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The response of elderly human articular cartilage to mechanical
stimuli in vitro1
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Summary

Objective: To investigate the biosynthetic response of elderly human femoral head articular cartilage to mechanical stimulation in vitro and its
variation with site.

Method: Full-depth cartilage biopsies of articular cartilage were removed from defined sites on 10 femoral heads from patients aged 68e95
years. Cartilage explants were subjected to either static or cyclic (2 s on/2 s off) loading in unconfined compression at a stress of 1 MPa for
24 h, or no load. Metabolic activity was assessed by adding medium containing 35S-sulphate and 3H-leucine during the last 4 h of loading
and measuring the incorporated radioisotope. Matrix composition was measured in terms of the amounts of collagen, sulphated
glycosaminoglycans (GAG) and water content.

Results: Loading of elderly human articular cartilage at 1 MPa significantly inhibited incorporation of 35S-sulphate (PZ 0.023) into cartilage
explants. Pairwise comparisons showed that the difference in incorporation was only for static loading (43% decrease compared to unloaded)
(P! 0.05). 3H-leucine incorporation appeared to follow the same trends but neither static nor cyclic load was significantly different from control
(PZ 0.31). Significant topographical variation was found for % GAG wet and GAG:collagen but not water content, % GAG dry or collagen.
Isotope incorporation rates were in the order anteriorO superiorO posterior.

Conclusion: Static loading inhibits matrix biosynthesis in elderly human cartilage, and cyclic loading is not stimulatory. This is in contrast to
previous studies on young bovine tissue where cyclic loading is stimulatory.
ª 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Key words: Articular cartilage, Matrix biosynthesis, Mechanical stimulation, Ageing.

International
Cartilage
Repair
Society
Introduction

Articular cartilage is essential to normal diarthrodial joint
function; it reduces stresses on the subchondral bone,
prevents abrasion between articulating bone extremities
and provides a low-friction bearing surface. The proper
mechanical functioning of articular cartilage depends on the
composition and ultrastructure of the extracellular matrix1

but the maintenance and gradual turnover of the matrix
depend on the biosynthetic activity of the chondrocytes2,3.
Studies have shown the composition and thickness of
articular cartilage vary from joint to joint, and topographically
within a joint, as a function of age and among species4. In
the human hip joint the loading intensity, elastic modulus
and cartilage thickness decrease from the superior aspect
of the femoral head to the inferior5.
Ageing sees an increase in senescent chondrocytes but,

in the absence of pathologies such as osteoarthritis (OA),
the matrix integrity is maintained6. Sensitivity to cytokines
and growth factors, which primarily control matrix bio-
synthesis, decreases with age and it is presumed that
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matrix turnover will be slower7. One of the major proteo-
glycans, aggrecan, is modified with age with a decrease in
its chondroitin sulphate content, but no appreciable change
in chondroitin sulphate chain length. As the chondroitin
sulphate chains play a major role in determining the
cartilage elasticity, this reduction seems to relate to the
reduced elasticity seen in aged cartilage8. Coupled with this
is an increase in the number of smaller proteoglycans such
as biglycan and decorin9. A significant decrease in
glycosaminoglycan (GAG) synthesis has also been re-
ported regionally in human femoral head cartilage with
increasing age5. GAG synthesis was inversely related to
cartilage thickness5 and the greatest decrease in was found
in the highly loaded superior region, which has the thickest
cartilage and highest GAG content, whilst there was hardly
any variation in the posterior and anterior regions5.
It is generally acknowledged that physiological loading of

articular cartilage is necessary to maintain normal joint
function. Cyclic mechanical loading is important in de-
velopment, remodelling and disease of many tissues
including articular cartilage10. In vivo, joint loads are
determined by body weight and activity and it has been
suggested that cartilage adapts its modulus to control local
strains11. That strain is an important factor was shown by
studies of chondrocytes in agarose in which the larger
strains experienced in unconfined compression resulted in
greater GAG synthesis12. In-vitro studies have shown
biosynthetic activity and matrix turnover are also sensitive
to frequency and amplitude of stimulation. Static compres-
sion consistently shows a dose-dependant decrease in
84
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biosynthetic activity compared with unloaded tissue13e17,
and is thought to be mediated through changes in
pericellular pH and ion concentration, fixed charge density
and osmotic pressure18. Cyclic compression, on the other
hand, has been found to either stimulate, inhibit or have no
effect on biosynthetic activity depending on the loading
frequency and amplitude14e16,19e23. Generally loads ap-
plied at physiological frequencies seem to stimulate matrix
biosynthesis14,15,19,24, an exception being a recent study by
Torzilli et al.25 which showed a linear increase in inhibition
with increasing stress on cyclic loading at 1 Hz in un-
confined compression. All these studies used animal
tissues.
A number of studies have investigated the composition

and biosynthetic activity of elderly human cartilage6,8,26e29

but only a few have investigated the effects of mechanical
load30e32. All indicate a different response in elderly
cartilage to that found in young bovine tissue that is widely
used as a model. Schneiderman et al.30 showed that both
uniaxial unconfined load (3e8 atm (0.3e0.8 MPa)) and
increased osmotic compression on femoral head cartilage
(19e88 years) reduced the incorporation of sulphate into
the matrix of human articular cartilage in a reversible
manner. Another study by Maroudas et al.31 investigated
the effects on proteoglycan synthesis of slow, cyclic
compression at 0.17 Hz using bovine (5 years old), young
human (w34 years old) and elderly human (63e87 years
old) cartilage using pressures of 5, 10 and 30 atm (0.5, 1
and 30 MPa). Chondrocytes in bovine and young human
explants showed significant increases in GAG biosynthesis,
whereas the elderly human cartilage did not respond.
Recent studies have concentrated on mechanical loading

and cell viability in young and mature bovine cartilage
explants33e36. Their main observation was an increase in
cell death in the superficial zone after just 1 h of loading,
which continued until it reached a plateau at 6 h. Levin
et al.34 observed a greater depth of cell death in young
bovine compared with mature bovine cartilage. At 5 MPa
cell death occurred rapidly in the superficial zone and cyclic
loading for 24 h saw cell death progressing to the middle
zone36,37. Above 6 MPa in mature bovine explants, cell
death increased in proportion to applied cyclic load33.
These studies indicate that there is a threshold level of
deformation and continued, repeated loading eventually
leads to membrane rupture. It is also possible that
excessive loading and/or high stresses could be responsi-
ble for the initiation of the degeneration process.
This study begins to extend those data by investigating in

more detail the biosynthetic response of elderly human
articular cartilage to defined mechanical stimuli. To un-
derstand the aetiology and pathogenesis of disorders like
OA, it is important to have an understanding of how ageing
cartilage responds to mechanical loading and whether this
is related to the biochemical composition of the tissue. It is
also important to know the extent to which animal cartilage,
especially from young animals, is a good model for elderly
human tissue.

Methods

EXPLANT HARVESTING AND CULTURE

Femoral heads were retrieved from patients undergoing
a hemiarthroplasty for a fractured neck femur attributed to
osteoporosis. Local Ethics Committee approval was ob-
tained for this process and all patients gave informed
consent for the tissue to be used. Full thickness explants of
5 mm diameter were excised without bone, using a cork
borer, from the femoral heads of 10 patients (68e95 years,
9 females and 1 male). Samples were taken from three
distinct areas, anterior, superior and posterior, and samples
from each region were randomised for the different loading
regimes. Prior to removing samples, the surface of the joint
was carefully examined visually and only those areas in
which the cartilage showed no fibrillation or evident damage
were removed. Each explant’s original position on the
femoral head was recorded. The explants were gently
blotted between sterile gauze pads and weighed in pre-
weighed sterile eppendorf tubes. They were then trans-
ferred into Dulbecco’s Modified Eagle’s Medium (DMEM)
with GlutaMAX I, 1000 mg/l D-glucose and sodium pyruvate
(Invitrogen Ltd, Paisley, UK), containing 10% foetal calf
serum (Globepharm Ltd, Guildford, UK) and 25 mgml�1

ascorbic acid (SigmaeAldrich Company Ltd, Dorset, UK),
50 IU penicillin and 50 mgml�1 streptomycin (Invitrogen,
Paisley, UK), and left for 48 h at 37(C in a 5% CO2

incubator, as this has been shown to be sufficient time for
synthetic activity to reach equilibrium after explantation20.

MECHANICAL LOADING

The loading was performed using a pneumatically driven
device, similar to that previously described by Larsson
et al.15. This comprised two separate loading units: the first
operated via a timing device, which enables controlled
cyclic loads to be generated, the other unit applies
a constant load of the same magnitude. Up to six samples
may be loaded in each unit. The whole system was
maintained at 37(C in an incubator.
After the 48-h equilibration period each explant was

weighed again and placed between 1 mm thick pre-soaked
polyethylene filters in a sterile bijou containing 1 ml of
DMEM. Next a polyethylene spacer, designed to transmit
load from the tube lid to the tissue while allowing the
medium to circulate freely, was placed on top of the upper
filter and the tube lid replaced loosely. Two explants from
each of the three areas were prepared for each of the
loading regimes. These tubes were then placed into the
loading device and loaded for a period of 24 h. Loads were
applied so as to generate a stress of 1 MPa on each
explant. Cyclic loads were applied for 2 s followed by 2 s of
no load in a square-wave pattern with a load rise and fall
time of about 90 ms. Similar tubes were subjected either to
a static load of the same magnitude or to no load, which
was chosen to act as a control group.

DETERMINATION OF MATRIX BIOSYNTHESIS

For the final 4 h of loading fresh medium containing
radiolabelled precursors to measure matrix biosynthesis
was added to each tube. Dual labelling was carried out
using tritiated leucine (Amersham Biosciences, UK Limit-
ed), 0.92 MBq (25 mCi) ml�1 to measure general protein
biosynthesis, and [35S]-sulphate (Amersham Biosciences,
UK Limited), 0.37 MBq (10 mCi) ml�1 for sulphated GAGs.
Loading was paused briefly whilst fresh media containing
the radiolabelled precursors were added (approximately
5 min). On completion of loading the radioactive media were
removed and the explants washed in four changes of 1 ml
ice-cold phosphate buffered saline (PBS) containing a
protease inhibitor cocktail (SigmaeAldrich Company Ltd,
Dorset, UK). Washing was done in preference to extraction
and desalting to enable accurate composition measure-
ments to be made on the same samples. This has
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previously been shown to be effective in removing non-
incorporated isotope38. The explants were left to air dry for
48 h at 37(C and weighed, and the water content de-
termined from the difference between wet and dry masses.
Drying at 37(C is preferable to drying by vacuum
dessication39 and drying to equilibrium occurs within
48 h40. Explants were then digested in 20 ml! (cartilage
wet mass in mg) of papain (SigmaeAldrich Company Ltd,
Dorset, UK) (135 mgml�1 of papain added to a buffer of
0.1 M sodium acetate, 5 mM ethylene diamine tetra-acetic
acid (EDTA) (SigmaeAldrich Company Ltd, Dorset, UK)
and 5 mM cysteine-HCL (SigmaeAldrich Company Ltd,
Dorset, UK) pH 6.0) for 24 h at 65(C.
Radioactivity was measured by taking 20 ml of the papain

digest (equivalent to 1 mg wet weight of cartilage), adding
2 ml Hi-safe scintillation fluid (Wallac Scintillation Products
Ltd.) and counting in a Wallac 1409 Liquid Scintillation
Counter. Incorporation of the isotope into the tissue was
expressed as nmol g�1 h�1 by dividing the measured
disintegrations per minute by the product of the specific
activity (calculated from the known concentrations of
sulphate and leucine in the medium), the wet mass of the
tissue and the labelling time.

LOAD-RECOVERY

Load-recovery experiments were performed to investi-
gate whether there were any permanent changes in
metabolism after 24 h loading. Explants from three femoral
heads were subjected to the same loading regime de-
scribed above. After 24 h the load was removed and
explants were placed into fresh media and left free swelling
for a further 24 h, with the addition of radiolabel for the final
4 h as described earlier. The explants were then dried,
digested and matrix biosynthesis measured as before.

SHORT LOAD

The initial time period of 24 h loading was chosen to
ensure a stable response would be obtained. However, this
is not necessarily physiological; therefore, explants from
a further five femoral heads were loaded using the same
configuration for a 4-h period, with the addition of radiolabel
for the whole time.

DETERMINATION OF MATRIX COMPOSITION

Matrix composition was studied using standard bio-
chemical methods to measure gross composition in terms
of amount of collagen, by hydroxyproline assay41, and
amount of GAG, by dimethlymethylene blue assay (DMMB)
(SigmaeAldrich Company Ltd, Dorset, UK)42.
Total sulphated GAGs were measured using a DMMB

methodmodified from that described by Stone et al.43 for use
in a 96-well plate. The working dye solution is unstable and
care was taken to ensure that the ratio of the absorbances at
657 nm and 595 nm was between 1:1.3 and 1:1.5. Standard
curves were obtained using concentrations of chondroitin 6-
sulphate (SigmaeAldrich Company Ltd, Dorset, UK) from
0 to 150 mgml�1 at 10 mgml�1 intervals. Triplicate 8 ml
aliquots of a 20! dilution of papain digest were mixed in
a 96-well plate with 200 ml of DMMB working solution and
absorbance read at 525 nm using a Dynatech MR5000 plate
reader 3 min after the addition of the dye.
Collagen content was measured colorimetrically44 based

on the ‘‘direct acid’’ method of Firschein and Schill45 and
modified for use in a 96-well plate. Samples were hydro-
lysed by adding 180 ml of HCl to 100 ml of 10! dilution of
papain digest in glass tubes which were sealed and heated
at 110(C for 18 h, to liberate hydroxyproline. Standard
curves were obtained using concentrations of hydroxypro-
line (SigmaeAldrich Company Ltd, Dorset, UK) from 1 to
16 mgml�1. Triplicate 100 ml aliquots of hydrolysed papain
digest and duplicate 100 ml of standards were placed in
a 96-well plate. To all wells were added 100 ml of methyl
cellosolve followed by 50 ml of chloramine T solution
(SigmaeAldrich Company Ltd, Dorset, UK) and finally
60 ml of Ehrlichs reagent (SigmaeAldrich Company Ltd,
Dorset, UK) and mixed thoroughly by back pipetting. They
were then put into an oven at 80(C for 50 min, allowed to
cool and the absorbance read at 570 nm on a plate reader
(Dynatech MR5000, Dynatech laboratories, USA). Collagen
content was calculated assuming 14 g hydroxyproline per
100 g collagen46. Collagen and GAG concentrations were
expressed in terms of the wet and dry weight of tissue. To
remove possible inaccuracies of measurement of wet mass,
the ratio of GAG:collagen was also calculated.

DNA CONTENT

The DNA content of the cartilage samples was de-
termined as a measure of the cellularity of the cartilage.
Standard curves were obtained using concentrations of
salmon/herring testis DNA (SigmaeAldrich Company Ltd,
Dorset), from 2 to 14 mgml�1 in a 96-well plate assay.
Standards (duplicates of 50 ml) and test samples (triplicates
of 10 ml of the original papain digest) were added to
separate wells in a 96-well plate. All wells were then made
up to a volume of 100 ml by the addition of papain buffer (not
containing papain). Finally, 100 ml of working Hoechst
33258 solution (0.2 mgml�1) (SigmaeAldrich Company
Ltd, Dorset) was added to all wells. The plates were read
on a fluorimeter (Cytofluor Series 4000, Perspective
Biosystems) at a wavelength of 455 nm using an excitation
wavelength of 350 nm. The DNA content of the cartilage
samples was expressed as mg DNA normalised to the wet
weight of the cartilage (mg g�1).

CHONDROCYTE VIABILITY AND NUMBER

Chondrocytes were isolated from explants taken from
three femoral heads after being subjected to the same
loading described above (12 randomised samples per
loading regime) following a slightly modified protocol of
Wang et al.47. In brief, after loading the samples were
chopped up and treated with 0.25% hyaluronidase in
DMEM on an orbital shaker for 2 h at 37(C. Then the
hyaluronidase was removed and replaced with pre-warmed
0.25% pronase in DMEM for 90 min at 37(C on an orbital
shaker. After this the samples were washed twice in DMEM
and stored overnight in DMEM at 37(C. The following day
samples were solubilized by an overnight digestion in
0.25% collagenase solution at 37(C on an orbital shaker,
centrifuged at 980 g for 10 min, and the pellet of cells
resuspended in 0.5 ml of DMEM. Chondrocyte viability was
determined using the trypan blue (SigmaeAldrich Company
Ltd, Dorset, UK) exclusion test, using 50 ml of cell solution
and a haemocytometer.
To confirm the chondrocyte viability and ascertain where

cell death was occurring the viability was also measured
in tissue sections using fluorescein diacetate (FDA) and
propidium iodide (PI) (both SigmaeAldrich Company Ltd,
Dorset, UK) on samples from two femoral heads. The
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membrane-permeable FDA is cleaved by esterases in live
cells to yield cytoplasmic green fluorescence, whereas the
membrane-impermeable PI labels nucleic acids of mem-
brane-compromised cells with red fluorescence. An FDA
stock solution was prepared by adding 40.1 mg of FDA to
10 ml of acetone, and a PI stock of 10 mgml�1 in distilled
water. Immediately prior to staining a working solution was
made up of 0.01% v/v (FDA and PI) and 2.5% w/v EDTA in
PBS. After loading, explants were washed in sterile PBS for
5 min and 1 mm sections cut perpendicular to the articular
surface using a razor blade. After staining for 10 min at
room temperature in the dark, and washing twice (5 min
each) in PBS to remove free dye from the tissue matrix, the
samples were placed on a microscope slide, covered with
PBS and a coverslip and observed using a Zeiss Axioskop
fitted with Filter 24 (Excitation DBP485/20C 578/14,
Emission BP515-540CLP610) to visualize non-viable
(red) and viable (green) chondrocytes simultaneously.

DETERMINATIONOFENDOGENOUSANDNEWLYSYNTHESIZED

MATRIX COMPONENTS RELEASED TO MEDIUM

Endogenous GAG released to the medium was measured
(as mg GAG per mg wet weight of cartilage) using the DMMB
assay at various points after the start of loading: 20 h (load),
24 h (loadC label) and 44 h (load-recovery). Newly synthe-
sized GAG and protein, containing radiolabel, were mea-
sured at the following time points: 4 h (short load), 24 h (load)
and 48 h (load-recovery). Media were desalted using a gel-
filtration column (PD-10, Pharmacia Biotech, containing
Sephadex G-25) to separate molecules according to size.
Incorporated isotope was quantified by scintillation counting.
Samples of medium corresponding to 1 mg of tissue
(calculated by dividing volume of medium by the original
wet weight of each explant) were aliquoted, an equal volume
of 8 M guanidine hydrochloride (GuHCl) added, then made
up to 0.25 ml with 4 M GuHCl desalting buffer (4 M GuHCl,
50 mM sodium sulphate, 50 mM sodium acetate and 0.1%
Triton X-100). The column was equilibrated with desalting
buffer, then the sample plus 0.5 ml desalting buffer were
applied to the column and the fraction collected in
a scintillation vial. A further five separate 0.75 ml aliquots
were applied to the column and the fractions collected. To all
the fractions 2 ml Hi-safe scintillation fluid (Wallac Scintilla-
tion Products Ltd.) was added and then counted on a Wallac
1409 Liquid Scintillation Counter. Matrix biosynthesis of
proteoglycan and protein was calculated from the total [35S]-
sulphate labeled GAGs and total tritiated leucine found in the
media fractions, disintegrations per minute were totalled and
expressed, as above, as newly synthesized GAG or protein
in nmol g�1 h�1.

STATISTICAL ANALYSIS

Results are quoted as meanG standard deviation, un-
less stated otherwise. Significant differences in radioisotope
incorporation were determined between loading regimes
using one-way analysis of variance (ANOVA) with the null
hypothesis of no difference in incorporation rates between
loading. If normality failed then a KruskaleWallis ANOVA
on ranks was performed. When significant differences were
detected a Tukey pairwise multiple comparison test was
performed to identify which groups differed. To investigate
incorporation in relation to load and site it was necessary
to analyse each loading regime separately and ascertain
site variation as a function of load. The data were not
independent of each other so, a non-parametric K-related
samples test (Freidman RM AOV) was needed and pairwise
comparisons were not possible. A Freidman RM AOV test
was also performed for % GAG wet and dry weight, %
collagen wet and dry weight, % water and mg DNA at each
site. Correlation between parameters was calculated using
Pearson Product Moment Correlation. Regressions were
performed with age as an independent variable to ascertain
if age could predict % GAG wet and dry weight, % collagen
wet and dry weight, % water and mg DNA. All analyses
were done using SigmaStat 2.0 or SPSS (SPSS Science,
Chicago, USA).

Results

MECHANICAL LOADING

Loading of elderly human articular cartilage at 1 MPa
significantly inhibited incorporation of sulphate into cartilage
explants (PZ 0.023) (Fig. 1). Pairwise comparisons showed
that the difference in incorporation was only significant for
static load (P% 0.05) (4.1G 1.9 nmol g�1 h�1). Cyclic load
(5.7G 2.4 nmol g�1 h�1) was not significantly different from
the unloaded samples (7.3G 2.8 nmol g�1 h�1). Leucine in-
corporation appeared to follow the same trends (Fig. 1) (static
13.0G 6.6 nmol g�1 h�1, cyclic 15.0G 5.3 nmol g�1 h�1) but
neither were significantly different (PZ 0.31) from the un-
loaded samples (17.0G 4.9 nmol g�1 h�1) though the power
was low (0.08).
Comparing the ratio of sulphate:leucine incorporation,

a significant difference was observed with loading
(PZ 0.0063), with a reduction in the incorporation of
sulphate relative to leucine in the statically loaded samples
(0.33G 0.08) and cyclically loaded (0.38G 0.08) compared
with the unloaded samples (0.45G 0.14). Following further
analysis, a weak correlation was found between sulphate
and leucine incorporation rates for the unloaded samples
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Fig. 1. Total incorporated radiolabelled leucine in nmol per g wet
weight of cartilage per hour for control, static and cyclic loading
regimes across sites. Load was applied for 24 h and radiolabelling
was carried out for the final 4 h. Significance between sites was
analysed using ANOVA, NZ 10. Mean G SD and significance
values (P), * indicates a statistical significant Tukey pairwise

comparision of static load compared to control, P% 0.05.
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and almost perfect correlation in the statically loaded
samples with the cyclically loaded samples intermediate
to these (Table I).
Site variation of incorporation as a function of load was

analysed for each loading regime using the non-parametric
K-related samples test. This revealed no significant differ-
ences in the unloaded controls. Static loading, however,
showed significant differences in both sulphate (PZ 0.011)
and leucine (PZ 0.021) incorporation, being greatest in the
anterior region, followed by the superior then the posterior.
With cyclic loading, only leucine incorporation showed
significant differences, with tissue from the posterior being
much less active than superior or anterior sites (Tables II
and III).

LOAD-RECOVERY

The load-recovery experiments showed incorporation
rates for sulphate were back to 85% (static) and 88%
(cyclic) of unloaded controls within 24 h. Leucine incorpo-
ration rates returned to 93% (static) and 99% (cyclic) of
unloaded controls within the same time.

SHORT LOAD

The short loading period showed no statistical signifi-
cance for either sulphate (PZ 0.60) or leucine (PZ 0.50)
incorporation. However, the power was low (0.05) and this
would bear further investigation.

TISSUE COMPOSITION

Significant topographical variations were seen in % GAG
wet weight (PZ 0.03) and the ratio of GAG:collagen
(PZ 0.03) with the anterior/superior region being higher
than the posterior region. There were no significant
topographical variations in % GAG dry, % collagen wet,
dry mass of the tissue or DNA content (Table IV).
Regressions with age as the independent variable (Table V)
revealed one significant correlation. GAG content de-
creased with age (% GAG dry R2Z 0.52, PZ 0.018) (%
GAG wet R2Z 0.383, PZ 0.056). All other variables
showed no significant correlation.
The mean cell density was 12,900G 3400 cells mm�3

with a 4% decrease in the viability of cells from statically
loaded samples and 2% in cyclically loaded samples
compared with unloaded samples (PZ 0.011) (Table VI).

Table I
Correlation coefficients and significance values for pairwise
comparisons of sulphate and leucine incorporation at different
loading regimes, calculated using Pearson Product Moment
Correlation. In each block the figures quoted are the correlation
coefficient, R; the significance, P; and the number of samples, N

Load Leucine

Sulphate Control R 0.54
P 0.003
N 28

Cyclic R 0.79
P !0.001
N 28

Static R 0.99
P !0.001
N 28
Fluorescence staining indicated that cell death was not
confined to any specific zone within the tissue or to the cut
edges.

GAG AND PROTEIN RELEASE TO MEDIUM DURING LOADING

The DMMB assay revealed a significant increase in GAGs
(mg GAG per mg wet weight of cartilage) released to the
medium from the cyclically loaded tissue (1.03G
0.27 mgmg�1) after 24 h (PZ 0.003) of loading compared
to static load (0.304G 0.076 mgmg�1) and control
(0.23G 0.13 mgmg�1). On removing the loads, GAG release
returned to control levels and there were no differences
between the groups (PZ 0.51).
Desalting of loaded, recovery and short load 4-h radio-

labelled media indicated new protein was being synthe-
sized and released to the medium by all loading regimes
(11.75G 8.23 nmol g�1 h�1) but there were no differences
between loading regimes and no newly synthesized GAGs
could be detected in the culture media.

Discussion

These data show that both cyclic and static loading
appear to inhibit matrix biosynthesis in elderly human
articular cartilage, compared with unloaded tissue. The
effect was statistically significant for GAG synthesis though
it did not reach significance for protein synthesis. This
suppression appears to start within 4 h of initiating loading,
though these methods are not sensitive enough temporally
or quantitatively to explore this further. The results of cyclic
loading are in contrast to previous studies on young bovine
and canine tissue where it has been found almost
universally to be stimulatory compared with unloaded
tissue15,19,48,49. An interesting observation was the ratio of
sulphate:leucine incorporation, which in the presence of
load showed a very high correlation that was absent in
unloaded samples. This indicates a decoupling of GAG and
protein synthesis in the absence of load with a dispropor-
tionate increase in GAG synthesis. Leucine was chosen to

Table II
Total incorporated radiolabelled sulphate in nmol per g wet weight
of cartilage per hour for control, static and cyclic loading regimes
across sites. Load was applied for 24 h and radiolabelling was
carried out for the final 4 h. Significance between sites was
analysed using Freidman RM AOV (non-parametric K-related
samples test, NZ 8). MeanGSD and significance values (P)

Posterior Superior Anterior P

Control 5.9G 2.4 6.7G 2.6 6.9G 2.7 0.33
Cyclic 3.6G 2.1 5.7G 1.2 6.2G 1.9 0.07
Static 2.8G 1.8 3.7G 2.0 5.2G 2.9 0.01

Table III
Total incorporated radiolabelled leucine in nmol per g wet weight of
cartilage per hour for control, static and cyclic loading regimes
across sites. Load was applied for 24 h and radiolabelling was
carried out for the final 4 h. Significance between sites was
analysed using Freidman RM AOV (non-parametric K-related
samples test, NZ 8). MeanGSD and significance values (P)

Posterior Superior Anterior P

Control 12.4G 3.3 17.9G 8.7 15.6G 4.9 0.093
Cyclic 10.8G 6.3 16.4G 5.0 15.1G 4.8 0.034
Static 9.6G 7.8 12.0G 7.4 16.3G 9.3 0.021
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measure protein synthesis, in preference to proline,
because it constitutes a higher percentage of the compo-
sition of most of the proteins in cartilage matrix; approx-
imately 10% of the amino acid composition, from 4% in
collagen type II to 14% in biglycan, decorin and fibromo-
dulin50. Proline is more specific for collagen synthesis.
There are two factors that could underlie the differences

between this and previous studies: the first is the age of
the tissue and the other is a species difference. To our
knowledge this is the first study of different direct loading
regimes on elderly human cartilage. The only other similar
study of which we are aware used osmotic and static
mechanical compression of human cartilage from OA,
osteoporotic (op) and normal subjects aged 19e88 years
but unfortunately did not distinguish between the respective
groups or classify into age. They subjected cartilage plugs
to steady compression at 3e8 atm (0.3e0.8 MPa) and
found a reduction in sulphate uptake. This is in agreement
with our results for static load, but is also consistent with all
the studies using animal tissues.
Maroudas et al.31 showed that with dynamic compres-

sion, significant increases in GAG biosynthesis were
observed in chondrocytes from young bovine and young
human explants, whilst aged human cartilage showed no
difference.
For maintaining tissue homeostasis, it may be that it

is not only the absolute amount of matrix components
synthesized that is important, but also their relative
amounts. It is increasingly clear that the simple relation-
ships traditionally proposed between compressive and
tensile properties and GAG and collagen content are
a gross simplification and that interactions between these
molecules, and possibly other components, are at least as
important40,51. Some degree of loading, though, would be
normal in any joint and to use an unloaded tissue as the

Table IV
Composition of human articular cartilage at three sites on the
human femoral head. Significance between sites was analysed
using Freidman RM AOV (non-parametric K-related samples test,
NZ 8). MeanG SD and significance values (P), * indicates

a statistical difference between sites

Composition Posterior Superior Anterior P

% GAG wet 3.8G 0.90 4.2G 1.0 4.3G 0.83 0.03*
% GAG dry 12.2G 2.0 13.3G 1.6 13.1G 1.7 0.22
% Collagen wet 13.5G 3.6 11.6G 4.0 12.2G 4.5 0.33
% Collagen dry 42.7G 8.8 36.7G 9.8 37G 11 0.20
% Water 72G 10 68.4G 5.5 67.5G 4.0 0.33
DNA (mg/g) 0.45G 0.11 0.44G 0.078 0.45G 0.09 0.88
GAG:collagen 0.31G 0.10 0.40G 0.13 0.39G 0.14 0.03*

Table V
Linear regression of composition of human articular cartilage as
a function of age. The * indicates a statistical difference. The only
significant relationship was a decrease in % GAG, both wet and dry,

and age

R2 (NZ 10) P

% GAG wet 0.38 0.056*
% GAG dry 0.52 0.018*
% Collagen wet 0.013 0.75
% Collagen dry 0.042 0.57
% Water 0.002 0.91
DNA (mg/g wet) 0.028 0.64
GAG:collagen 0.22 0.18
control is not necessarily the best for comparison with
loading in vivo. Cyclic load induces a greater metabolic
response than static load, and the disproportionate increase
in GAG in the unloaded tissue still suggests that absence of
load variation is to be avoided.
Continuous loading for 24 h is not physiological and to

ensure that the changes observed were not a consequence
of chondrocyte death, cell viability studies were performed.
Mean cell counts were consistent with previously published
data of 10,000 cells mm�3 in adult human femoral head
cartilage26 and 14,500G 3500 in adult human femoral
condylar cartilage52. There was indeed a small (4%) but
significant decrease in cell viability in the statically loaded
tissues compared with the control. This is not great enough,
though, to account for the magnitude of the changes found
in incorporation rates, which were all much larger than this.
Load-recovery experiments confirmed that 24-h loading
does not seriously compromise the cellular responsivity and
incorporation rates were nearly back to control levels 24 h
after removing the load.
Histology also showed that a small number of cells had

died and that these were scattered throughout the whole
depth of the tissue. This is in contrast to a recent study of
mature bovine cartilage subjected to loading of 1 MPa in
confined compression which found that static loading
induced cell death after 3 h and cyclic loading after 6 h35.
Cell viability was assessed in that study by fluorescence
staining, but not quantified, and showed that chondrocyte
death was confined to the superficial tangential zone. The
difference in these results may arise from the different
loading environments, i.e., confined vs unconfined com-
pression. Recent studies seem to conclude that cell death is
greater in young tissue compared to old and, at physiolog-
ical loading regimes (1 MPa)34e36, a maximum cell death is
observed at 6 h and is confined to the superficial zone. At
loads of 5 MPa cell death is observed rapidly and at 24 h
has progressed into the middle zone. In this study, 1 MPa
appeared not to induce any significant cell death and this
could not be the cause of the reduction in biosynthesis
observed.
Comparisons in this study cannot be made with applied

strain as we used load control on full-depth biopsies rather
than strain control. Tissue biopsies vary in thickness and
therefore it is difficult to measure strain in intact, full-depth
tissue. Strain-control studies, however, generally remove
the surface zone to produce a uniform thickness of tissue.
Thus, both methods have their limitations.
A question mark will always remain over such elderly

tissue as to how ‘normal’ it is. Young human articular
cartilage is almost impossible to obtain so ageing effects
are difficult to determine. As far as is known, cartilage on
femoral heads from patients following hemiarthroplasty
operations for fractured neck of femur commonly appears
visually normal, albeit thinner and slightly discoloured. It has
been noted that OA and OP have little overlap and rarely
are both seen in the same patient53,54 and care was taken

Table VI
Chondrocyte viability (meanGSD) across sites in tissues sub-
jected to the three loading regimes. ANOVA (PZ 0.011) and
a pairwise Tukey test showed that the difference between the
control and statically loaded samples was significant (P% 0.05)

N % Viability

Control 12 98.9G 1.6
Cyclic 12 96.7G 2.9
Static 12 94.7G 4.4*
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to avoid fibrillated areas of tissue commonly found in the
inferior region of the femoral head. Significant topographical
variations were seen in % GAG wet weight which are in
agreement with previous data55 with greater levels in the
more highly loaded anterior/superior regions. The ratio of
GAG:collagen also showed a greater proportion of GAG
with regard to collagen in these regions. There were no
other significant topographical variations in composition
across the femoral head, possibly suggesting a more
congruent hip with ageing56 and therefore a more even
loading distribution across the joint. Regressions with age,
over the limited range used, showed a significant decrease
in % GAG with age in agreement with previous studies26.
Our primary goal in these experiments was to begin to

determine the response of elderly human articular cartilage
to mechanical stimuli in a controlled environment. This has
been little studied, animal models are most commonly used
but it is not clear how well they represent the elderly human.
The results suggest that elderly human articular cartilage
responds differently to cyclic mechanical stimuli than animal
tissue, though the reasons for this are not clear. This
knowledge is important to tissue engineering approaches to
repair osteoarthritic cartilage in which the source of the
replacement tissue or cells needs to be considered. Though
the tissue response appears different to that in young
individuals, it still supports the importance of exercise by the
elderly to regulate the biosynthetic activity of the tissue.
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