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Abstract: The question of how to choose a copula model that best fits a given dataset is a 
predominant limitation of the copula approach, and the present study aims to investigate the 
techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on 
Rosenblatt’s transformation was mathematically expanded from two dimensions to three 
dimensions and procedures of a bootstrap version of the test were provided. Through stochastic 
copula simulation, an empirical application of historical drought data at the Lintong Gauge Station 
shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and 
Student t copulas are acceptable for modeling the dependence structures of the observed drought 
duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide 
further support and help a lot in the potential applications of a wider range of copulas to describe 
the associations of correlated hydrological variables. However, for the application of copulas with 
the number of dimensions larger than three, more complicated computational efforts as well as 
exploration and parameterization of corresponding copulas are required.     
Key words: goodness-of-fit test; multi-dimensional copulas; stochastic simulation; Rosenblatt’s 
transformation; bootstrap approach; drought data     

 

1 Introduction 
Copulas, initially introduced by Sklar (1959), are functions that join univariate 

distributions to form their multivariate distribution. They offer the flexibility of modeling 
multivariate distribution through the choice of margins from different families of univariate 
distributions and the selection of a suitable dependence structure. Due to their favorable 
properties, copulas have proved useful in financial applications (Frees et al. 1996; Mendes and 
Souza 2004). In recent years, copulas have been introduced into analyses of multivariate 
hydrological extreme events and have become a popular tool for modeling the dependence 
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structures of correlated/non-independent hydrological random variables, e.g., rainfall (Evin and 
Favre 2008; Wang et al. 2010; Zhang et al. 2012), floods (Grimaldi and Serinaldi 2006; Zhang 
and Singh 2007; Chowdhary et al. 2011), and droughts (Shiau 2006; Song and Singh 2010; 
Zhang et al. 2011; Ma et al. 2012). 

Considering the availability of excessive copula functions, some criteria (e.g., the Akaike 
information criterion (AIC), Bayesian information criterion (BIC), and root mean square error 
(RMSE)) are widely used to select appropriate copulas as well as other multi-dimensional 
models by estimating their fitting biases. However, relatively small fitting biases do not 
invariably guarantee a satisfactory representation of the observations. Whether or not a certain 
copula or a parametric family of copulas is competent for the description of the dependence 
structures in the historical data can be investigated by applying specialized goodness-of-fit tests 
for copulas. Although several goodness-of-fit tests have been proposed, there are no general 
guidelines for selecting the optimal parametric copula. Genest and Rivest (1993) developed an 
empirical method to identify the best copula in the Archimedean case. Since copulas are 
invariant under strictly increasing transformations (Nelsen 1999), Diebold et al. (1998, 1999), 
Berkowitz (2001), and Berg and Bakken (2005) used the probability integral transform (PIT) of 
the data in the evaluation of copula models. Panchenko (2005) focused on positive definite 
bilinear forms, while Genest et al. (2006) utilized the Kendall’s process. For a thorough review 
of contributions to this field, see also Malevergne and Sornette (2003), Breymann et al. (2003), 
Dobri  and Schmid (2005), Junker and May (2005), and Fermanian (2005). 

Dobri  and Schmid (2007) addressed a test for parametric families of bivariate copulas 
based on Rosenblatt’s transformation, which was also suggested and applied in Breymann et al. 
(2003). In these applications, bivariate copulas were mainly investigated while the 
methodology was tested and verified with either financial data or artificial samples. Though 
Dobri  and Schmid (2007) declared that the computation of the test statistics could be applied 
to the cases of higher-dimensional copulas, relevant studies exploring multi-dimensional 
copulas and coping with hydrological data have not been reported so far. In fact, difficulties 
and special issues are expected to arise in the process of transformations from two dimensions 
to three dimensions (or even to higher numbers of dimensions). Therefore, the present study 
aims (1) to propose a goodness-of-fit test for multi-dimensional copulas with parametric 
expressions based on Rosenblatt’s transformation, and (2) to verify the capability of the test 
through stochastic simulation of trivariate Gaussian and Student t copulas using historical 
drought observations. 

2 Methodology 
2.1 Rosenblatt’s transformation 

Rosenblatt (1952) proposed a transformation mapping a k-variate random vector with a 
continuous distribution to one with a uniform distribution on the k-dimensional hypercube. The 
transformation can be used to obtain the residuals for various multivariate probability models, 
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which allows for formal goodness-of-fit testing of these models. A simple description of 
Rosenblatt’s transformation is as follows: 

Following the notation of Rosenblatt (1952), let ( )1 2, , , kX X X=X  be a random 
vector with distribution function ( )1 2, , , kF x x x . The conditional cumulative distribution 
functions are defined as  

( ) ( )1 1 1 1F x P X x= ≤  

( ) ( )2 2 1 2 2 1 1| |F x x P X x X x= ≤ =   
 

( ) ( )1 2 1 1 1 2 2 1 1| , , , | , , ,k k k k k k kF x x x x P X x X x X x X x− − −= ≤ = = =  

Then, Rosenblatt’s transformation T  is given by ( ) ( )1 2 1 2, , , , , ,k kz z z T T x x x= = =z x , 
where 

( )1 1 1z F x=  

( )2 2 2 1|z F x x=  
 

( )1 2 1| , , ,k k k kz F x x x x −=  

If the distribution of X  is continuous, the random vector Z , given by T=Z X , is 
uniformly distributed on the k-dimensional hypercube. 

2.2 Mathematical derivation of goodness-of-fit test 

Let X , Y , and Z  denote three random variables with a joint probability distribution 
function ( ) ( ), , , , , ,X Y ZF x y z P X x Y y Z z= ≤ ≤ ≤  for { } 3, ,x y z ∈ R and the marginal 
distribution functions ( ) ( )XF x P X x= ≤ , ( ) ( )YF y P Y y= ≤ , and ( ) ( )ZF z P Z z= ≤ for 

, ,x y z ∈ R . Suppose XF , YF , and ZF  are all continuous functions; then, there exists a 
unique copula [ ] [ ]3: 0,1 0,1C →  with 

( ) ( ) ( ) ( )( ), , , , , ,X Y Z X Y ZF x y z C F x F y F z=  

where ( )C ⋅ , the trivariate copula, denotes the joint distribution function of the variables. Let 
( )XU F x= , ( )YV F y= , and ( )ZW F z= , i.e., ( ) ( ), , , ,C u v w P U u V v W w= ≤ ≤ ≤  for 

{ } [ ]3, , 0,1u v w ∈ , and the conditional distribution function of W  at given U u=  and V v=  
can be expressed as 

( ) ( ) ( )
0, 0

| , | , lim | ,
u v

C w u v P W w U u V v P W w u U u u v V v v
Δ → Δ →

= ≤ = = = ≤ ≤ ≤ + Δ ≤ ≤ + Δ =  

( ) ( )
( ) ( )

( )

( )

2

20, 0

, ,
, , , ,

lim
,, ,u v

C u v w
C u u v v w C u v w u v

C u vC u u v v C u v
u v

Δ → Δ →

∂
+ Δ + Δ − ∂ ∂=

∂+ Δ + Δ −
∂ ∂

 

Here, we assume that the second-order partial derivative exists. According to Rosenblatt (1952), 
the random variables 

( ) ( )1 ,, ,X YJ C U V F X Y= =  

and 
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( ) ( ) ( )( )2 ,| , | ,Z X YJ C W U V C F Z F X Y= =  

are independent and uniformly distributed in [ ]0,1 . Thus, the random variable 

( ) ( )( ) ( ) ( )( )( ) 221 1
1 2 , ,, , | ,X Y Z X YS J J F X Y C F Z F X Y− −= Φ + Φ  

has a 2
2χ  distribution, i.e., ( ) ( ) ( )11 21 12 22 1 2, , , , , ,n nS J J S J J S J J  is a random sample from a 

2
2χ -distributed random variable with a corresponding random sample ( )1 1 1, , ,X Y Z  

( ) ( )2 2 2, , , , , ,n n nX Y Z X Y Z  from ( ), ,X Y Z , where ( )1−Φ ⋅  denotes the inverse of standard 
normal distribution ( )Φ ⋅ . These properties can be used to propose a test for the null 
hypothesis, i.e., ( )0 : , ,H X Y Z  has a copula ( ), ,C u v w , in the condition that the marginal 
distribution functions XF , YF , and ZF  are known or given. In this case, the values of 

( ) ( ) ( )11 21 12 22 1 2, , , , , ,n nS J J S J J S J J  can be calculated and used to test the equivalent null 
hypothesis, i.e., ( )*

0 1 2: ,H S J J  has a 2
2χ  distribution. We reject 0H  if *

0H  is rejected.  

2.3 Procedures of bootstrap version for trivariate copulas 

According to Dobri  and Schmid (2007), Genest et al. (2009), Song and Singh (2010), and 
Ma and Song (2010), the procedures of goodness-of-fit tests for trivariate copulas using a 
bootstrap approach are as follows: 

(1) The empirical marginal distribution functions ˆ
XF , ŶF , and ˆ

ZF  are estimated using 
the Gringorten plotting position formulas: 

( )
{ }

1

1 0.44
ˆ

0.12

n

k
k

X

X x
F x

n
=

≤ −
=

+
, ( )

{ }
1

1 0.44
ˆ

0.12

n

k
k

Y

Y y
F y

n
=

≤ −
=

+
, and ( )

{ }
1

1 0.44
ˆ

0.12

n

k
k

Z

Z z
F z

n
=

≤ −
=

+
 

(2) The joint probability distribution of ( ),i iX Y  is estimated using a chosen     
bivariate copula: 

( ) ( ) ( )( ),
ˆ ˆ ˆ, ,X Y i i X i Y iF X Y C F x F y=  

(3) ˆ
iS , which has a 2

2χ  distribution, is computed: 

( ) ( )( ) ( ) ( )( )( ) 22
1 1

1 2 , ,
ˆ ˆ ˆ ˆ ˆ, , | ,i i i X Y i i Z i X Y i iS S J J F X Y C F Z F X Y− −= = Φ + Φ  

for 1,2, ,i n= . 
(4) The Anderson-Darling statistic 

2
nA  is computed: 

( ) ( )( )( ) ( )( )( ){ }2
0 0 1

1

1 2 1 ln ln 1
n

n j n j
j

A n j F S F S
n − +

=

= − − − + −  

where ˆ
j iS S=  for j i= , ( ) ( ) ( )1 2 nS S S≤ ≤ ≤  are in an increasing order, and ( )0F ⋅  denotes 

the distribution function of a 2
2χ -distributed variable. 

(5) Parameter θ̂  of a trivariate copula is estimated from the original observations 
( ) ( ) ( )1 1 1 2 2 2, , , , , , , , ,n n nx y z x y z x y z . 

(6) Independent and identically distributed samples ( ) ( )* * * * * *
1 1 1 2 2 2, , , , , , ,x y z x y z  

( )* * *, ,n n nx y z  are simulated from the corresponding copula with parameter θ̂ , and parameter 
*θ̂  is then estimated from ( ) ( ) ( )* * * * * * * * *

1 1 1 2 2 2, , , , , , , , ,n n nx y z x y z x y z . 
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(7) îS  is computed and sorted in an increasing order to obtain ( )jS , and then the statistic 
( )2 *

nA  of the Anderson-Darling test is computed. 
(8) Steps (6) and (7) are repeated BN  times, with  B 5 000N =  in this study being the 

number of bootstrap repetitions. The desired critical value is then determined as the 
(1- )-quantile of the values ( ) ( ) ( )2 *1 2 *2 2 * B,  , , N

n n nA A A  (where  is the significance level). 
Note that some other test statistics, such as Kolmogorov-Smirnov’s nD , can also be 

applied to the goodness-of-fit tests by replacing Anderson-Darling’s 2
nA  with nD  in the 

procedures above. 

3 Copulas simulation 

The modeled samples necessary for goodness-of-fit tests resort to copula simulation  
(step (6) in the above-proposed procedures). Therefore, procedures for Gaussian and Student t 
copulas as well as a case study are provided below to illustrate goodness-of-fit tests for 
trivariate copulas. 

3.1 Trivariate Gaussian and Student t copulas 

The parametric expression of trivariate Gaussian copula derived from Fang et al. (2002) 
and Žežula (2009) is 

( )
( )

( )( )( )1 1 1
1 2 3 T 1

1 2 3 13
22

1 1, , ; exp d
22

u u u
C u u u

− − −Φ Φ Φ −

−∞ −∞ −∞
= − w w w       (1) 

where ( )
11 1Xu F x= , ( )

22 2Xu F x= , and ( )
33 3Xu F x= , taking values in [0,1] as the marginal 

distributions of random variables 1X , 2X , and 3X ; 
12 13

12 23

13 23

1
1

1

ρ ρ
ρ ρ
ρ ρ

=  is the 

symmetrical correlation matrix with 1 1ijρ− ≤ ≤
 
( , 1,2,3i j = ); and w  represents the 

corresponding integral variables, and ( )T
1 2 3, ,w w w=w . 

According to Fang et al. (2002) and Demarta and McNeil (2005), the trivariate Student t 
copula can be parametrically expressed as 

( )
( )

( )( )( )1 1 1
1 2 3

3
T 1 2

1 2 3 13
22

3
12, , ; , 1 d

2

T u T u T u
C u u u υ υ υ

υυ

υ
υ υυ

− − −

+−−

−∞ −∞ −∞

+Γ
= +

Γ

w w w    (2) 

where ( )1Tυ
− ⋅  denotes the inverse of Student t distribution ( )Tυ ⋅  with the degree of freedom 

of υ , and ( )Γ ⋅  denotes the gamma function. 

3.2 Gaussian copula simulation 

(1) Simulate the independent and uniformly distributed random variables 1v , 2v , and 3v . 
(2) Set 1 1u v= . 
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(3) Set ( )2 1 2F u u v= .  

Let ( ) T 1
1 1

2

1 1, exp
22

g b y −= − w w , ( )1
1 1b u−= Φ , ( )1

2 2b u−= Φ , ( ) 21 e
2

ttϕ −= , 

and ( )T
1,b y=w . Using composite function derivative rules, we can obtain 

( ) ( )
( ) ( )21 2

2 1 1
1 1

, 1 , d
bC u u

F u u g b y y
u bϕ −∞

∂
= =

∂
. After algebraic simplifications, we obtains 

( )1 2 2 1
2 2

1

,

1

C u u b bv
u

ρ
ρ

∂ −= = Φ
∂ −

, where ρ  is the correlation coefficient between 1b  and 2b . 

Taking the inverse of 2v , we finally have 

( ) ( )1 2
2 2 2 11u b v bρ ρ−= Φ = Φ Φ − +                 (3) 

(4) Set ( )
( )

( )

2
1 2 3

1 2
3 1 2 32

1 2

1 2

, ,

,

C u u u
u uF u u u v

C u u
u u

∂
∂ ∂= =

∂
∂ ∂

.  

Let ( )
( )

T 1
1 2 13

22

1 1, , exp
22

g b b z −= − w w , where ( )T
1 2, ,b b z=w , ( )1

3 3b u−= Φ , 

and 

1 1 1
11 12 13

1 1 1 1
12 22 23

1 1 1
13 23 33

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

− − −

− − − −

− − −

=  is the inverse matrix of . Using similar mathematical 

operations, we have 

( )
( ) ( ) ( )3

2 1 1
1 2 3 1 13 1 23 2

1 2 33 3 1
1 2 1 2 33

, , 1 , , d
bC u u u b b

g b b z z b
u u b b

ρ ρρ
ϕ ϕ ρ

− −
−

−∞ −

∂ +
= = Φ + ⋅

∂ ∂
 

( ) ( )

( )

2
1 1

1 2 1 1 2 2 213 1 23 2
11 1 12 1 2 22 2 1 21

33

11
1 22

33

1 1 1exp 2
2 2 2

b bb b b b b bρ ρρ ρ ρ
ρ

ρ

− −
− − −

−

−

+− + + + + +

Σ
      (4) 

Since ( ) ( )
2

1 2
1 2

1 2

,
,

C u u
c u u

u u
∂

=
∂ ∂

 can be obtained from the probability density function 

(PDF) of Eq. (1), one can get 3u  by solving the nonlinear equation 

( )

( )

2
1 2 3

1 2
32

1 2

1 2

, ,

,

C u u u
u u v

C u u
u u

∂
∂ ∂ =

∂
∂ ∂

. 

3.3 Student t copula simulation 

(1) Simulate independent uniformly distributed random variables 1v , 2v , and 3v .  
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(2) Set 1 1u v= . 
(3) Set ( )2 1 2F u u v= . 

Let ( )
( )

2
T 1 2

1 1
2

2
12, 1

2

g b y

υυ

υ υυ

+−−
+Γ

= +
Γ

w w , ( )1
1 1b T uυ

−= , ( )1
2 2b T uυ

−= , 

( )

1
2 2

1
2

1
12( ) 1

2

tf t

υ

υ

υ

υ υυ

+−
+Γ

= +
Γ

, and ( )T
1,b y=w . Then, we have ( )2 1F u u =  

( )
( ) ( )

( )
21 2 2 1

1 1 2
1 1 21

, 1 , d
1

1

bC u u b bg b y y T
u f b b

υ
υ

ρ
υ ρ
υ

+−∞

∂ −
= =

∂ + −
+

, which yields 

( ) ( ) ( )
2

1 21
2 2 1 2 11

1
bu T b T T v bυ υ υ

υ ρ ρ
υ

−
+

+= = − +
+

            (5) 

(4) Set ( )
( )

( )

2
1 2 3

1 2
3 1 2 32

1 2

1 2

, ,

,

C u u u
u uF u u u v

C u u
u u

∂
∂ ∂= =

∂
∂ ∂

.  

Let ( )
( )

3
T 1 2

1 2 13
22

3
12, , 1

2

g b b z

υυ

υ υυ

+−−
+Γ

= +
Γ

w w , where [ ]T
1 2b b z=w , 

( )1
3 3b T uυ

−= , and 

1 1 1
11 12 13

1 1 1 1
12 22 23

1 1 1
13 23 33

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

− − −

− − − −

− − −

=  is the inverse matrix of . Using similar 

mathematical operations, we have 
( )

( ) ( ) ( )3
2

1 2 3
1 2

1 2 1 2

, , 1 , , d
bC u u u

g b b z z
u u f b f bυ υ

−∞

∂
= =

∂ ∂
 

( ) ( ) ( )
3

1 2 322
33 21

1 2 2

2
1 2 22

2

bT
f b f b

υυ
υ

υ
υ υ

υ
μυ ρ υ δ υ

υ δ

+−− − −
+

+Γ
++ +

Γ
         (6) 

where 
1 1

13 1 23 2
1

33

b bρ ρμ
ρ

− −

−

+
= −  and 

1 11 2 1 1 2
13 1 23 211 1 12 1 2 22 2

1 1
33 33

2 b bb b b b ρ ρυ ρ ρ ρδ
ρ ρ

− −− − −

− −

++ + += − . Since 

( ) ( )
2

1 2
1 2

1 2

,
,

C u u
c u u

u u
∂

=
∂ ∂

 can be obtained from the PDF of Eq. (2), one can get 3u  by solving 
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the nonlinear equation 

( )

( )

2
1 2 3

1 2
32

1 2

1 2

, ,

,

C u u u
u u v

C u u
u u

∂
∂ ∂

=
∂

∂ ∂

. 

4 Case study 
4.1 Data 

The historical drought data from the Lintong Gauge Station in the Weihe Basin, China, 
were used to illustrate this proposed approach for goodness-of-fit tests of trivariate copulas. 
Monthly precipitations covering a period from 1959 to 2008 were used to define droughts 
based on the theory of runs. All the data were obtained from the National Climate Center of 
the China Meteorological Administration and are complete data. Using the Mann-Kendall 
method, the data do not show obvious trends and can be accepted as temporally homogeneous. 
As illustrated in Fig. 1 (where t is time, tX  is the observed precipitation time series, and 0X  
is a given threshold), a drought event is defined as a period when precipitation is equal to or 
less than the predetermined threshold. Drought characteristics, i.e., duration (D), severity (S), 
and peak (P) were extracted for each drought event using the averages of monthly 
precipitation as truncation levels, and some basic statistics of these three components are 
shown in Table 1. The correlation coefficients of Pearson’s nr , Spearman’s nρ , and 
Kendall’s nτ  given in Table 2 show that the observed drought duration, severity, and peak 
are highly correlated with one another, with a maximum correlation coefficient exceeding 0.9. 
The results were confirmed by the Chi-plots described in Fig. 2 (for a thorough review and 
more details about Chi-plots, see Fisher and Switzer (1985, 2001), Ma et al. (2012), and 
references therein). Most of the empirical points fall outside the confidence band ( 0.05α = ) 
in the Chi-plots, which indicates that apparent dependent relationships exist among drought 
duration, severity, and peak. While significantly positive dependent relationships between 
bivariate drought variables are revealed both by the results of the correlation coefficients and 
Chi-plots, the degree of dependence between the drought duration and severity is larger than 
that between the drought duration and peak, and is less than that between the drought severity 

 
Fig. 1 Definition of drought using theory of runs 
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Table 1 Basic statistics of drought variables 

Statistic parameter D (month) S (mm) P (mm) Statistic parameter D S P 

Mean 2.4  49.6 30.4 Coefficient of variation 0.73 0.97 0.71 

Standard deviation 1.8  48.0 21.5 Coefficient of skewness 1.53 1.99 0.42 

Minimum 1.0   0.2  0.2     

Maximum 9.0 271.0 80.2     

Table 2 Correlation coefficients of drought variables 

Variables Pearson’s nr  Spearman’s nρ  Kendall’s nτ  

D, S 0.659 0 0.562 5 0.436 0 

D, P 0.294 3 0.272 8 0.212 1 

S, P 0.795 9 0.919 1 0.772 4 

 
Fig. 2 Chi-plots for drought duration, severity, and peak 

and peak. However, distributions of the points in the Chi-plots also indicate different 
dependence structures of drought components: for duration-severity and duration-peak they 
are similar (almost symmetric), but they are strictly distinct (extremely asymmetric) for 
severity-peak. 

Assuming that the drought duration, severity, and peak are continuous variables, a variety 
of univariate cumulative distribution functions (CDFs) were used to fit the observed drought 
data first. Two criteria (AIC and RMSE) and various goodness-of-fit techniques (the 
Chi-square, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling, and modified weighted 
Durbin-Watson tests) were adopted to select margins. The exponential distribution, Weibull 
distribution, and generalized Pareto distribution, respectively, were eventually chosen as the 
optimal marginal distributions for drought duration, severity, and peak. The maximum 
likelihood (ML) method was applied to estimate parameters of the exponential distribution for 
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the drought duration, while parameters of the Weibull distribution for the drought severity and 
the generalized Pareto distributions for the drought peak were estimated using the probability 
weight-moment method (PWM). Dependence structures of drought duration, severity, and 
peak were then modeled with the trivariate Gaussian and Student t copulas to obtain their 
multivariate joint distribution. Parameters of the Gaussian and Student t copulas were 
computed using the maximum pseudo-likelihood estimation method (Nadarajah 2006; Song 
and Singh 2010) and are shown in Table 3. 

Table 3 Parameters of Gaussian and Student t copulas 

Copula 12ρ  13ρ  23ρ  

Gaussian 0.608 2 0.304 2 0.904 2 

Student t 0.425 6 0.161 1 0.916 2 

Note: In this case, the degree of freedom of Student t copula is 6.624 2υ = . 

4.2 Results and discussion 

According to the procedures described in Section 2.3, the Kolmogorov-Smirnov and 
Anderson-Darling statistics of the Gaussian and Student t copulas were numerically computed 
and are shown in Tables 4 and 5, respectively. Given the significance level 0.05α = , it was 
found that all test statistics based on the observed drought duration, severity, and peak were 
less than the corresponding critical values, which indicates that neither Gaussian copula nor 
Student t copula can be rejected at the significance level 0.05α = . In other words, the null 
hypothesis *

0H  as well as 0H  is accepted, i.e., both of the Gaussian and Student t copulas are 
acceptable for describing the dependence structures of the drought duration, severity, and peak 
as well as for modeling their trivariate joint probability distribution. 

Table 4 Critical values of nD  for Gaussian and Student t copulas 

Copula nD  
Critical values at various significance levels α  

0.20 0.15 0.10 0.05 0.01 

Gaussian 0.109 4 0.111 1 0.118 5 0.127 9 0.141 4 0.167 3 

Student t 0.077 9 0.129 5 0.137 0 0.146 8 0.164 2 0.196 3 

Table 5 Critical values of 2
nA

 
for Gaussian and Student t copulas 

Copula 2
nA  

Critical values at various significance levels α  

0.20 0.15 0.10 0.05 0.01 

Gaussian 2.000 4 2.781 1 3.311 8 4.032 8 5.203 1  7.762 0 

Student t 1.007 8 3.880 9 4.492 8 5.325 2 6.781 6 10.334 8 

Throughout the limited current applications of copula-based methods to multivariate 
drought issues, Archimedean copulas (many of which are, generally, valid for roughly identical 
and symmetric dependence structures among the considered multi-variables) seem to have been 
most commonly used (Ma et al. 2012). Nevertheless, in reality, chances are that most of the 
multi-contributing variables in hydrological or meteorological processes (e.g., rainfall, floods, 
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and especially droughts) possess various dependence structures and degrees of associations, 
which are asymmetric and unbalanced. For instance, the markedly heterogeneous dependences 
of drought duration, severity, and peak reflected in the Chi-plots (Fig. 2) are better modeled by 
a selected meta-elliptical family of copulas. The fitting efficiencies of trivariate Gaussian and 
Student t copulas are shown in Fig. 3, which can be naturally confirmed by the results of 
goodness-of-fit tests, and this indicates that the Gaussian and Student t copulas both produce a 
satisfactory representation of the historical drought observations. Thus, the dependence 
structures of drought duration, severity, and peak can be readily modeled using the Gaussian 
and Student t copulas in order to obtain corresponding multivariate characteristics (such as 
joint probabilities and return periods) of drought events. These potential messages are useful 
and essential for drought risk management as well as for practical design and planning; since 
the drought duration, severity, and peak can be considered in total, it is possible to      
obtain various combinations of different drought components for several purposes in     
hydrological practices. 

 
Fig. 3 Comparison of multivariate empirical and theoretical distributions  

5 Conclusions 

Rosenblatt’s transformation can be applied to copulas in order to propose a test of fit for 
them and this technique of goodness-of-fit testing can in principle be used for every parametric 
family of copulas. Mathematical foundations of the goodness-of-fit test for trivariate copulas 
and corresponding procedures of a bootstrap approach were provided. Using the Gaussian and 
Student t copulas as an example, we demonstrate through copula simulation that the observed 
historical drought data at the Lintong Gauge Station with a trivariate meta-elliptical copula are 
acceptable at certain significance levels. As copulas are increasingly used to describe 
dependences of correlated random variables, the methodologies of goodness-of-fit testing for 
multi-dimensional copulas can provide strong support and help a lot in the further applications 
of a wide variety of copulas as useful tools for exploring the dependency relationships and 
subsequent multivariate joint probability distributions of non-independent hydrological 
variables with different dependence structures and degrees of associations. 
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Although, in theory, the methods of goodness-of-fit tests for trivariate copulas described 
in this paper could be extended to have higher numbers of dimensions, more complicated 
computational efforts are surely required. Besides, as we pointed out in the beginning, the 
existing framework and methods remain ineffective for non-parametric families of copulas 
(whereas there are many of them in potential applications); and exploration of analytical 
formulas and estimation of parameters for multi-dimensional copulas can also be better 
addressed with more efforts in the future. 
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