � F231ÞCð1Þe

� �
;eFð1Þb ¼ bK�1eIF

ð1Þ
B ; eFð2Þg ¼ bK�1eIF

ð2Þ
G :

ð41Þ
Similarly, the warping solution of the higher than third microscopic problem is obtained by
�uðkÞw ¼
Xk�1

m¼1

CðmÞe om�1
y1

eðk�mÞ þ �u
ðkÞ
f ; k P 4; ð42Þ
where CðmÞe , which represents the mth order cross-sectional deformation mode, can be generalized as
CðmÞe ¼ bK�1eI F11NCðm�2Þ
e þ Ft

231 � F231

� �
Cðm�1Þ

e

� �
; m P 3; ð43Þ
in which Fe
11N ¼ hðL1NuÞtCðL1NuÞi. Thanks to Eqs. (42) and (43), the complete displacement solution of the

kth microscopic problem can be now generalized by
uðkÞ ¼ H~vðkÞ þ
Xk�1

m¼1

NuC
ðmÞ
e om�1

y1
eðk�mÞ þNu�u

ðkÞ
f ; k P 1: ð44Þ
4. Macroscopic 1D problems

A set of macroscopic 1D beam equations can be derived from the virtual work of each microscopic prob-
lem. A fundamental solution, ~uðkÞ, in each microscopic problem does not produce any deformation on the
cross-section as mentioned in Section 2.2. Thus the terms related to the variation of this solution should be
vanished. In this way, the virtual work of each microscopic problem is equilibrated, and a set of macroscopic
1D beam equations can be derived.

4.1. Macroscopic 1D beam equilibrium equations

The term related to the variation of a fundamental solution appears first in the second microscopic prob-
lem. Recalling that L23uR ¼ 0, one can rewrite the underline term in Eq. (21) as
Z

S
d L23uð2Þp

� �t
rð1Þ dS ¼ 0: ð45Þ
This becomes duð1Þ2;1hr
ð1Þ
12 i þ duð1Þ3;1hr

ð1Þ
13 i ¼ 0, which implies that
rð1Þ12

D E
� Qð1Þ2 ¼ 0; rð1Þ13

D E
� Qð1Þ3 ¼ 0: ð46Þ
In the third microscopic problem, from Eq. (36), we have
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Z
S

dðL23uð3Þp Þ
trð2Þ dS ¼

Z
S

d~uð3ÞtLt
1r
ð1Þ
;1 dS þ

Z
S

d~uð3ÞtBð1Þ dS b̂ð1Þ þ
Z

oS
d~uð3ÞtGð2Þ dS ĝð2Þ; ð47Þ
from which one may obtain the first set of beam equilibrium equations. There are, however, the trivial terms
related to first-order shear forces Qð1Þ that are equal to zero from Eq. (46). This corresponds to the assumption
usually made in a classical beam theory. In addition, first-order bending moments M ð1Þ are connected to sec-
ond-order shear forces Qð2Þ that are also presented in the fourth microscopic problem (Buannic and Cartraud,
2000, 2001a). This makes it possible to express the beam equilibrium equations in terms of first-order stress
resultants. Thus one can obtain a set of the beam equilibrium equations corresponding to the first macroscopic
1D problem from the third and fourth microscopic problem as follows:
N ð1Þ;1 þ f1 ¼ 0;

M ð1Þ
a;11 � ma;1 � fa ¼ 0;

T ð1Þ;1 ¼ 0;

ð48Þ
where
N ð1Þ ¼ rð1Þ11

D E
; M ð1Þ

a ¼ � yar
ð1Þ
11

D E
; T ð1Þ ¼ y2r

ð1Þ
13 � y3r

ð1Þ
12

D E
;

f1 ¼ Bð1Þ1

D E
b̂ð1Þ1 þ Gð2Þ1

D E
oS

ĝð2Þ1 ;

fa ¼ Bð2Þa

� 	
b̂ð2Þa þ Gð3Þa

� 	
oS

ĝð3Þa ;

ma ¼ yaBð1Þ1

D E
b̂ð1Þ1 þ yaGð2Þ1

D E
oS

ĝð2Þ1 ;

ð49Þ
in which the index a varies from 2 to 3. f1 and fa represent the applied axial and shear forces, respectively. ma

are moments acting on the cross-section.
In the same manner, from fourth and fifth microscopic problems, the second set of beam equilibrium equa-

tions can be written as
N ð2Þ;1 ¼ 0; M ð2Þ
2;11 ¼ 0; M ð2Þ

3;11 ¼ 0; T ð2Þ;1 þ s ¼ 0; ð50Þ
where
s ¼ y2Bð2Þ3 b̂ð2Þ3 � y3Bð2Þ2 b̂ð2Þ2

D E
þ y2Gð3Þ3 ĝð3Þ3 � y3Gð3Þ2 ĝð3Þ2

D E
oS
: ð51Þ
The higher than second set of beam equilibrium equations is now generalized, since the body force and applied
surface traction do not appear due to the assumptions made in Eq. (10), as follows:
N ðkÞ;1 ¼ 0; M ðkÞ
2;11 ¼ 0; M ðkÞ

3;11 ¼ 0; T ðkÞ;1 ¼ 0; k P 3: ð52Þ
4.2. Macroscopic 1D beam constitutive equations

The first-order beam constitutive equations can be defined as follows:
fN ð1Þ ¼ hðL1UÞtrð1Þi � Að1Þeð1Þ; ð53Þ
where fN ð1Þ and Að1Þ are the 4� 1 vector and the 4� 4 matrix, respectively, and their explicit expressions are
given by
fN ð1Þ ¼ bN ð1Þ M ð1Þ

2 M ð1Þ
3 T ð1Þct ;

Að1Þ ¼ hðL1UÞtCðL1UÞi þ hðL1UÞtCðL23NuÞiCð1Þe :
ð54Þ
The higher than first-order beam constitutive equations, from Eq. (44), can be now generalized as follows:
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fN ðkÞ ¼
Xk

m¼1

AðmÞom�1
y1

eðk�mþ1Þ þfN ðkÞ
f ; k P 2; ð55Þ
where
AðkÞ ¼ hðL1UÞtCðL1NuÞiCðk�1Þ
e þ hðL1UÞtCðL23NuÞiCðkÞe ;fN ðkÞ

f ¼ hðL1UÞtCðL23NuÞi�uðkþ1Þ
f :

ð56Þ
4.3. The weak form of macroscopic 1D problems

By considering the boundary conditions given in Eq. (14), the weak form of the first beam equilibrium
equations, Eq. (48), can be found as follows:
Z l

0

ðdeð1ÞÞtfN ð1Þ � ðdv̂ð1ÞÞt eBð1Þn o
dy1 ¼ ðdv̂ð1ÞÞt eF ð1Þ þ eF ð2ÞQ

� �n o
; ð57Þ
where
v̂ð1Þ ¼ uð1Þ1 uð0Þ2 uð0Þ3 /ð1Þ uð0Þ2;1 uð0Þ3;1

j kt
; eBð1Þ ¼ f1 f2 f3 0 m2 m3b ct;eF ð1Þ ¼ hHtðy2; y3Þ p1 0 0b cti; eF ð2ÞQ ¼ 0 hp2i hp3i 0 0 0b ct;

ð58Þ
in which H is given in Eq. (18). An applied force vector, eF ð1Þ, includes a tensile force and two bending mo-
ments related to rð1Þ, whereas eF ð2ÞQ includes two shear forces related to rð2Þ. It should be noticed that there is no
applied torsion in this macroscopic problem that will be presented in the second macroscopic problem. Thus
the torsion angle /ð1Þðy1Þ ¼ 0 unless there exist tension–torsion and/or bending–torsion couplings.

The weak from of the second beam equilibrium equations, Eq. (50), is given by
Z l

0

ðdeð2ÞÞtfN ð2Þ � ðdv̂ð2ÞÞt eBð2Þn o
dy1 ¼ ðdv̂ð2ÞÞt eF ð2ÞT

n o
; ð59Þ
where
v̂ð2Þ ¼ uð2Þ1 uð1Þ2 uð1Þ3 /ð2Þ uð1Þ2;1 uð1Þ3;1

j kt
;eBð2Þ ¼ 0 0 0 s 0 0b ct; eF ð2ÞT ¼ 0 0 0 hy2p3 � y3p2i 0 0b ct:

ð60Þ
Unlike first two macroscopic problems, the weak form of the higher than second beam equilibrium equations,
Eq. (52), can be generalized, since there are no body forces and applied forces, as follows:
Z l

0

ðdeðkÞÞtfN ðkÞ dy1 ¼ 0; k P 3: ð61Þ
Here it should be mentioned that the beam formulations (weak form) presented in the above are different from
those (strong form) reported in the literature (Duva and Simmonds, 1991; Buannic and Cartraud, 2001b). The
weak formulation has a merit in that the force boundary conditions are automatically handled.

Each weak form of beam equilibrium equations presented in Eqs. (57), (59) and (61), is discretized by using
three-noded finite beam elements, in which quadratic Lagrangian and fifth-order Hermite interpolation func-
tions are used for ðuðkÞ1 ;/ðkÞÞ and ðuðkÞ2 ; uðkÞ3 Þ, respectively. The interpolation functions used herein are selected to
provide the accurate higher-order derivatives, up to the fourth-order one, with respect to the coordinate y1.
Then one can obtain the kth order beam equations as follows:
K
ð1Þ
b
bVðkÞ ¼ �P

ðkÞ
N þ P

ðkÞ
F ; k P 1; ð62Þ
where the first-order beam stiffness matrix K
ð1Þ
b , the kth order nodal degrees of freedom vector bVðkÞ, and the kth

order force vector PðkÞ are given by
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K
ðkÞ
b ¼

Z l

0

ðLð1Þb NbÞtAðkÞðLðkÞb NbÞdy1;

P
ðkÞ
N ¼

Xk

m¼2

K
ðmÞ
b
bVðk�mþ1Þ þ

Z l

0

ðLð1Þb NbÞtfN ðkÞ
f dy1;

ð63Þ
in which Nb is the beam shape function matrix, L
ð1Þ
b is the linear differential operator for a beam, and

L
ðkÞ
b ¼ o

ðk�1Þ
y1

L
ð1Þ
b ; k P 2. The fictive volume force, P

ðkÞ
N , which accounts for the higher-order effects (Buannic

and Cartraud, 2001a). A beam force vector P
ðkÞ
F is given by
P
ð1Þ
F ¼

Z l

0

ðNbÞt eBð1Þ dy1 þ ðNbÞtð eF ð1Þ þ eF ð2ÞQ Þ
n o

;

P
ð2Þ
F ¼

Z l

0

ðNbÞt eBð2Þ dy1 þ ðNbÞt eF ð2ÞT

n o
;

ð64Þ
and P
ðkÞ
F ¼ 0; k P 3.

5. Boundary conditions

The weak form presented in Section 4.3 provides the displacement boundary conditions at the end of a
beam, dv̂ ¼ 0, which indicates that six fundamental displacements must be prescribed. It, however, does
not tell us how such displacements are prescribed. As discussed in Duva and Simmonds (1991) and Duva
and Simmonds (1992), it is not trivial to satisfy the 3D displacement boundary conditions given in Eq. (9).
One can obtain asymptotically correct boundary conditions without solving boundary layer problems by
applying the decay analysis method proposed by Gregory and Wan (1984). This method was successfully
applied to a sandwich beam (Buannic and Cartraud, 2000) and periodic heterogeneous beams (Buannic
and Cartraud, 2001b) as well as isotropic or orthotropic beams (Gregory and Wan, 1984; Duva and Sim-
monds, 1991; Fan and Widera, 1992). It is, however, too difficult to obtain asymptotically correct boundary
conditions, which have turned out to be different from those derived by variational principles for a displace-
ment prescribed boundary (Fan and Widera, 1994), via this decay method for engineering applications in gen-
eral. Thus one needs to simplify these boundary conditions while providing accurate enough results to
engineering applications. Such simplified boundary conditions were obtained by Horgan and Simmonds
(1991) for a transversely isotropic semi-infinite beam and were applied to a linear vibration analysis of ortho-
tropic cantilevered beams (Duva and Simmonds, 1992). Horgan and Simmonds (1991) derived the necessary
conditions to decay for four sets of boundary conditions, such as traction, mixed (two) and displacement, as
�! 0, where � is the ratio of the shear modulus to the geometric mean of axial and transverse moduli. In fact,
these simplified boundary conditions are equivalent to so-called averaged displacement boundary conditions
for a clamped boundary (Savoia and Tullini, 1996). In this paper, these are generalized by employing the
orthogonality conditions of asymptotic displacements to six fundamental solutions as constraints.

The displacement boundary conditions given in Eq. (9) can be interpreted as constraint equations. One can
express them in the weak form
Z

Su

ðd~uðkÞÞtðuðkÞ � �uðkÞÞdS ¼ 0; k P 1; ð65Þ
where uð0Þa ¼ �ua from Eq. (14), and substituting Eq. (17) into the above yields
ðd~vðkÞÞtUðkÞ ¼ 0; UðkÞ �
Z

Su

Htðy2; y3ÞðuðkÞ � �uðkÞÞdS; ð66Þ
where UðkÞ is a 6� 1 vector, and the matrix H related to six fundamental solutions is given in Eq. (18). Similar
constraint equations can be found in flexible multibody dynamics (Simeon, 2006).

Since the necessary conditions to decay for the mixed data are the same as those for the displacement data
(Horgan and Simmonds, 1991), four sets of boundary conditions can be generalized as follows:
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• Case (A), stress data:
N ð1Þ M ð1Þ
2 M ð1Þ

3

j kt
¼ Ht p1 0 0b ct
� 	

; Qð2Þa ¼ hpai; T ð2Þ ¼ hy2p3 � y3p2i: ð67Þ
• Case (B), mixed data:
Qð2Þa ¼ hpai; T ð2Þ ¼ hy2p3 � y3p2i; U
ðkÞ
ð1;5;6Þ ¼ 0: ð68Þ
• Case (C), mixed data:
N ð1Þ M ð1Þ
2 M ð1Þ

3

j kt
¼ Ht p1 0 0b ct
� 	

; U
ðkÞ
ð2:4Þ ¼ 0: ð69Þ
• Case (D), displacement data:
U
ðkÞ
ð1:6Þ ¼ 0: ð70Þ
In the above, the simply supported boundary conditions are equivalent to Case (C). This is the case that the
higher-order effect (e.g., the transverse shear deformation) purely comes from the fictive volume force, since
there is no edge effect.

Once we solved the beam equations of Eq. (62) along with the boundary conditions of Eqs. (67)–(70), one
can recover 3D displacements and stresses on the cross-section at any axial locations by using Eqs. (11) and
(12).

We shall henceforth focus on the clamped boundary conditions ð�uðkÞ ¼ 0; k P 0Þ since the displacement
boundary conditions only are problematic, as discussed in Fan and Widera (1994). One can express them
in the recursive manner by substituting Eq. (44) into Eq. (66) as follows:
~vð1Þð0Þ ¼ 0;

~vð2Þð0Þ ¼ �H�1
h hHtNuiCð1Þe eð1Þj0;

~vðkÞð0Þ ¼ �H�1
h hHtNui

Xk�1

m¼1

CðmÞe o
m�1
y1

eðk�mÞ þ �u
ðkÞ
f

 !





0

; k P 3;

ð71Þ
where Hh ¼ hHtHi. Note that the displacement boundary conditions presented in the above should be rear-
ranged by corresponding components to the macroscopic 1D problems. The beam displacement boundary
conditions v̂ðkÞð0Þ can be now represented by
v̂ð1Þð0Þ ¼ 0;

v̂ðkÞð0Þ ¼ ~v
ðkÞ
1 ~v

ðk�1Þ
2 ~v

ðk�1Þ
3 ~v

ðkÞ
4 ~v

ðkÞ
5 ~v

ðkÞ
6

j kt



0
; k P 2:

ð72Þ
6. Numerical examples and discussions

A sandwich beam with a solid cross-section and composite beams with closed thin-walled cross-sections are
considered in this study. The results obtained herein are compared to those available in literature to assess the
accuracy of the formal asymptotic beam analysis with proposed displacement boundary conditions. The pres-
ent approach is referred to as FAMBA (Formal Asymptotic Method-based Beam Analysis) throughout
numerical examples.

In all figures reported herein, the zeroth-, first-, and second-order solutions are represented by the beam
displacement vector such that
ûðk�1Þðy1Þ � v̂ðkÞðy1Þ ¼ uðkÞ1 uðk�1Þ
2 uðk�1Þ

3 /ðkÞ uðk�1Þ
2;1 uðk�1Þ

3;1

j k
; ð73Þ
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where ûðk�1Þ; k P 1, represent the ðk � 1Þth order beam solutions. The zeroth-order solutions correspond to
the classical Euler–Bernoulli–Navier beam theory, and first-order and/or second-order solutions are compa-
rable to the Rankine–Timoshenko beam theory.

In what follows, it will be demonstrated that the boundary conditions given in Eq. (73) are simple enough
for engineering applications and accurate enough for high precision analyses, as long as the interior solutions
are concerned. In some of reported figures, 3D FEM results are obtained by using hybrid stress eight-noded
brick elements developed by Yeo and Lee (1997) in order to save the computational efforts.
6.1. A sandwich beam with a solid cross-section

An example considered in this subsection is taken from Buannic and Cartraud (2000), where a cantilevered
sandwich beam with a square solid cross-section was analyzed by applying the boundary conditions obtained
from the decay analysis based on the Maxwell–Betti’s reciprocal theorem. The beam dimension is shown in
Fig. 2 and the material properties of face sheets are E ¼ 200 GPa and m ¼ 0:3, and those of a core are
E ¼ 0:4 GPa and m ¼ 0:3.

The bending deflection and slope of a sandwich beam under a vertical unit tip load are shown in Fig. 3,
where the axial coordinate is normalized by the length of a beam, 300 mm. The results of 3D FEM are
obtained by using 14,000 solid elements. The first-order solution is found to be zero because there are no cou-
plings, whereas the second-order solution shows a significant improvement with non-zero slope boundary con-
dition at the clamped end. The present zeroth- and second-order solutions are the same as those given in
Buannic and Cartraud (2000). In fact, the third-order solution recovers the 3D interior solution with the
aid of the decay method, as demonstrated in Buannic and Cartraud (2000). At this point, it should be noticed
face sheet
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Fig. 2. Geometry of a sandwich beam cross-section.
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Fig. 3. A sandwich beam under a vertical unit tip load: (a) bending deflection and (b) bending slope.
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that such third-order correction could not be achieved with the displacement orthogonality conditions pre-
sented in Eq. (66) which could produce comparable results to the Rankine–Timoshenko beam theory (Duva
and Simmonds, 1991; Duva and Simmonds, 1992).

In Figs. 4 and 5, the first- and second-order cross-sectional deformation modes of a sandwich beam are
illustrated, which correspond to Cð1Þe and Cð2Þe given in Eqs. (34) and (41). In Fig. 4, one can see the 3D Pois-
son’s effects for extension and two bending modes, which are usually neglected in beam theories, and the
Saint–Venant’s warping for a torsion mode. The non-classical cross-sectional deformations appear at the sec-
ond-order warping solution Cð2Þe , as shown in Fig. 5. One can clearly see the shear deformation effects in two
bending modes and the in-plane cross-sectional distortion in a torsion mode. These cross-sectional deforma-
tion modes, which can be calculated without solving beam problems using Eq. (43) for kth order, enable us to
have a physical insight on the 3D behavior of a beam.

In order to illustrate the asymptotic behavior of the FAMBA, the tip deflections of a sandwich beam with
the same cross-sectional dimension are presented in Fig. 6. The tip deflection is normalized so that the
zeroth-order solution yields a constant value irrespective of the length-to-thickness ratio S. This sandwich
beam exhibits a significant shear deformation due to the flexible core material. The zeroth-order solution
is, therefore, very poor as S P 50, whereas the second-order solution is well correlated with the 3D FEM
solution.
Extension Bending 2

Bending 3 Torsion

Fig. 4. The first-order cross-sectional deformation mode of a sandwich beam, Cð1Þe .

Extension Bending 2

Bending 3 Torsion

Fig. 5. The second-order cross-sectional deformation mode of a sandwich beam, Cð2Þe .
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Fig. 6. Tip deflection of a sandwich beam with varying length-to-height ratio.
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6.2. Thin-walled composite box beams

In this subsection, cantilevered thin-walled composite beams are considered to compare the results obtained
herein with those available in literature. A thin-walled box beam configuration is shown in Fig. 7, where the
height h3 ¼ 13:46 mm (0.53 in.), the width h2 ¼ 24:2 mm (0.953 in.), the wall thickness t ¼ 0:762 mm
(0.03 in.), and the length l ¼ 762 mm (30 in.). The ply material properties of AS4/3501-6 graphite-epoxy
are taken from Chandra et al. (1990) and Kim and White (1997).
EL ¼ 141:96 GPa ð20:59� 106 psiÞ; ET ¼ 9:79 GPa ð1:42� 106 psiÞ;
GLT ¼ 6:0 GPa ð0:87� 106 psiÞ; GTT ¼ 4:83 GPa ð0:69� 106 psiÞ;
mLT ¼ mTT ¼ 0:42; ply thickness ¼ 0:127 mm ð0:005 in:Þ;

ð74Þ
where L and T denote a fiber direction and a perpendicular direction to the fiber, respectively.
Four cases are considered in this subsection, which are listed in Table 1. The orthotropic box beam (Case 1)

is taken from Popescu and Hodges (2000). The circumferentially uniform stiffness (CUS) configuration or the
antisymmetric configuration (Case 2) and the circumferentially asymmetric stiffness (CAS) configuration or
the symmetric configuration (Cases 3 and 4) are taken from Chandra et al. (1990) and Kim and White
(1997). For all cases, either the shear force or tensile force of 4.448 N (1 lb) is applied at the free end of a beam.
For a CUS1 configuration, the results of 3D FEM are obtained by using 2400 solid elements.
6.2.1. An orthotropic box beam

An orthotropic box beam (Case 1) is analyzed first. In Fig. 8, normalized deflections are plotted as a func-
tion of length-to-height ratio, where VABS and NABSA results are reproduced by taking their stiffness from
x2

x3

h3

h2

t

Fig. 7. Cross-sectional geometry of a composite box beam.



Table 1
Layups for a thin-walled box beam

Layup Upper wall Right wall Lower wall Left wall

Case 1 ½0�6 ½0�6 ½0�6 ½0�6
Case 2 (CUS1) ½15�6 ½�15�6 ½�15�6 ½15�6
Case 3 (CAS1) ½15�6 [15/�15]3 ½15�6 [15/�15]3
Case 4 (CAS3) ½45�6 [45/�45]3 ½45�6 [45/�45]3
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Fig. 8. Tip deflection of an orthotropic box beam with varying length-to-thickness ratio (Case 1).

J.-S. Kim et al. / International Journal of Solids and Structures 45 (2008) 1954–1977 1969
Popescu and Hodges (2000). NABSA stands for Nonhomogeneous Anisotropic Beam Section Analysis, which
is a computer code developed at Georgia Tech by Prof. O. Bauchau based on the work of Giavotto et al.
(1983). It is seen that there is no difference among three models in practice, since they are based on the
cross-sectional analysis using 2D finite elements so that warping functions can be accurately calculated for this
orthotropic box beam.

The first-order cross-sectional deformation mode of an orthotropic box beam is illustrated in Fig. 9, where
the in-plane warping and Saint–Venant’s torsional warping are clearly seen. Unlike the solid cross-section case
presented in Section 6.1, the 3D Poisson’s effects are replaced by the combination of local thin-wall beam
extension and/or bending modes. Such local deformations are more clearly shown in Fig. 10, where the
third-order cross-sectional deformation mode is illustrated. It is worth while to note that even though this spe-
cific example does not require such a higher-order in-plane deformation mode, it may be needed for different
loading conditions or for the high frequency analysis in vibration problems. This demonstrates that the pres-
ent FAMBA has capability to provide the in-depth understanding of the behavior of a 3D box beam.
6.2.2. Anisotropic box beams

For Cases 2–4, the bending slope and induced twist distributions along the axial coordinate are presented in
Figs. 11–13, where a vertical shear force is applied. There are extension–twist and bending–shear couplings in
the CUS configuration, whereas bending–torsion and extension–shear couplings in the CAS configuration.
The present results are compared to those obtained by VABS (Yu et al., 2002), NABSA, Jung et al. (2002)
and Kim and White (1997) as well as experimental results obtained by Chandra et al. (1990). The results of
VABS, NABSA and Jung et al. (2002) presented herein are reproduced by taking their stiffness models from
references and applying them to a typical Timoshenko beam model.

In Fig. 11, it can be seen that the present second-order solution is almost same as the zeroth-order solution.
This implies that a shear deformation is not significant for this 30 in.-long beam. It is, therefore, hard to dis-
tinguish the present FAMBA-0th and -2nd results from 3D FEM results, while those obtained by VABS,
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Fig. 9. The first-order cross-sectional deformation mode of an orthotropic box beam, Cð1Þe , (Case 1).
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Fig. 10. The third-order cross-sectional deformation mode of an orthotropic box beam, Cð3Þe , (Case 1).
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Fig. 11. Bending slope of a CUS1 beam under a vertical shear force (Case 2).
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Fig. 12. Induced twist angle of a CAS1 beam under a vertical shear force (Case 3).
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Fig. 13. Induced twist angle of a CAS3 beam under a vertical shear force (Case 4).
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NABSA and Jung et al. (2002) slightly deviate from 3D FEM ones. For CAS1 and CAS3 configurations,
induced twist distributions due to a vertical shear force are presented in Figs. 12 and 13, respectively. It is
of interest to see that the results obtained by Kim and White (1997) and Berdichevsky et al. (1992) are different
from the others such as FAMBA, VABS and NABSA, even though Kim and White (1997) have considered
the 3D elastic effects and thickness warping and Berdichevsky et al. (1992) have used the variational-asymp-
totic method without considering thickness effect. This indicates that both local thin-wall deformations (not
Poisson’s effects in the 3D sense) and thickness effects are important even for the classical behavior of a
box beam.

It is not good enough to compare the bending slope and twist angle distributions along the axial coordinate,
since all the approaches yield similar results due to the fact that composite box beams considered herein are
slender. In order to compare their asymptotic behavior and/or their accuracy of Rankine–Timoshenko-like
corrections, normalized transverse deflections against the slenderness ratio are plotted in Figs. 14, 16, 18
and 19. As discussed in Popescu and Hodges (2000) and Yu et al. (2002), the 6� 6 stiffness matrix of VABS
is different from that of NABSA for the CUS1 configuration (Case 2), whereas that from Jung et al. (2002) is
well correlated with NABSA. This case under a horizontal shear force is shown in Fig. 14. It is seen that FAM-
BA-2nd among others shows the best result as compared to 3D FEM, whereas NABSA, Jung et al. (2002) and
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Fig. 14. Tip deflection of a CUS1 beam under a horizontal shear force vs. length-to-width ratio (Case 2).
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VABS deviate from 3D FEM even for S P 20 where 3D FEM converges to a classical solution. For 5 in.-long
CUS1 beam, the bending slope along the axial coordinate is plotted in Fig. 15. It can be seen that the interior
solution is valid approximately 1.5–4 in. from a clamped end. As long as the interior solution is concerned, the
present FAMBA-2nd shows an excellent agreement with 3D FEM, whereas VABS deviates from 3D FEM as
much as FAMBA-0th (or a classical theory) does.

Induced vertical deflections of a CUS1 beam due to a horizontal shear force is presented in Fig. 16, where
deflections are measured from the beam mid-span at which the maximum occurs. It is of interest to see that
Rankine–Timoshenko corrections to induced deflections are achieved by not the second-order solution but the
first-order one. Unlike the preceding examples such as a sandwich beam and an orthotropic box beam, Að2Þ is
not zero due to the presence of bending–shear couplings. As expected, induced deflections decay slowly as
compared to a direct shear deformation effect shown in Fig. 14. One can see that FAMBA-1st is well corre-
lated with 3D FEM as S P 5, whereas the deviation from 3D FEM of the others is more than 50%. In Fig. 17,
induced deflections along the axial coordinate are plotted for a 30 in.-long CUS1 beam. It is clearly seen that
VABS and NABSA significantly deviate from 3D FEM qualitatively as well as quantitatively, whereas FAM-
BA-1st is well correlated with 3D FEM. This demonstrates that boundary conditions, Eq. (72), along with the
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Fig. 16. Induced center deflection of a CUS1 beam under a horizontal shear force vs. length-to-width ratio (Case 2).
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fictive volume force, Eq. (63), enable us to find asymptotically correct results up to Oð�2Þ for coupled box
beams.

For a CAS1 configuration (Case 3), results under a vertical shear force and a tensile force are reported in
Figs. 18 and 19, respectively. In Fig. 18, VABS and NABSA are identical, whereas FAMBA-2nd predicts less
deflection than they do. Although VABS is based on the similar mathematical foundation, it loses some accu-
racy during Timoshenko-like energy transformation (Yu et al., 2002). The asymptotic behavior of tension
induced deflections is presented in Fig. 19, where three models produce identical results. Although the exten-
sion–shear coupling is not presented in a classical Euler–Bernoulli–Navier model, it can be included by con-
sidering end effects.

From Figs. 8, 14, 16, 18 and 19, one can conclude that the induced shear deformation effect is more impor-
tant than the direct one because it affects the qualitative behavior of a beam. These figures actually show that
the zeroth-order solution is valid only as the slenderness ratio tends to zero. By contrast, taking into account
the higher-order terms of the expansion and using the simplified boundary conditions enable us to enlarge the
validity domain of the asymptotic solution.
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6.3. An orthotropic D-beam

In order to investigate the accuracy of the present approach for the composite beam of asymmetric cross-
sections, an orthotropic D-beam, which is a typical load-carrying structure for helicopter rotor blades, is con-
sidered in this subsection. The D-beam dimension and loading conditions are shown in Fig. 20, where the
induced torsional load due to asymmetric geometry is presented because the origin of x2 and x3 coordinates
is located at the centroid of a beam (not the shear center). There are extension–bending and shear–torsion cou-
plings in this D cross-section due to the geometric asymmetry. The ply material properties are the same as
those used in Section 6.2. The fiber is aligned parallel to the x1 coordinate.

The results under a vertical shear force are shown in Fig. 21, where the bending deflection and the twist
angle along the axial coordinate are illustrated for 5 in. and 30 in. orthotropic D-beams, respectively. In
the 5 in. beam case, the boundary layer (i.e., distortion) for twist angles strongly develops at the free end
of a beam due to the localized point loads and asymmetric geometry. For this reason, the twist angles are
plotted for the 30 in. beam. The 3D FEM results are obtained using 5400 solid elements. One can see that
the present FAMBA works well for the beam of an asymmetric cross-section. It should be noticed here that
the non-zero torsion response is appeared at the first-order beam solution. Even though the torsional load is
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prescribed at the free end of a beam, it appears at the second beam equations, as shown in Eq. (60). In addi-
tion, there is a shear (u3)–torsion (/) coupling (i.e., Að2Þ 6¼ 0), and therefore, the twist angle shown in Fig. 21(b)
is affected by both the applied torsion and the shear induced torsion. In fact, each of these torsion causes the
large twist angles, Oð10�4Þ, to the opposite direction, so that it becomes the small twist angle, Oð10�5Þ.
7. Concluding remarks

A finite element realization of the formal asymptotic method for anisotropic beams having arbitrary cross-
sections has been presented in this paper. From the 3D equilibrium equations, a set of 2D microscopic equa-
tions and 1D macroscopic equilibrium equations are systematically derived via the formal asymptotic method.
Both microscopic and macroscopic equations are completely realized with the finite element method by apply-
ing the virtual work concept.

One of difficulties in the formal asymptotic method is to find the asymptotically correct boundary condi-
tions especially for a clamped end. In order to circumvent it, the generalized orthogonality conditions of
asymptotic displacements to six fundamental solutions are introduced as constraints, which yields six kine-
matic boundary conditions at kth order beam problems. The boundary conditions obtained herein are applied
to cantilevered composite beams with solid and thin-walled cross-sections. The results are compared to those
reported in literature as well as 3D FEM. It is demonstrated that the present FAMBA has capability to pro-
vide in-depth understanding as well as accurate predictions of such beams.

We arrive at the same conclusion made in Gregory and Wan (1984), Duva and Simmonds (1991), Fan and
Widera (1992) and Buannic and Cartraud (2000, 2001b) saying that considering end effects makes the use of a

refined beam theory unnecessary. In addition to this, as stated in Duva and Simmonds (1992), we may conclude
that it seems much simpler to abandon Rankine–Timoshenko theory and instead use the iteration scheme outlined
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here to improve elementary theory. Because one may find a correct shear factor only after considering end
effects, and the computational effort of solving beam equations is much less than even the cross-sectional
analysis.

References

Balch, C.D., Steele, C.R., 1987. Asymptotic solutions for warping and distorsion of thin-walled box beams. Journal of Applied Mechanics
54 (1), 165–173.

Berdichevsky, V.L., 1981. On the energy of an elastic rod. Journal of Applied Mathematics and Mechanics (PMM) 45 (4),
518–529.

Berdichevsky, V.L., Armanios, E.A., Badir, A.M., 1992. Theory of anisotropic thin-walled closed-section beams. Composites Engineering
2, 411–432.

Buannic, N., Cartraud, P., 2000. Higher-order asymptotic model for a heterogeneous beam, including corrections due to end effects. In:
41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and Exibit. AIAA-2000-1495,
Atlanta, GA, USA.

Buannic, N., Cartraud, P., 2001a. Higher-order effective modeling of periodic heterogeneous beams. I. Asymptotic expansion method.
International Journal of Solids and Structures 38, 7139–7161.

Buannic, N., Cartraud, P., 2001b. Higher-order effective modeling of periodic heterogeneous beams. II. Derivation of the proper boundary
conditions for the interior asymptotic solution. International Journal of Solids and Structures 38, 7168–7180.

Cesnik, C.E.S., Hodges, D.H., 1997. VABS: a new concept for composite rotor blade cross-sectional modeling. Journal of the American
Helicopter Society 42 (1), 27–38.

Cesnik, C.E.S., Sutyrin, V.G., Hodges, D.H., 1996. Refined theory of composite beams: the role of short-wavelength extrapolation.
International Journal of Solids and Structures 33 (10), 1387–1408.

Chandra, R., Stemple, A.D., Chopra, I., 1990. Thin-walled composite beams under bending, torsional, and extensional loads. Journal of
Aircraft 27 (7), 619–626.

Cimetiere, D., Geymonat, G., LeDret, H., Raoult, A., Tutek, Z., 1988. Asymptotic theory and analysis for displacements and stress
distribution in nonlinear elastic straight slender rods. Journal of Elasticity 19, 111–161.

Duva, J.M., Simmonds, J.G., 1991. The usefulness of elementary theory for the linear vibrations of layered, orthotropic elastic beams and
corrections due to two-dimensional end effects. Journal of Applied Mechanics 58, 175–180.

Duva, J.M., Simmonds, J.G., 1992. The influence of two-dimensional end effects on the natural frequencies of cantilevered beams weak in
shear. Journal of Applied Mechanics 59, 230–232.

Fan, H., Widera, G.E.O., 1992. On the proper boundary conditions for a beam. Journal of Applied Mechanics 59, 915–922.
Fan, H., Widera, G.E.O., 1994. On the use of variational principles to derive beam boundary conditions. Journal of Applied Mechanics

61, 470–471.
Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmashi, V., Maffioli, G.C., Massi, F., 1983. Anisotropic beam theory and

applications. Computers and Structures 16, 403–413.
Gregory, R.D., Wan, F.Y.M., 1984. Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory.

Journal of Elasticity 14, 27–64.
Hodges, D.H., 1990. A review of composite rotor blade modeling. AIAA Journal 28, 561–565.
Horgan, C.O., Simmonds, J.G., 1991. Asymptotic analysis of an end-loaded transversely isotropic, elastic, semi-infinite strip weak in

shear. International Journal of Solids and Structures 27, 1895–1914.
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