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We propose to consider the possibility that the observed value of θ13 is not the result of a correction
from an initially vanishing value, but rather the result of a correction from an initially larger value. As
an explicit example of this approach, we consider analytically and numerically well-known CKM-like
charged lepton corrections to a neutrino diagonalization matrix that corresponds to a certain mixing
scheme. Usually this results in generating θ13 = 9◦ from zero. We note here, however, that 9 is not only
given by 0 + 9, but also by 18 − 9. Hence, the extreme case of an initial value of 18 degrees, reduced by
charged lepton corrections to 9 degrees, is possible. For some cases under study, new sum rules for the
mixing parameters, and correlations with CP phases, are found.
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1. Introduction

Remarkable experimental activity in the past decades has es-
tablished that the phenomenon of neutrino flavor transition is
described by neutrino oscillations. Recent measurements of the
smallest mixing angle θ13 at reactor [1–4] and accelerator [5] neu-
trino experiments have finally led to an emerging picture where
the order of magnitude of all elements of the PMNS matrix is
known. Theorists now face the task to understand and/or ex-
plain that structure. Most flavor symmetry models [6–8] were con-
structed when only an upper limit on θ13 was known, and there-
fore aimed at explaining θ13 = 0. Corrections to generate a non-
zero value are then applied. In the present paper we depart from
the historically motivated approaches to generate non-zero θ13
from an initially vanishing value, and consider the possibility that
initially θ13 is already large. Now, the usual corrections to model
predictions can reduce the initial value of θ13 to its observed value.
Of course, the phenomenology will then be different from the stan-
dard case. As an explicit example on the consequences that follow,
we consider charged lepton corrections.

No matter if neutrinos are Majorana or Dirac particles, the lep-
ton flavor mixing matrix stems from the mismatch between the
diagonalization of the charged lepton mass matrix m� and the neu-
trino mass matrix mν , i.e.

U = U †
�Uν, (1)
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where U� and Uν are the unitary matrices diagonalizing m� and
mν , respectively. Now, one can apply the following strategy to gen-
erate non-zero θ13 = arcsin |Ue3|. Assuming that (Uν)13 = 0, as
well as (Uν)23 = (Uν)33, and that U� is related to the CKM ma-
trix, i.e. essentially the unit matrix except for (U�)12 = λ = sin θC,
it follows that |Ue3| = λ/

√
2, or θ13 = 9◦ = 0+9◦ . Numerically, this

is basically the observed value of about θ13 = 9◦ , and the fact that
this lepton mixing parameter is numerically connected to quark
parameters seems to support this argument, but is of course not
a proof.1 Nevertheless, relating the charged lepton diagonalization
to the CKM matrix can be arranged in grand unified models, es-
pecially based on SU(5), for which m� = mT

d is a typical outcome.
Such a relation has to be viewed as an approximation due to the
distinct mass spectra of leptons and quarks, and is modified by
higher order corrections or Clebsch–Gordon coefficients. Neverthe-
less, models predicting UCKM � U� have been constructed, which
in addition have (Uν)13 = 0 [9–13]. Hence, the above strategy to
generate |Ue3| = λ/

√
2, where λ � sin θC � 0.23, is based on actual

model building foundations. We will use for the sake of simplicity
and definiteness UCKM = U� in what follows.

While the relation 9◦ = 0 + 9◦ has its virtues and attraction,
one should not ignore the possibility that 9◦ = 18◦ − 9◦ . Such an
extreme value of 18◦ ≡ π/10 can be obtained in flavor symme-
try models. For instance, mixing angles of π divided by integer n
are known to be achievable in models based on dihedral groups
Dn , such as in Refs. [14,15]. This means that initially Uν contains a
too large value of its 13-element, which is reduced to its observed

1 The observed value of |Ue3| is also close to
√

ms/mb , which is presumably only
a coincidence.
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value by a sizable charged lepton correction, a CKM-like one in
our case. Since the remaining lepton mixing angles are necessarily
non-zero both in U and in U� , the question arises whether θ13
should initially be non-zero in the first place. This so far over-
looked possibility is what we investigate here, by performing a
general analysis of Eq. (1) when U� is fixed to the CKM matrix.
The case of initially vanishing (Uν)13 = 0 has been analyzed count-
less times, but the cases when |(Uν)13| � |Ue3|, or more interest-
ingly |(Uν)13| > |Ue3|, have never been considered. As a result we
find new interesting sum rules, and also note the already men-
tioned extreme case of reducing θ13 from 18 degrees to 9 degrees,
where the initial value could be obtained from flavor symmetries,
as 18◦ = π/10 is related to symmetries of geometrical objects.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the general formalism and derive the charged
lepton corrections to an arbitrary Uν . Interesting sum rules be-
tween neutrino mixing parameters are summarized. In Section 3,
a detailed numerical analysis of the model parameters and predic-
tions is performed. Finally, in Section 4, we state our conclusions.

2. Methodology

In the picture of three-flavor neutrino oscillations, the lepton
flavor mixing is described by a 3 × 3 unitary matrix U , which is
conventionally parametrized by three mixing angles (θ12, θ23 and
θ13), and three CP violating phases out of which one is the Dirac
phase (δ) and the other two are the Majorana phases (ρ and σ ).
In the standard parametrization, the lepton mixing matrix is given
by

U =
( c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

)

×
( eiρ 0 0

0 eiσ 0
0 0 1

)
, (2)

where si j ≡ sin θi j and ci j ≡ cos θi j (for i j = 12,23,13). In case of
Dirac neutrinos the phases ρ and σ will be irrelevant. The results
of this paper are independent on the nature of the neutrino. The
latest global analysis of current neutrino oscillation data yields [16]

sin2 θ12 = 0.313+0.013
−0.012,

sin2 θ23 = 0.444+0.036
−0.031,

sin2 θ13 = 0.0244+0.0020
−0.0019, (3)

where short baseline reactor data with baseline shorter than
100 m are not included. Another recent fit result is obtained
in [17], with similar results. There are also non-trivial results on
the CP phase δ, with best-fit results around 3π/2, or cos δ � 0.
However, the 1σ ranges are very large, including essentially also
the case cos δ � −1. We note that for some of the cases that we
will discuss it is actually crucial whether cos δ is 0 or −1, and
therefore we use only the obtained ranges of the mixing angles in
our fits.

The concrete form of U� cannot be fixed unless a specific mode
is considered. Motivated by the connection between the CKM ma-
trix and U� in many grand unified models we assume here for
definiteness U� = UCKM. As for the unitary matrix Uν diagonaliz-
ing the neutrino mass matrix, one can parametrize it in analogy to
U by using three rotation angles θ̃12, θ̃23, and θ̃13 together with a
phase φ. Note that we have ignored the Majorana-like phases in
this parametrization, since they are located on the right-hand side
of Uν and hence do not affect our discussions on the mixing an-
gles and Dirac CP phase. Now, the lepton flavor mixing matrix is
given by2

U = U †
CKM P Uν(θ̃12, θ̃23, θ̃13, φ). (4)

Here P = diag(eix, eiy,1) is a phase matrix stemming from the
mismatch between Ue and Uν [19].

We proceed to expand the mixing matrix U in order to obtain
the charged lepton corrections. Different from the lepton sector,
the CKM matrix takes a nearly diagonal form, and is typically
parametrized by using four parameters (λ, A, ρ and η) in the
Wolfenstein parametrization. Since we are mainly interested in the
lepton flavor mixing which has not been measured as precisely as
UCKM, we will keep the Wolfenstein parametrization only up to λ2,
i.e.

UCKM �
⎛
⎝1 − 1

2 λ2 λ 0
−λ 1 − 1

2 λ2 Aλ2

0 −Aλ2 1

⎞
⎠ . (5)

Now, by inserting Eq. (5) into (4) we obtain the matrix elements
of U to order λ2 as3

Ue1 = c̃12c̃13 + (
s̃12c̃23e−iϕ + s̃23c̃12 s̃13e−i(ϕ−φ)

)
λ

− 1

2
c̃12c̃13λ

2, (6)

Ue2 = s̃12c̃13 + (−c̃12c̃23e−iϕ + s̃23 s̃12 s̃13e−i(ϕ−φ)
)
λ

− 1

2
s̃12c̃13λ

2, (7)

Ue3 = s̃13e−iφ − s̃23c̃13e−iϕλ − 1

2
s̃13e−iφλ2, (8)

Uμ3 = s̃23c̃13 + s̃13ei(ϕ−φ)λ −
(

1

2
s̃23c̃13 + Ac̃23c̃13e−iy

)
λ2, (9)

where ϕ = x − y has been defined, and the notation s̃i j ≡ sin θ̃i j ,
c̃i j ≡ cos θ̃i j is adopted. Since the charged lepton mixing matrix
takes the CKM form, only the 12-rotation plays a role. Conse-
quently, one can rotate away one of the phases, leaving only the
difference between two CP phases x and y in the above results.

Comparing with the standard parametrization given in Eq. (2),
we find

sin2 θ13 � s̃2
13 − 2λs̃13c̃13 s̃23 cos(ϕ − φ) + λ2(s̃2

23c̃2
13 − s̃2

13

)
, (10)

sin2 θ12 � s̃2
12 − 2λ

1

c̃13
s̃12c̃12c̃23 cosϕ, (11)

sin2 θ23 � s̃2
23 + 2λ

1

c̃13
s̃23 s̃13c̃2

23 cos(ϕ − φ), (12)

where the O(λ2) terms are only kept for sin2 θ13, since θ13 is rel-
atively smaller compared to the other mixing angles. As for the
Dirac phase δ, to leading order we have

tan δ = s̃13sφ − s̃23c̃13λsϕ
s̃13cφ − s̃23c̃13λcϕ

, (13)

where sφ = sin φ, sϕ = sinϕ and so on. It might also be useful to
express the Jarlskog invariant [21,22] in terms of the model pa-

2 For the case that Uν is CKM-like, see [18].
3 Ignoring CP phases, expressions for the PMNS mixing angles in case of CKM-like

corrections to Uν , with angles in Uν all larger than the ones in U� can be found in
[20].
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rameters, i.e.

JCP = J̃CP + λc̃13c̃23
{

s̃12c̃12
(
c̃2

23 − c̃2
13

)
sinϕ

+ s̃13 s̃23
[
c̃23

(
c̃2

12 − s̃2
12

)
sin(ϕ − φ)

− s̃12 s̃23 s̃13c̃12 sin(ϕ − 2φ)
]}

� J̃CP + λs̃12c̃12c̃13c̃23
(
c̃2

23 − c̃2
13

)
sinϕ (14)

where, as usual, J̃CP is defined as

J̃CP = s̃12 s̃23 s̃13c̃12c̃23c̃2
13 sinφ. (15)

Of course, even if θ̃13 = 0 is assumed, CP violation can still be in-
duced by the λ correction, when sinϕ = sin(x − y) �= 0.

Both θ13 and θ23 are independent of θ̃12 at leading order.
The leading corrections to θ13 and θ23 are proportional to λs̃13,
whereas the leading correction to θ12 is proportional to λ. This
indicates that a larger deviation of θ̃12 from θ12 than for the
other mixing angles is allowed. However, there are terms includ-
ing cosines of phases in the expressions, which can suppress the
corrections. Note that the same combination of phases appears in
the expressions for sin2 θ23 and sin2 θ13, which implies a correla-
tion between both observables, if the second order term in sin2 θ13
can be ignored. It reads

sin2 θ23 − sin2 θ̃23 = −cos2 θ̃23

cos2 θ̃13

(
sin2 θ13 − sin2 θ̃13

)
. (16)

In case φ = 0, there is a correlation between the 23- and
12-sectors:

sin2 θ23 − sin2 θ̃23

= −cos θ̃23 sin θ̃23 sin θ̃13

cos θ̃12 sin θ̃12

(
sin2 θ12 − sin2 θ̃12

)
. (17)

However, the general case is complicated and depends on many
parameters. The obvious extreme cases are θ̃13 = 0, θ̃13 > θ13 and
θ̃13 � θ13. We will in the following discuss these cases analytically,
before performing a general numerical analysis.

2.1. The case of θ̃13 = 0

We will start from the most simple case with θ̃13 = 0, though
there is nothing new too add to existing knowledge (see e.g. [19,
20,23–36]). In the limit under study, the expressions for the mixing
angles reduce to leading order to

sin θ13 � λ sin θ23,

δ � ϕ + π,

sin2 θ12 � s̃2
12 − 2λs̃12c̃12c̃23 cosϕ. (18)

From the relation sin θ13 � λ sin θ̃23 one obtains for θ̃23 = π/4 the
value sin2 θ13 � 0.0255, in very good agreement with the mea-
sured value. In the tri-bimaximal mixing case, we have

sin θ23 = 1√
2
,

sin θ13 = 1√
2
λ,

δ = ϕ + π,

sin2 θ12 = 1

3
+ 2

√
2

3
sin θ13 cos δ,

whereas for the bimaximal mixing case we obtain
sin θ23 = 1√
2
,

sin θ13 = 1√
2
λ,

δ = ϕ + π,

sin2 θ12 = 1

2
+ sin θ13 cos δ.

In the tri-bimaximal based case, δ has to be close to π/2 (or
3π/2) in order to suppress the θ13 correction to sin2 θ12 = 1/3.
The situation is however different in the bimaximal case, in which
a sizable and negative θ13-correction is required in order to reduce
the maximal mixing value sin2 θ̃12 = 1/2. Hence, δ � π or 2π has
to be fulfilled. This interplay of the mixing scheme (bimaximal/tri-
bimaximal) in Uν and the Dirac phase in neutrino oscillations has
first been noticed in [31]. Recall that the fit results from Refs. [16,
17] include at 1σ essentially both cases, δ � 2π and δ � 3π/2,
where the latter value is close to the best-fit one.

2.2. The case of θ̃13 > θ13

If θ̃13 is larger than the observed value of θ13, the term propor-
tional to λ2 term in Eq. (10) can be neglected, leaving us with a
set of novel sum rules. Appealing values of the initial value are e.g.
θ̃13 = π/10 or θ̃13 = π/12. Assuming θ̃13 = π/10 (or θ̃13 = 18◦)
and for simplicity also θ̃23 = π/4, the following sum rules can be
deduced:

sin2 θ13 � 3 − √
5

8
− (

√
5 − 1)

√
5 + √

5

8
λ cos(ϕ − φ), (19)

sin2 θ23 � 1

2
− 4

5 + √
5

(
sin2 θ13 − 3 − √

5

8

)
, (20)

sin2 θ12 � sin2 θ̃12 − 2√
5 + √

5
λ sin 2θ̃12 cosϕ. (21)

Thus, using the measured value θ13 � 9◦ and Eq. (20), one predicts
θ23 � 47.3◦ . Another interesting example is θ̃13 = π/12 (or θ̃13 =
15◦), which leads to the following rum rules,

sin2 θ13 � 2 − √
3

4
−

√
2

4
λ cos(ϕ − φ), (22)

sin2 θ23 � 1

2
− 2(2 − √

3 )

(
sin2 θ13 − 2 − √

3

4

)
, (23)

sin2 θ12 � sin2 θ̃12 − (
√

3 − 1)λ sin 2θ̃12 cosϕ. (24)

By inserting θ13 = 9◦ into Eq. (23) we obtain the prediction θ23 �
46.3◦ . As in the previous example, we find θ23 in the second oc-
tant.

It is obvious from Eq. (13) or from (6)–(9) that in case (Ũν)e3 >

Ue3 at leading order δ � φ holds. In addition, from (22) it is clear
that the first and second terms should cancel to a large extent in
order to reduce to the observed value of |Ue3|2. To this end, the
cosine in (22) should be close to 1, which gives

δ � φ � ϕ. (25)

Similar to the discussion in the previous subsection, if sin2 θ̃12 =
1/3 holds, δ � π/2 (or 3π/2) is required to suppress its correc-
tions to θ12. In contrast, for sin2 θ̃12 = 1/2, δ � π is expected in
order to avoid a too large solar mixing angle. Amusingly, the cor-
relation between sin2 θ̃12 and CP violation is identical to the one
for vanishing θ̃13. Both cases can in principle be distinguished by
their prediction for θ23, see the blue and red points in the lower
left plot in Fig. 6.
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2.3. The case of θ̃13 � θ13 , or sin θ̃13 � sin θ̃23λ

This is obviously the most complicated case, and does not allow
much analytical results. The Dirac CP phase is determined by

δ = −Arg
(
s̃13e−iφ − s̃23c̃13e−iϕλ

)
, (26)

or by Eq. (13). In principle, any value for δ is possible. As an
interesting example, we look at the scenario with θ̃13 = 9◦ (or
θ̃13 = π/20). In this special case, the sum of the first and third
term of Eq. (10) is about 0.05, the same size as the second term
if the cosine would not be there. Since the measured θ13 is also
very close to 9◦ , one would naturally expect that the phase differ-
ence between φ and ϕ is around ±π/3. Concretely, we have the
following relation

δ � φ ± π/3 � ϕ ± 2π/3. (27)

Note also that corrections to θ12 are not sensitive to θ̃13 as shown
in the general formula (11), which implies that the CP phase δ

is restricted to be close to ±π/6 and ±π/3 for s̃2
12 = 1/3 and

s̃2
12 = 1/2, respectively.

3. Numerics

In this section we fit the five parameters (θ̃12, θ̃23, θ̃13, φ and ϕ)
to the experimental data using the exact form of Eq. (4). To figure
out the allowed parameter spaces of the model parameters, we
compare the latest global-fit data with a χ2-function defined as

χ2
i j =

∑
i< j

(sin2 θi j − sin2 θ0
i j)

2

σ 2
i j

, (28)

where θ0
i j represents the experimental data given in Eq. (3), σi j

denote the corresponding 1σ absolute errors, and θi j are the pre-
dictions of the model and can be expressed in terms of the model
parameters.

3.1. θ̃12–θ̃13 plane

We start from projecting the parameter space to the θ̃12–θ̃13
plane. The parameter ranges for θ̃12 and θ̃13 are shown in Fig. 1
using contour lines for the most general case. We also consider the
case of maximal θ̃23 using colored contours, and make assumptions
about the CP phases.

From Fig. 1 we see that θ̃13 can be as large as 19.2◦ , which in-
spires us with mixing patterns such as sin2(π/10) = (3 − √

5 )/8
and sin2(π/12) = (2 − √

3 )/4. Such values of π divided by n can
be obtained in flavor symmetry models such as in Refs. [14,15].
The range of θ̃12 is wide and a maximal θ̃12 can be accommodated.
If θ̃23 is fixed to π/4, the parameter space shrinks only slightly,
which is a consequence of the suppressed (by both λ and θ̃13) cor-
rection terms to θ̃23, see Eq. (12). In the limit φ = 0, for which
the 12- and 13-sectors are correlated, see Eq. (17), a sizable θ̃13
demands a relatively large value of cosϕ in order to suppress its
contribution to θ13. This in turn requires θ̃12 to be close to maxi-
mal. In contrast, if θ̃13 is tiny, the constraint on θ̃12 becomes less
stringent, which can be seen clearly from our analytical results
Eq. (11). Explicitly, for a vanishing θ̃13, one has the approximate
relation sin θ13 � λ sin θ23. In such a case, the leading order correc-
tion to θ̃12 is flexible since it is proportional to cosϕ . If all phases
are zero, a significant and negative correction to θ̃12 is expected,
and consequently only the nearly maximal value θ̃12 � π/4 can be
accommodated.
Fig. 1. Parameter ranges of θ̃12 and θ̃13 at 1, 2 and 3σ . For the color contours, we
have fixed θ̃23 = 45◦ . In the upper panel, we allow all phases to freely vary be-
tween 0 and 2π . In the middle panel, we switch off φ but not ϕ , whereas in the
lower panel, all CP phases are set to zero.

3.2. θ̃12–θ̃23 plane

The allowed parameter space in the θ̃12–θ̃23 plane is shown in
Fig. 2. As special cases, we choose θ̃13 = 0 and θ̃13 = π/10, both
for the general case and for all phases being set to zero.

As expected from the suppressed corrections to θ̃23, the param-
eter range of θ̃23 is similar to that of θ23. If we neglect the CP
phases, θ̃13 = 0 leads to a large negative correction to θ̃12, and a
relatively larger θ̃12 is favored. In case of large θ̃13, θ̃23 is driven
towards smaller values, see Eq. (16).

3.3. θ̃13–θ̃23 plane

The allowed parameter space in the θ̃13–θ̃23 plane is shown in
Fig. 3. As special cases we choose sin2 θ̃12 = 1/3 and sin2 θ̃12 = 1/2.
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Fig. 2. The parameter ranges of θ̃12 and θ̃23 at 1, 2 and 3σ . For the color contours θ̃13 = 0 (upper row) or θ̃13 = π/10 (lower row) is fixed, but the choices of the phases are
different. In the left column, we allow all phases to freely vary between 0 and 2π , whereas in the right column, all phases are set to zero.

Fig. 3. The parameter range of θ̃13 and θ̃23 at 1, 2 and 3σ . For the color contours, we fix sin2 θ̃12 = 1/3 in the upper row and sin2 θ̃12 = 1/2 in the lower row. In the left
column, we allow all phases to freely vary between 0 and 2π , whereas in the right column φ = 0 is fixed.



W. Rodejohann, H. Zhang / Physics Letters B 732 (2014) 174–181 179
Fig. 4. The parameter range of ϕ and θ̃12 at 1, 2 and 3σ . All other model parameters
are marginalized.

As the figure shows, θ̃13 and θ̃23 are not sensitive to the choice
of θ̃12, which has already been shown in the analytical part above,
cf. Eqs. (10), (12). They are however very sensitive to the CP
phases, i.e. φ = 0 restricts the range of θ̃13 down to −10◦ � θ̃13 �
10◦ in the case of sin2 θ̃12 = 1/3, and in two distinct regions
around 0 and 18◦ in the case of sin2 θ̃12 = 1/2, with θ̃13 ∼ 9◦ be-
ing excluded. It is worth noting that, when all the phases are set
to zero, there is no parameter space for sin2 θ̃12 = 1/3, since the
derived θ12 is too small.

3.4. ϕ–θ̃12 plane

As pointed out in the analytical section, the phase difference
ϕ = x − y is very crucial for certain mixing patterns, in particular
for θ̃12. Thus, we illustrate the relation between ϕ and θ̃12 in Fig. 4.
The correlation between small phases for sin2 θ̃12 = 1/2 and phases
around π for sin2 θ̃12 = 1/3 is reproduced. Note that this feature is
present for all values of θ̃13.

3.5. JCP–θ̃12 plane

Since the choice of θ̃12 can be sensitive to the CP phases, we
further illustrate in Fig. 5 the 3σ ranges of the Jarlskog invari-
ant with respect to θ̃12. As one can read from the plot, JCP is
not sensitive to θ̃12 in the most general case. However, once θ̃13
is fixed, a connection between JCP and θ̃12 can be expected. As we
have mentioned in Section 2.1, in the case of vanishing θ̃13, max-
imal CP violation ( JCP � ±0.04) is achieved for s̃2

12 � 1/3 since δ

is close to π/2 (or 3π/2). In contrast, s̃2
12 � 1/2 leads to a sup-

pressed JCP as can be seen from the upper right plot. For the
case of θ̃13 � θ13 � 9◦ , our analytical results given in Eq. (27)
appear as reasonably good approximations. For instance, the tri-
bimaximal value s̃2

12 � 1/3 suggests | sin δ| ∼ 1/2, corresponding to
JCP ∼ J max

CP /2, which is reflected in the lower left plot. Further-
more, s̃2

12 � 1/2 results in | sin δ| ∼ 0.87, indicating nearly maximal
CP violation. As mentioned above, the situation for the large θ̃13
case is similar to the small θ̃13 case, as shown in the discussion
after Eq. (25).

3.6. Lepton mixing parameters

Finally, the correlations among the leptonic mixing parameters
are shown in Fig. 6. We choose four benchmark neutrino mixing
matrices Uν :

a) tri-bimaximal pattern with θ̃13 = 0, sin2 θ̃12 = 1/3 and
sin2 θ̃23 = 1/2 (red points);
Fig. 5. Scatter plots for the parameter range of JCP and θ̃12 at 3σ . Here we marginalize all the model parameters for the upper left plot, and fix θ̃13 = 0, θ̃13 = 9◦ and
θ̃13 = 18◦ in the other plots, respectively. The blue and green dashed lines correspond to sin2 θ̃12 = 1/3 and sin2 θ̃12 = 1/2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The allowed 3σ range of the lepton mixing parameters and the Jarlskog invariant. Green (red) points are for bimaximal (tri-bimaximal) mixing in Ũν . The other cases
are for sin2 θ̃12 = 1/3, sin2 θ̃23 = 1/2 and θ̃13 = π/10 (blue) or θ̃13 = π/20 (black). Since θ13 and θ23 are related in the same way for cases a) and b), the red and green
points are overlapping in the left bottom plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
b) bimaximal pattern with θ̃13 = 0, sin2 θ̃12 = 1/2 and sin2 θ̃23 =
1/2 (green points);

c) large θ̃13 case with θ̃13 = π/10, sin2 θ̃12 = 1/3 and sin2 θ̃23 =
1/2 (blue points);

d) medium θ̃13 case with θ̃13 = π/20, sin2 θ̃12 = 1/3 and
sin2 θ̃23 = 1/2 (black points);

Our analytical results from the previous Sections are confirmed,
e.g., the tri-bimaximal (bimaximal) pattern leads to δ � π/2
(δ � π ). When θ̃13 is sizable, the Dirac CP phase depends on φ

and ϕ , and therefore is not fixed. However, the choice of ϕ is re-
stricted from θ12, which in turn sets constraints on δ.

4. Conclusions

Since for a long time only an upper limit on θ13 existed, most
neutrino models were constructed to generate zero θ13. The recent
finding of a sizable value, θ13 = 9◦ , have led to many studies on
generating that value from an initially zero value. We have noted
here that this approach may be misleading, and that in fact θ13

could have initially been larger. The routinely applied corrections
in models will then reduce θ13 to the observed value, a possibility
usually not taken into account. We illustrated the consequences
of this approach in an explicit example based on charged lepton
corrections.4

An extreme case is that initially θ13 corresponds to 18◦ , or
π/10. It is then corrected by sin θC/

√
2 to the observed value of

9◦ . Hence, here we do not have 0 + 9 = 9, but rather of 18 − 9 = 9.
An analytical and numerical study of the general case was per-
formed, revealing new correlations and sum rules, different from

4 Another approach could be to study radiative corrections to reduce the value of
θ13, or corrections from vacuum misalignment in flavor symmetry models.
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the usually considered charged lepton corrections, that are based
on initially vanishing θ13. We find that the correlation of maximal
CP violation (δ = π/2) for initial tri-bimaximal mixing and CP con-
servation (δ = π ) for initial bimaximal mixing is present for both
extreme cases, initial θ13 = 18◦ and θ13 = 0.

We conclude that the possibility of a more complex mixing pat-
tern than usually considered should not be ignored. The simple
framework studied here is one example where a departure from
the usual approaches results in interesting and novel phenomenol-
ogy.
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