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ABSTRACT 

A new version of the Buckingham pi theorem is presented which reveals the 
underlying mathematical structure of that classical result. In this context it becomes a 
theorem in linear algebra, and it is formulated without reference to physical quantities, 
units, dimensions, and so on. Also, the classical approach of Birkhoff is reviewed and 
some points in his proof are expanded. 

1. INTRODUCTION 

As all students of science and engineering know, equations must be 
dimensionally homogeneous; that is, all terms in an equation must have the 
same units-one cannot add apples and oranges. This simple observation 
forms the basis of what is called dimensional analysis. But it goes far deeper 
than that. The methods of dimensional analysis developed over the last 
century or so have led to important results in determining the nature of 
physical phenomena even when the governing equations were not known. 
This has been especially true in continuum mechanics, out of which the 
general methods of dimensional analysis evolved. 
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The most fundamental result in dimensional analysis is the pi theorem. 
Roughly it states that if there is a physical law which gives a relation among 
certain physical quantities, then there is an equivalent law which is expressed 
as a relation among certain dimensionless quantities (often denoted 
H,,H,,..., and hence the name). One of the most famous examples of 
dimensional reasoning was the derivation, by G. I. Taylor [8], of the formula 

E l/S 
r=p/s - l i PO 

f(Y) (1) 

which relates the radius r of a spherical blast wave produced by the release of 
a quantity of energy E, at a point in air of density p. and polytropic index y, 
to the twofifths power of the time t. Equation (1) follows from the assump 
tion that there is a physical law of the form g(t, T, po, E, y) = 0. The pi 
theorem guarantees that there is an equivalent physical law relating the 
dimensionless quantities in the problem. Here there are two dimensionless 
quantities, 

Hence there is a physical law, equivalent to g = 0, relating II, and II,. This 
new law is then of the form F(rII,, II,) = 0, from which we obtain (1). The pi 
theorem is also widely used in computing “dimensionless groups,” i.e., local 
Lie groups under which partial differential equations are invariant; these give 
rise to special classes of solutions called similarity solutions which play an 
important role in many applications (see Bluman and Cole [2]). 

The pi theorem appears to have been first stated by A. Vaschy [9] in 1892. 
Later, in 1914, E. Buckingham [4] gave the first proof of the pi theorem for 
special cases, and now the theorem often carries his name. Riabouchinsky and 
Martinot-Lagarde [6] have given a more general proof, and G. Birkhoff [l] has 
clarified the proof still further. There has been much discussion of the 
formulation and applicability of the pi theorem. Bridgman [3] and Birkhoff 
[l], two standard references, can be consulted for further details and bibliog- 
raphy. 

A difficulty with existing formulations and proofs of the pi theorem is that 
there appears to be a dependence on “physical’ terminology which is not 
explained precisely. This tends to obscure the mathematical content of the 
theorem. No clear distinction is made between the mathematical content and 
the parts which serve to relate the mathematical result to the physical world. 
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We propose in this note to give a careful formulation and proof of the pi 
theorem. In Section 2 we present an algorithm which is an effective proce- 
dure for reducing a dimensionally homogeneous physical law involving di- 
mensional quantities Qi, . . . , Q,,, to an equivalent law involving a (smaller) 
number of dimensionless variables II r+l,. . . , n,,. The algorithm is clear and 
easy to apply, and we illustrate it by an example. Then in Section 3 we 
formulate the abstract mathematical version of the pi theorem in a way that 
involves no discussion of dimension, physical quantities, etc. Our formulation, 
which is new, distinguishes between dimensional quantities and their real, 
numerical values. Bridgman emphasizes the desirability of such a distinction; 
however, neither he nor Birkhoff thoroughly accomplish this. In addition, we 
formulate precisely, in terms of linear algebra concepts, what we mean by a 
physical law. Although our definition coincides with that of Birkhoff, or more 
recently Evans [5], in meaning, it differs considerably in spirit, expression, 
and structure. 

2. THE ALGORITHM 

The following formulation and algorithm can essentially be found in 
Birkhoff [l]. We have included it for motivation for our abstract version of the 
pi theorem, and we have lengthened his proof in order to clarify some 
difficult points. Here we shall speak in physical terms and not distinguish 
between dimensionless quantities and the numerical values which these 
quantities assume. 

First we consider a “ physical law” f( Qi, . . . , Q,) = 0 relating dimensional 
quantities Qi, . . . , Q,. For example, in Taylor’s blast wave problem these 
quantities are t, r, E, pa, and y. Presently, the only assumption concerning fis 
that it is defined for Qi > 0, and it gives a single, well-defined relation among 

Q 1,. . . , Q,,,. Later we shall require an additional assumption. 
The dimensions of a dimensional quantity Qi can be written in a natural 

way in terms of certain fundamental dimensions 9r,. . . , 9n, appropriate to the 
problem being studied. For instance, in the blast wave problem, time T, 
length L, and mass M are the fundamental dimensions and the dimensions of 
each quantity can be expressed in terms of T, L, and M; thus the dimensions 
of energy E are ML?‘. In general, we make the following definition. 

DEFINITION 1. The dimension of each dimensional quantity Q, expressed 
as a monomial with real exponents in the 91,. . . ,9,, , is called the dimension 
monomial of Q and denoted [Q]. Thus [Q] = 9;l92- . .92 for some choice of 
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r,,...,r,. We say Q is dimensionless if [Q] = q:qi. . . qz, and we write 

[Ql = 1. 
We multiply monomials in the usual way, 

(q;lq2. . . q2)(q”l.. . q;“) = q;l+“lq~+sz. . . q:+s" 

Then the basic property of the correspondence Q --) [Q] can be stated as 

[QIQzl = [QJQzl~ 
We now present an algorithm for effectively determining the dimen- 

sionless quantities which can be formed among Qr, . . . , Q”,. For each of the 
dimensional quantities Q, we have 

[Qi] z q;lfq;z’. . . qav 
” 

The powers in the dimension-monomial define a matrix A = ( aij), called the 
dimension matrix. Then, a quantity Q formed from Qr, . . . , Qm by 

Q = Q;‘Qz”“. . . Qz 

is dimensionless if, and only if, 

Ao=O, (5) 

where cx= [a,,. . .,a,lT, and 0 is the zero vector. Letting ai denote the ith 
column of A, we see that (5) is equivalent to 

ap,+a+2,+ ... +amam=O. (6) 

Let A have rank r. We may reorder the Qi so that the columns a,, . . . , a, are 
linearly independent. Then a,, r, . . . , a, are linear combinations of a r, . , . , a r, 
and we may write 

uk=Ck.al+ ... +Ckrur, k=r+l,...,m. (7) 

Now, define lIIk for k > T by 

Each II, is dimensionless, since the vector 

c$= [_Ckl ,..., -c&,0 ,...> l,...,O] T 
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(1 is in position k) satisfies (6) by (7). Consequently, among the nz dimen- 
sional quantities Qr , . . . , Qm , we have shown that m - r dimensionless quanti- 
ties can be formed, where T = rank A. 

We now show, under certain assumptions, that the physical law 

f(Q p...,Qm)=O q is e trivalent to a physical law written only in terms of the 
dimensionless quantities &+r,. . . , II,. 

Let Ry =((x,,..., X,)E Rml each xi > 0). Having defined the lIk in (8), 
we now define a transformation Cp : Ry + Ry by @(Q,,. , . , Qm) = 
$‘w..~Q,>K+~,..., III,). Clearly Cp is one to one and onto. Let X = 

r,. . . ,A,) E R; , and let L be a dimensional quantity with [L] = @e - .q$. 
Define S,(L) = A?. . . A?L. We regard the h, as dimensionless (in practice 
they are just conversion factors), so that [S,(L)] = [L]. 

Now, consider the physical law 

f(Q ,,.-.,Qm)=O. 

For each XE R” define a new law 

where 

&f >(Qw -, Q,)=ftS,(Ql),.,.~S,(Q,)). 

DEFINITION 2. The law f( Qr , . , , , Q,,,) = 0 is unit free if for all A the laws 
f = 0 and S,(f) = 0 are equivalent, i.e., f(Q1,. . . , Q,) = 0 if, and only if, 

(%f)(Qu -a. > Qm) = 0. 

This is a reasonable definition. S,(Q) is just Q “measured in different 
units,” so it expresses the fact that a physical law should not depend on the 
units to express the various quantities. Given f: R’;t --) R, let g = fo Q-’ : Ry 
--$ R. So f(Q1 ,..., Q,)=O if, and only if, g(Q, ,..., Q,,&+r ,..., &)=O. 
Thus, beginning with the law f(Qr, . . . , Q,) = 0, we can construct the law 

dQ p...,Qr,K+1>..., II,) = 0 which is, in an obvious sense, an equivalent 
law. 

Having constructed dimensionless quantities and now an equivalent physi- 
cal law, we prove the following: 

LEMMA 1. If the law f(Q1,.. .,Qm) = 0 is unit free, so is the law 

g(Q1,...,Qr,n,+,,...,n,)=O. 
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Proof Let us pick a A. We must show that g(Q,, . . . ,QI, II,,,,. . . ,lI,) 
=O if and only if g(S,(Q,),...,S,(II,))=O. We know g(Q,,...,II,)= 

f-(0 r,...,Qm). If we show that 

d%(Qdm %(W) =f(S,(Q,),...,S,(Q,)), (9) 

we shall be done, since f= 0 is assumed unit free. But one can easily check 
thatfork=r+l,...,mwehave 

s,(h) = & = S,(Q1)-""'a . . S,(Q,)-CkrSX(Qk), (10) 

and (9) is immediate from (10). This proves Lemma 1. n 

In the next lemma we show that the physical law f(Qi, . . . , Qm) = 0 is 
equivalent to an equation relating only the dimensionless variables. This 
lemma is the content of the pi theorem. 

LEMMA 2. Zf the law f(Q1,. . . , Q,,,) = 0 is unit free, then it is equivalent 
to a law ofthefm @I,+,,...,II,)=O. 

Proof. Given Qi,. . . , Qr, there is a X such that 

s,(Qi)=ly i=l,...,r. 

This is because (9) states 

01) 

Aati. . . x$iQi = 1, j=l,...,r, 

or, equivalently, 

ariln A, + . . . + a&X. +lnQi = 0, j=l,...,r. 

The fact that a l,. , . , a, are linearly independent implies that the system 

aliz + . . . + a,+,, = -lnQt, j=l,...,r, 

has solutions (zi,..., 2,). Therefore, if we set Xi = e’l, then (11) is satisfied. 
But then g(Q,,. . . ,Qr, II,,,,. . . ,II,)= 0 if, and only if, 
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g(L. * *, 1, J&+1, * * * , II,) = 0. Thus, if we define 

then the law f(Qr, . . . , Q,) = 0 is equivalent to the law +( II,, r, . . . , II,) = 0. 
This completes the proof. 4 

EXAMPLE (Falling body). We now work through the procedure for a 
specific example. The usual law governing how far an object falls (neglecting 
air resistance) is 

x = $gt2. 

We write Qr = t, Q2 = x, Q3 = g. The law is 

We have fundamental dimensions 

q1 = time = T, q,=length=L. 

Then we have the 2X3 matrix 

We have chosen the notation so that 

is nonsingular. Since a 3 = -2a 1 + a 2, we define 

The equivalent law, g(Q1,Q2,113)=0, is given by g(Qr,Qs, lI,)=Q, 
- $(~,Q~Q;~)Q? = 0. Th isisequivalenttothelawg(l,l,If,)=l-&II,= 
0. We remark that in practice the pi theorem is not usually used to reduce 



124 W. D. CURTIS, J. D. LOGAN, AND W. A. PARKER 

known laws to dimensionless form but rather to obtain the form of an 
unknown law in terms of dimensionless variables, much the same as was 
indicated by the blast wave example in Section 1. The above algorithm clearly 
gives an explicit method for calculating all the dimensionless quantities in a 
given problem. 

3. THE PI THEOREM 

In this section we give a rigorous, abstract theorem which reveals the 
mathematical content of the previous section. We include a series of remarks 
intended to help the reader relate this section to Section 2. 

Let V be an m-dimensional real vector space and 7’: V + R” a linear 
transformation of rank r. Let F be the set of all ordered bases (frames) of V. 

REMARK A. V is the vector space of “quantities” for the problem at 
hand. If Q is a quantity in V, then T(Q) = (a,, . . . ,S,) corresponds to the 
dimension monomial of Section 2, 

(6 1,...,6,) -qfk+. . * & 

The assumption that T is linear corresponds to the property of dimensions 
that [QrQa] = [Q1][Q2] and that [QB] = [QIP. The usual product Q1Q2 is 
expressed in the vector space V as Q1 + Q2, and Q” is expressed as cQ. A 
frame in F is a choice of independent quantities (Qr,. . . ,Q_,). The linear 
combination CX~Q~ + . . . + e,,,Q,,, corresponds to Qr’* . . Qz-. We note that a 
dimensionless quantity Q is one for which 7’(Q) = 0. 

For each choice of a frame e =(e,,.. .,e,,,) we define an action *e of the 
additive group R” on R”, by 

Let B = (bii) be a nonsingular m X m matrix. Then we define 7s: R’; + RT 
by ~8(~1,...,~~)=(~~~~2)~“l...2)~l,...,~~1*y~2m.-.~~m). Then 7B is invert- 
ible and ril = ~~-1. 

DEFINITION 2. A law L on V compatible with T is an assignment, to each 
frame, e, of a nonempty set L, C R”, such that 

(i) R”*,L,= L, for all eEF, 
(ii) If e, C?E F with Zi = Zyzrbiiei, then L,= T~(LJ. 
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REMARK B. The choice of frame e corresponds to a choice of indepen- 
dent quantities (Qi, . . . , Q,,) to describe the law. A point (ri,...,x,) in L, is 
interpreted as a set of values for the quantities (Qi, . . . , Q,,), respectively. 
Requirement (i) of the above definition corresponds to the intuitive idea that 
changes of units change the numbers (xi,. . . , xm), but the new values still 
“obey the law.” Thus (i) is the requirement that the law be unit free (see 
Definition 2). A different choice of quantities, say (Qi, . . . , Q,,,), corresponds 
to a new frame E, and property (ii) specifies which values of the new 
quantities obey the law. 

THEOREM (Pi theorem). Let L be a law on V compatible with T. Then 
there exist frames e such that T(e,) = 0 for k = r + 1,. . . ,m, and for any such 
frame we have L, = RY, X E, for some t, C Ry-‘. 

REMARK C. Let (Qi,. . .,Q,., II,,,,.. .,II,) be the quantities making up a 
frame e, as in the theorem. Then, since T(II,) = 0 for k = r + 1,. . . ,m, we see 
the IIk are dimensionless. The conclusion L, = R’, X L, means that in order 
to obey the law, the values of Q1,. . . , Q, are unrestricted while the values of 

(II r+l,...,IIm) must lie in a subset of Ry-‘. We say the law is a relationship 
among the I&‘s. 

Proof of the pi theorem. The transformation T has rank r, as there exist 
frames e = (e,, . . . ,e,) such that e,+i,. . . ,e,,, he in ker T and Te,, . . . , Te, 
are linearly independent. Given real numbers yi, . . . , Y I, we can find 
AER” such that X.Te,=yj, i=l,..., r. This is a simple consequence of 
the linear independence of Te,, . . . , Ter. Now we have XEw = 
(e h’Telvl,. . . ,ex.Terv,, vrfl,. . . ,v,) for all v E R’; . Now define t, = 

{(z r+l ,..., z,)J(l,..., l,z?+i ,..., z,)EL,}. Suppose OE L,. Choose X so 
that eX.Tcl=l/Z)i for i=l,..., r. Then hzu=(l,..., Iv,,, ,..., v,)EL,. 
Therefore L, C R’, X z,. Conversely let v E R’, X Le. Then (1,. . . , 1, 

rfl ,..., u,) is in L,. Choose X so that eX.Tel= vi, i = I ,..., r. Then 
::(I ,...,I,V,,i,..., v,) = V, which belongs to L,. This completes the proof. 

n 

In conclusion, we have presented a theorem which reveals the underlying 
mathematical content of the classical pi theorem. Although this formulation 
does not yield new examples of application of the theorem, it does give insight 
into its linear, algebraic structure; in this context, the proof is nearly trans- 
parent. 
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