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Neuronal circuits in the olfactory bulb transform odor-evoked activity patterns across the input
channels, the olfactory glomeruli, into distributed activity patterns across the output neurons, the
mitral cells. One computation associated with this transformation is a decorrelation of activity pat-
terns representing similar odors. Such a decorrelation has various benefits for the classification and
storage of information by associative networks in higher brain areas. Experimental results from
adult zebrafish show that pattern decorrelation involves a redistribution of activity across the popu-
lation of mitral cells. These observations imply that pattern decorrelation cannot be explained by a
global scaling mechanism but that it depends on interactions between distinct subsets of neurons in
the network. This article reviews insights into the network mechanism underlying pattern decorr-
elation and discusses recent results that link pattern decorrelation in the olfactory bulb to odor dis-
crimination behavior.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Computational functions of neuronal circuits and the
olfactory system

Higher brain functions are not directly determined by the bio-
physical properties of individual neurons but emerge from interac-
tions between many neurons in synaptically connected networks.
Deciphering such networks is central to understanding the princi-
ples of biological computation, the relationship between brains
and computers, brain dysfunction in mental disorders, and the very
nature of humans and other animals. Neurons are organized in
structured networks, or circuits, that are typically defined as cir-
cumscribed populations of interconnected neurons. Small circuits
such as repetitive columnar elements of the optic lobes in Droso-
phila may be comprised of <100 neurons [1] while large circuits
such as mammalian piriform cortex or cerebellar lobules can con-
tain 106 neurons or more [2]. Most neuronal circuits consist of
functionally diverse types of neurons and contain prominent feed-
back loops. The computational potential of such systems is enor-
mous [3] but we are only beginning to understand how this
potential is realized in biological circuits. A systematic and some-
what reductionist approach to understand brain functions may
thus ask what different circuits compute, and how these computa-
tions are achieved mechanistically as neurons exchange and inte-
grate biophysical signals.

The challenge to understand a neuronal computation obviously
depends on the complexity of the computation and the underlying
circuit. Some computations can be described based on first-order
statistical properties of neuronal connectivity (average connection
strength) and based on univariate properties of neuronal activity or
simply mean firing rate. These quantities can often be measured
using well-established methods and the computations can often
be described by tractable mathematical models. One example of
such a computation is ‘‘normalization’’, an important elementary
operation that scales responses of individual neurons as a function
of the mean population activity [4,5]. Other computations, how-
ever, depend on higher-order properties of connectivity and on
multivariate properties of activity patterns. These diverse and
potentially complex computations have not yet been explored
exhaustively. Some of these computations are likely to depend
on the activity of specific subsets of neurons and on specific con-
nectivity. For example, receptive field properties of neurons in pri-
mary visual cortex are thought to be shaped by specific
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Fig. 1. Schematic illustration of selected cell types and synaptic connections in the
OB. Modified from [91].
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connectivity among neurons with similar feature selectivity [6],
and storage of arbitrary information in memory networks such as
the hippocampus is thought to depend on experience-dependent
modifications of synaptic connections between specific subsets of
neurons [7]. Analyzing the mechanisms underlying such computa-
tions, and even defining the computations themselves, is often
hampered by experimental constraints. It is, for example, possible
to record activity only from subsets of neurons within a large
population. The sample size of population activity measurements
may thus be sufficient to determine simple statistical properties
of neuronal activity patterns but fail to resolve higher-order fea-
tures. Detailed descriptions of the connectivity among individual
neurons are lacking for most circuits, with few exceptions [1,8–
10]. Furthermore, mathematical analyses of networks with
higher-order structure can become extremely complex. Under-
standing neuronal computations depending on higher-order circuit
features is therefore a major challenge in neuroscience.

This review focuses on the decorrelation of odor-evoked activity
patterns in the OB, a computation that reduces the overlap (Pear-
son product-moment correlation coefficient) between activity pat-
terns representing different, yet structurally similar, odors. A
neuronal activity pattern at time t may be represented by a vector
where each element represents the firing rate of one neuron, mea-
sured during a small time window around t. Highly overlapping
activity patterns are thus represented by vectors that have a high
Pearson correlation coefficient, i.e., they project in similar direc-
tions within the high-dimensional coding space. Pattern decorrela-
tion reorganizes activity patterns so that the Pearson correlation
coefficient of the corresponding activity vectors decreases and
their angular separation increases. As a consequence, it becomes
easier to find a procedure – a classifier – to distinguish between
the activity vectors. Pattern decorrelation is thus useful for pattern
classification, a key operation in many higher brain functions such
as object recognition, decision making and associative memory.
Models of pattern classification in the brain assume that activity
patterns are at least partially decorrelated. This assumption is
often necessary to achieve good performance, to avoid destructive
phenomena such as catastrophic interference, and to enable var-
ious other operations [11–17]. However, few studies have directly
analyzed pattern decorrelation in the brain, possibly because it has
been difficult to measure neuronal activity patterns across large
numbers of neurons.

One brain area where pattern decorrelation was observed is the
dentate gyrus of the hippocampus [18,19], which is assumed to
pre-process activity patterns representing complex, multisensory
information for storage and classification in other hippocampal
subfields such as CA3 [20,21]. However, the underlying mechan-
isms are not understood in detail. Another brain area where pat-
tern decorrelation has been studied is the OB, particularly in
zebrafish [22–26]. Among the multiple targets of the OB is the piri-
form cortex, a large paleocortical area with an architecture similar
to that of hippocampal area CA3. Like CA3, piriform cortex has
been proposed to function as an associative memory system for
the storage of information encoded by distributed activity patterns
[27–29]. Pattern decorrelation may therefore subserve similar gen-
eral functions in the OB and in the dentate gyrus although differ-
ences in the neuronal architecture of these circuits suggest that
the underlying mechanisms are not identical.

The OB is the only olfactory processing center between sensory
neurons in the nose and multiple higher telencephalic areas. Olfac-
tory input reaches the OB through an array of discrete input chan-
nels, the olfactory glomeruli (Fig. 1), each of which receives
convergent input from sensory neurons expressing the same odor-
ant receptor [30]. Individual odorant receptors and glomeruli
respond to multiple odorants, and each odorant activates a specific
combination of glomeruli [30,31] (Fig. 2A). Odors are therefore
encoded in a combinatorial fashion and presented to the OB as dis-
crete, usually distributed, glomerular activation patterns. Odorants
with similar molecular features activate overlapping combinations
of glomeruli, probably as a direct consequence of the molecular
mechanisms governing receptor-ligand interactions. Glomerular
representations of chemically similar odorants are therefore highly
correlated. In order to facilitate stimulus classification, autoasso-
ciative memory and other tasks it appears useful to reduce these
correlations at an early stage of sensory processing.

Sensory input from the array of glomeruli is processed in the OB
by a network of principal neurons, the mitral/tufted cells (MCs),
and multiple classes of interneurons including periglomerular
cells, short-axon cells and granule cells [32] (Fig. 1). MCs are gluta-
matergic, receive glutamatergic input from sensory neurons and
inhibitory input from interneurons, and convey the output of the
OB to multiple higher brain areas including piriform cortex. Indivi-
dual MCs receive sensory input only from one or a few glomeruli
and are not directly coupled to MCs associated with other glomer-
uli. Periglomerular cells are located in the input (glomerular) layer
of the OB and comprise multiple subtypes [33]. They are small neu-
rons that receive input from various sources and provide GABAer-
gic output to MCs. Short-axon cells are also located mainly in
superficial layers but often have long processes [34]. They can have
inhibitory or depolarizing effects on MCs that are mediated by
GABAergic synapses and gap junctions, respectively [35]. Granule
cells are located in deep layers and are by far the most numerous
cell type in the OB. They are axonless, receive glutamatergic input
from dendrites and axon collaterals of MCs, and make GABAergic
synapses back onto MCs. Many of the dendro-dendritic connec-
tions between MCs and granule cells are reciprocal. The synaptic
connectivity among neurons in the OB therefore provides multiple
paths for interactions between MCs, even though MCs are not
directly connected across glomeruli. These synaptic pathways
extend over multiple spatial scales and often have inhibitory
effects on MCs. In addition, multiple types of interneurons, but
not MCs, receive input from higher brain areas.

MCs respond to odor stimulation with slow modulations of
their firing rates (Fig. 2B) and with oscillatory synchronizations
of action potentials in the beta and gamma frequency bands.
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Similar observations have been made in a wide variety of species
[36]. Moreover, complex population odor responses including fir-
ing rate modulations and oscillatory synchronization have also
been observed in the antennal lobe, the first olfactory processing
center of insects [36]. Combinatorial odor representations are
therefore transformed at an early stage of olfactory processing
but the associated computations have long remained obscure.
Work in the OB of adult zebrafish revealed that one computation
of the OB is a decorrelation of overlapping odor representations
[22–25]. The adult zebrafish provides various experimental advan-
tages for studying such circuit-level computations [37,38]. Impor-
tantly, the small size of the zebrafish brain allows for exhaustive
measurements of neuronal activity patterns by multiphoton cal-
cium imaging even in the adult and it offers unique opportunities
for dense reconstructions of neuronal wiring diagrams [39].

2. Pattern decorrelation in the olfactory bulb

Odor-evoked inputs to the array of glomeruli can be measured
optically after introducing calcium sensors selectively into olfac-
tory sensory neurons [31,40–42]. In zebrafish, this method has
been used to analyze glomerular activation patterns evoked by
16 amino acids at an intermediate concentration [31] (Fig. 2A).
As these stimuli are natural odorants for many aquatic species,
they define a biologically relevant stimulus subspace that com-
prises highly similar molecules (e.g., Phe/Tyr/Trp) as well as more
dissimilar ones (e.g., basic vs. neutral amino acids).

Amino acids activated multiple glomeruli that were distributed,
although not randomly, throughout a relatively large subregion of
the OB [31,40]. In order to explore how glomerular inputs are pro-
cessed within the OB, responses to the same set of amino acid sti-
muli were measured across the output neurons (MCs) by
electrophysiological recordings or by temporally deconvolved mul-
tiphoton calcium imaging. The latter method uses optical measure-
ments of somatic calcium signals to estimate neuronal firing rate
changes, relative to baseline, across large populations of neurons
[23–26,43–45]. Odor stimulation evoked different, odor-depen-
dent firing rate changes in different MCs (Fig. 2B). Firing rates were
often dynamically modulated during the first few hundred millise-
conds of an odor response before they approached a steady state.
Activity patterns were therefore analyzed using a sliding time win-
dow and represented by time series of activity vectors. Subsets of
MCs rhythmically synchronized their action potentials with milli-
second precision, giving rise to oscillatory population activity. This
oscillatory synchronization emerged during the first few hundred
milliseconds of the odor response, concomitant with the evolution
of firing rates towards the steady state. The frequency of the oscil-
lation was near 20 Hz and action potentials of different MCs were
synchronized with near-zero phase lag [23]. Similar observations
were made in a wide range of other species [36].

The evolution of MC activity patterns towards the steady state
reflects processing within the OB because sensory inputs were
almost static for the duration of stimulus presentation [24]. During
this dynamic phase, firing rates of some MCs increased or
decreased substantially but the mean firing rate across the popula-
tion changed only slightly. Moreover, response profiles of MCs to
different odorants changed during the dynamic phase but the
mean tuning width remained almost constant [24]. Hence, OB out-
put is not systematically broadened or sharpened as the steady
state is approached but activity is redistributed across the MC
population.

Shortly after response onset, amino acids that evoked highly
correlated glomerular inputs also evoked highly correlated activity
patterns across MCs. Subsequently, however, most of these output
correlations decreased substantially (Fig. 2C). One computation
associated with the reorganization of MC activity patterns is there-
fore a decorrelation of odor representations. This decorrelation is
not simply caused by an increase in noise or by chaotic dynamics
because trial-to-trial variability decreased, rather than increased,
during an odor response. Hence, odor representations become
not only more distinct but also more reliable as MC activity
approaches the steady state [22–25].

The relationship between pattern decorrelation and oscillatory
synchronization was analyzed by sorting individual MC action
potentials into ‘‘synchronized’’ or ‘‘non-synchronized’’ subsets
based on their phase relationship to the LFP oscillation [23]. Differ-
ent odors caused synchronization among different ensembles of
MCs. The majority of action potentials were, however, not strongly
phase-locked (‘‘non-synchronized’’). Activity vectors constructed
from the ‘‘non-synchronized’’ subset of action potentials showed
pronounced decorrelation. Activity vectors constructed from the
complementary subset of ‘‘synchronized’’ action potentials, in con-
trast, did not decorrelate [23]. When all action potentials were
included in the activity vectors, activity vectors became decorre-
lated because the majority of action potentials were ‘‘non-synchro-
nized’’. Hence, information about the original correlations is
retained in the activity of ‘‘synchronized’’ MC subsets while the
overall activity patterns undergo decorrelation. Decorrelated activ-
ity patterns are particularly informative about precise odor iden-
tity while the original correlations contain information about the
‘‘molecular category’’ of an odor. Precise identity and the molecular
category are complementary stimulus properties because one
reflects molecular differences whereas the other reflects common
features. The OB therefore extracts information about complemen-
tary stimulus properties and transmits this information simulta-
neously to higher brain areas in a multiplexed fashion.

The time course of pattern decorrelation depended on the odor
stimulus. On average, decorrelation of ‘‘non-synchronized’’ MC
activity patterns reached a steady state approximately 400 ms
after response onset [23]. In these experiments, the odor pulse
was not a sharp step but increased gradually for approximately
400–600 ms before reaching a plateau [46]. Such slowly rising sti-
muli are likely to be physiologically relevant because the natural
habitat of zebrafish are still or slowly flowing waters. When olfac-
tory bulb input was activated rapidly by optogenetic stimulation of
sensory neurons [47], a steady state was reached much faster. Fas-
ter odor stimuli are thus expected to cause a more rapid transition
to the steady state but this hypothesis has not been tested directly.

In order to examine the spatial redistribution of neuronal activ-
ity during odor responses, odor-evoked activity across large num-
bers of neurons was measured by temporally deconvolved
multiphoton calcium imaging [44,45,48]. MCs and interneurons
were distinguished by genetically expressed fluorescent markers.
During the early phase of odor responses, some MCs responding
to odorants with similar molecular features were found to be spa-
tially clustered in the vicinity of glomerular clusters with similar
response profiles. The overlap of clustered MC activity accounted
for much of the high pattern correlations during the initial odor
response. As the response progressed, subsets of these MCs became
less active or silent while the density of activity outside clusters
increased slightly. Hence, activity patterns were ‘‘locally spar-
sened’’ so that clustered activity gradually disappeared. This local
sparsening resulted in decorrelation because the identity of MCs
that were silenced depended on precise odor identity [44]. Further
results indicated that local sparsening was caused by the inhibition
of odor-specific subsets of MCs [49]. Consistent with this notion,
the activity of interneurons, especially granule cells, increased as
activity patterns across MCs were reorganized [44].

A biologically useful mechanism for pattern decorrelation
should be resilient against small differences in inputs that may
reflect noise. To examine this possibility the molecular identity
of an odor was varied in small steps by ‘‘morphing’’ one amino acid



Fig. 2. Pattern decorrelation in the OB. (A) Glomerular activation patterns in the zebrafish OB evoked by 8 amino acid odorants (10 lM), measured by imaging of calcium
signals in axon terminals from olfactory sensory neurons (modified from [31]). (B) Responses of 58 MCs to two similar amino acids (Ala, Ser; data from [23]). Color code
represents firing rates of each neuron as a function of time. Shading depicts time windows at the beginning of the odor response (t1) and during the steady state (t2). r:
Pearson correlation between activity patterns across the population of MCs during time windows t1 and t2. (C) Pairwise correlation between MC activity patterns evoked by
amino acids as a function of time. Only pairs of patterns with high initial correlations (mean correlation 100–300 ms after response onset P 0.6) were included. Red lines
correspond to odor pairs used in a behavioral discrimination task [86]. Fish failed to discriminate Phe/Tyr and Val/Ile (dark red lines). Gray lines correspond to odor pairs that
were not tested in the behavioral task. Black line shows average. Modified from [22]. (D) Contribution of individual neurons to high pattern correlations during the early
phase and during the steady state of the odor response. Each dot shows the response (firing rate) of one neuron to two stimuli and its contribution to the corresponding
pairwise Pearson correlation between activity patterns across all neurons (color-code). Dots along the Cartesian axes indicate selective responses to one odor (blue arrows)
while dots along the diagonal represent unselective responses to both odors (red arrow). The contribution of MC i to the pairwise Pearson correlation r is given by
(xi � xmean)(yi � ymean)/(sx sy) where xi and yi are responses of MC i to the two stimuli, xmean and ymean are the mean population responses, and sx and sy are the standard
deviations. Only pairs of patterns with Pearson correlation P0.65 during the early phase were included.
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into another through a series of binary mixtures presented in pseu-
dorandom sequence [26]. Steady-state MC activity patterns pre-
served input similarity within subranges of a morphing series
but changed abruptly at defined transition points. Decorrelation
therefore reflects a ‘‘discretization’’ of MC coding space into stable
patches that are separated by instable transition regions. Abrupt
transitions between activity patterns were driven by coordinated
response changes among small, odor-specific MC ensembles,
rather than by global pattern changes [26].

How is the output of the OB interpreted in higher brain areas?
We began to address this question by whole-cell patch clamp
recordings and multiphoton calcium imaging in the posterior zone
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of the dorsal telencephalon (Dp) of zebrafish. Dp is the largest tar-
get area of the OB in teleosts and directly homologous to mamma-
lian olfactory (piriform) cortex [50]. Neurons often behave as
‘‘coincidence detectors’’ that respond more sensitively to synaptic
input when it is synchronized with a precision in the range of milli-
seconds. The subset of synchronized action potentials within the
MC population could thus have a strong impact on higher-order
neurons and bias their responses to molecular categories. We
therefore examined the sensitivity of Dp neurons to synchronized
input by various approaches including optogenetic manipulations
of oscillatory synchrony in the OB [47]. Dp neurons were found
to be quite insensitive to synchrony and behaved as strong low-
pass temporal filters, indicating that they act as ‘‘temporal integra-
tors’’ rather than as coincidence detectors. Furthermore, most Dp
neurons responded with action potentials during the steady-state
of OB activity but not during the dynamic phase. Neuronal circuits
in Dp therefore attenuate the impact of synchrony and appear to
extract information mainly from the decorrelated steady states of
MC activity. Hence, pattern decorrelation in the OB is likely to have
direct consequences for odor representations in Dp.

3. Different forms of decorrelation

Before exploring the mechanisms underlying pattern decorrela-
tion in the OB it is useful to consider some general issues related to
decorrelation. Procedures for decorrelation may be adaptive or
non-adaptive. Adaptive procedures are tuned to decorrelate inputs
for which some prior knowledge exists. Such procedures include,
for example, principal component analysis (PCA) and independent
component analysis (ICA). These widely used methods project
inputs onto orthogonal basis vectors that are defined based on an
exemplary set of inputs. In the brain, adaptive decorrelation by a
mechanism akin to ICA is, for example, found in visual cortex
and in the early auditory system: receptive fields of neurons in
these brain areas form a set of basis functions or filters that decorr-
elate responses of individual neurons to different natural images or
sounds [51–53]. Obviously, the underlying receptive field proper-
ties have been optimized by evolution and/or experience to match
the statistical properties of natural scenes or sounds. Other inputs
may, however, not be decorrelated efficiently. Indeed, linear meth-
ods such as PCA and ICA will, on average, fail to decrease correla-
tions among arbitrary sets of inputs [54]. Adaptive methods may
therefore be powerful when statistical properties of inputs are pre-
dictable but perform poorly on non-predictable, arbitrary sets of
inputs. Non-adaptive decorrelation procedures, in contrast, do
not require prior knowledge and can decorrelate unpredictable
inputs. In the brain, non-adaptive pattern decorrelation can be
achieved by a convergent/divergent projection to a larger neuronal
population and subsequent thresholding to create high-dimen-
sional and sparse activity patterns. However, this strategy may
be limited to large circuits such as the cerebellum, primary sensory
cortices, or the insect mushroom body because it requires large
numbers of neurons [14,36,52,54–56]. Generally, it is not well
understood how non-adaptive decorrelation can be achieved by
other mechanisms in smaller circuits.

It is also important to distinguish between pattern decorrela-
tion and channel decorrelation. Pattern decorrelation concerns
the pair-wise correlation between patterns across the different ele-
ments in a system, such as patterns of activity across neuronal
populations (Fig. 3A). Channel decorrelation, in contrast, concerns
the correlation between the channels of the system, such as pair-
wise correlations between trains of action potentials of different
neurons, or pair-wise correlations between the response profiles
of different neurons to a set of stimuli (Fig. 3A). From a neurobio-
logical perspective these operations are fundamentally different.
Channel decorrelation reduces the redundancy of information
transmitted through different processing channels (neurons). This
operation is central to ‘‘efficient coding’’, a framework that has
been highly influential in neuroscience [57,58]. Moreover, channel
decorrelation pertains to many problems in other disciplines; clas-
sical examples are source separation problems such as the unmix-
ing of conversations in a ‘‘cocktail party’’ situation [59–62].
Channel decorrelation can, for example, be achieved by PCA and
ICA. These methods produce decorrelated output channels by a lin-
ear combination (weighted sum) of input channels. In the context
of a neural circuit, the weights may be directly interpreted as
weights of synaptic interactions between neurons. Examples for
channel decorrelation in the brain include the filtering of visual
or auditory inputs by the receptive fields of neurons [51–53]. Gen-
erally, channel decorrelation is a widely studied operation that
often has a direct neurobiological correlate.

Pattern decorrelation, in contrast, reduces the overlap between
different patterns across channels (Fig. 3A), which occur at differ-
ent times and, in the brain, usually encode distinct items. Pattern
decorrelation therefore disambiguates representations of different
items and facilitates the retrieval of information. The result of pat-
tern decorrelation may thus be described as ‘‘informative coding’’
or ‘‘smart coding’’. Under special circumstances channel decorrela-
tion can result in pattern decorrelation and vice versa but these
computations can also occur separately (see [63] and references
therein). The decorrelation of odor representations observed in
the OB is a clear case of pattern decorrelation. It is not produced
by increasing the dimensionality of coding space because activity
across the same population of MCs is decorrelated over time. The
OB is therefore an interesting model system to study mechanisms
of pattern decorrelation in the brain.

4. Mechanisms of pattern decorrelation in the olfactory bulb

It has been proposed that the discriminability of activity pat-
terns across MCs is increased by contrast enhancement through
short-range lateral inhibition. This hypothesis was strongly influ-
enced by image processing in the retina where spatial receptive
fields with an excitatory center and an inhibitory surround are
generated by lateral inhibition between neighboring, topographi-
cally organized processing channels [64]. The resulting local con-
trast enhancement is useful in vision because it emphasizes the
representation of informative features in natural scenes (e.g.,
edges). A similar contrast enhancement was originally proposed
to occur in the OB based on anatomical grounds and based on
reports of MC receptive fields with a simple center-surround orga-
nization in ‘‘molecular space’’ [64–66]. However, subsequent stu-
dies failed to provide strong evidence for a simple topographic
mapping of olfactory features onto the array of glomeruli
[31,41,67] and for pronounced short-range lateral inhibition in
the OB. Rather, a substantial fraction of inhibitory interactions
appears to act over long distances [36,68–70]. Moreover, the
hypothesis that short-range lateral inhibition optimizes odor
representations has been challenged based on other arguments
[70].

More recent work [71,72] proposed that the OB processes glo-
merular input patterns in a mostly channel-autonomous way, i.e.,
processing does not depend on the topography or on the fine struc-
ture of activity patterns. Rather, activity of each glomerulus is
transformed separately and glomeruli interact only via global or
very broad inhibition. Different models use different non-linear
glomerular transfer functions referred to as ‘‘non-topographic con-
trast enhancement’’ [71] and ‘‘activity-dependent gating’’ [72]. It is,
however, important to understand that contrast enhancement and
pattern decorrelation are different computations that are not



Fig. 3. Potential mechanisms of pattern decorrelation. (A) The arrangement of gray squares illustrates a typical data matrix representing responses of multiple neurons to
multiple stimuli. ‘‘Channels’’ are neurons (rows) and ‘‘patterns’’ are responses of all neurons to a stimulus (columns). (B) Two patterns (top right) were drawn from a bivariate
normal distribution with correlation r = 0.8 (top left). Bottom: transformation of the two patterns by global contrast enhancement (left) or thresholding (right), the initial step
in reTIDe. The example illustrates that the pattern correlation r is decreased by thresholding but not by contrast enhancement. (C) Effects of contrast enhancement and
thresholding on visual patterns. The example has been chosen to illustrate that decorrelation by thresholding can separate meaningful pattern components (letters A and B).
Gray values in the original images are normally distributed. (D) Schematic illustration of contrast enhancement (left) and a more complex reorganization of activity patterns
(right). Top (gray): hypothetical distribution of activity across a population of neurons. Bottom: activity distributions across the same population of neurons after
transformations. (E) Schematic illustration of reTIDe by a SNORE (modified from [54]). An initial, possibly modest, decorrelation is produced by thresholding of an input
pattern. This decorrelation is then amplified by combining the thresholded output with the input pattern via recurrent connections until the output approaches a steady state.
Decorrelation is particularly pronounced when feedback connectivity is sparse and strong.
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directly related. Linear contrast enhancement alone does not
change the Pearson correlation. Consider, for example, pairs of pat-
terns drawn from a correlated joint normal distribution. In the
absence of substantial thresholding or other strong non-linearities,
contrast enhancement has minimal effects on their Pearson corre-
lation (Fig. 3B and C). When input patterns are jointly normally dis-
tributed the notion of the ‘‘strength’’ of a non-linearity can be made
precise in terms of the non-linearity’s expansion into Hermite
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polynomials (M.T.W. and R.W.F., unpublished observations). Some
decorrelation may occur when contrast enhancement operations
include more pronounced thresholding or other non-linear trans-
formations, with precise effects depending on the specific non-lin-
earity and the specific distribution (histogram) of input firing rates
[71,72]. However, decorrelating effects may then be attributed
more to the non-linear transformation than to contrast enhance-
ment per se.

Although mostly channel-autonomous models can decorrelate
some input patterns [72,73], various observations suggest that
they cannot account for pattern decorrelation in the zebrafish
OB. Importantly, these models fail to reproduce the observed redis-
tribution of activity across the population of MCs. Moreover, in a
2D physical space, they do not reproduce local sparsening of
strongly active MC clusters but rather have the opposite effect
[72]. These observations indicate that pattern decorrelation in
the OB cannot be explained by mostly channel-autonomous mod-
els but that it depends on the multivariate structure of odor-speci-
fic activity patterns (Fig. 3D).

In the zebrafish OB, high initial pair-wise pattern correlations
included substantial contributions from MCs that responded
strongly to both stimuli (Fig. 2D). Because both mostly channel-
autonomous models tend to preserve high activity they would
not be expected to efficiently decorrelate these activity patterns.
As the odor response evolved, the activity of MCs then changed
in a fashion that could not be predicted from their initial activity
and the mean activity of the population (Fig. 2D). These results
imply that input–output transforms of these MCs depend on multi-
variate features of the activity pattern. Mostly channel-autono-
mous models, however, do not consider any structure in the
activity pattern beyond the global mean, and can therefore not
reproduce this behavior. Hence, pattern decorrelation must involve
neuron-to-neuron interactions that cannot be captured by a first-
order statistical description of the circuit architecture.

The effect of non-topographic contrast enhancement on odor-
evoked activity patterns was further examined by pharmacological
experiments using dopamine [74]. Global application of dopamine
hyperpolarized MCs and often increased their excitability so that
responses to weak inputs were reduced while responses to strong
inputs were affected only slightly. As a result, the contrast of odor-
evoked MC activity patterns was enhanced approximately twofold
in the presence of dopamine. Correlations between activity pat-
terns were, however, not decreased [74]. These experimental
results therefore support the notion that global contrast enhance-
ment cannot account for pattern decorrelation in the zebrafish OB.
Nevertheless, contrast enhancement may occur in the OB and sub-
serve other functions as it is likely to influence neuronal responses
in target areas of the OB.

New insights into pattern decorrelation came from the analysis
of generic networks referred to as ‘‘stochastically connected net-
works of rectifying elements’’ (SNOREs; Fig. 3E) [54]. Neurons were
modeled as threshold-linear units and recurrently connected with
a given probability by a fixed weight. Because SNOREs allow for
convergent and divergent interactions between neurons, each neu-
ron’s activity can be directly influenced by the activity of specific
subsets of other neurons, and all neurons can indirectly influence
each other. SNOREs can therefore produce input–output trans-
forms that depend on multivariate features of neuronal activity
patterns and differ from those of mostly channel-autonomous
models.

Theoretical analyses and computational modeling demon-
strated that large SNOREs decorrelate any set of positively corre-
lated, normally distributed input patterns by a mechanism
referred to as ‘‘recurrence-enhanced threshold-induced decorrela-
tion’’ (reTIDe) [54]. The initial step is a thresholding of the input,
i.e., an elementary non-linear operation that models the fact that
firing rates must be non-negative. Thresholding alone decreases
correlations [14,54,75] (Fig. 3B and C), an effect that may also con-
tribute to the decorrelation observed in mostly channel-autono-
mous models. In purely feed-forward systems, substantial
decorrelation by this mechanism requires high thresholds and,
thus, large numbers of neurons. In feedback circuits, however,
the thresholded output is transmitted back into the network and
further decorrelated until a steady state is reached. Recurrent con-
nectivity therefore amplifies the initial decorrelation so that sub-
stantial pattern decorrelation can be achieved with lower
thresholds and fewer neurons (Fig. 3E). This mechanism is non-
adaptive and performs true pattern decorrelation. The decorrela-
tion is most pronounced when input correlations are in the inter-
mediate range but vanishes as the similarity between input
patterns approaches identity. Hence, the computation is robust
against small fluctuations that may represent noise. Biologically
plausible pattern decorrelation therefore emerges naturally in
non-linear recurrent neuronal circuits.

Pattern decorrelation by reTIDe is particularly pronounced
when connectivity is sparse and when the baseline activity of neu-
rons is high [54]. These are two characteristics of the OB whose
function had remained elusive. reTIDe in the OB was thus explored
in computer simulations of the zebrafish OB that included various
features of the biological circuit such as realistic arrangements of
glomeruli, a distance-dependent decay of connection probability,
and symmetric inhibition between MCs [54]. Input patterns were
derived from measured glomerular activation patterns. The simu-
lated OB decorrelated overlapping inputs and reproduced a wide
range of other experimental observations. Most of the observed
decorrelation could be attributed to reTIDe. These results suggest
that reTIDe is the primary mechanism underlying pattern decorre-
lation in the OB [54].

Generic reTIDe theory cannot explain why gradual morphing of
one odor into another resulted in sudden transitions of MC activity
patterns [26]. Nevertheless, there are multiple reasons why such
transitions could occur in a biological system based on reTIDe.
First, reTIDe theory has been developed for very large networks.
Sudden transitions may thus arise as a consequence of small net-
work size [76]. Second, step-like but non-conspicuous transitions
may already be present in the input patterns (M.T.W and R.F.,
unpublished observations). ReTIDe would be expected to amplify
these transitions if they fall within a certain range of input correla-
tions [54]. Third, reTIDe theory assumes stochastic connectivity
which is unlikely to be true for the OB [77] and most other circuits.
Abrupt transitions between output patterns may thus be produced
by biased interactions among subsets of neurons. Conceivably,
biased connectivity could be introduced into a circuit by innate
or experience-dependent mechanisms to enhance the decorrela-
tion of specific odor representations. Deviations from stochastic
connectivity could thus modify pattern decorrelation by reTIDe
in an adaptive fashion without a fundamental change of the gen-
eral mechanism.

Because reTIDe is non-adaptive it can decorrelate arbitrary nor-
mally distributed and other input patterns without prior knowl-
edge. This property may be useful in olfaction since glomerular
activation patterns experienced by an animal over its lifetime
appear to be poorly predictable.
5. Functional roles of pattern decorrelation for information
processing and behavior

Pattern decorrelation in the OB could obviously affect the discri-
mination of similar odors but this hypothesis is not trivial to exam-
ine. In has been proposed that some insights could be obtained by
comparing the time course of pattern decorrelation to reaction
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times in behavioral odor discrimination tasks. However, such an
approach is problematic for various reasons. Some of these reasons
concern technical issues such as the difficulty to measure beha-
vioral reaction times in zebrafish, the slow onset of odor stimuli,
and the fact that reaction times cannot be compared easily
between species [22,78]. Other problems, however, are more fun-
damental. For example, a classifier designed to discriminate dec-
orrelated steady states can already discriminate transient activity
patters during the dynamical phase with good performance [26].
Steady states can thus be useful stable templates to learn classifiers
for transient activity patterns early in the response. Fast behavioral
reaction times are therefore not inconsistent with a function of
steady states in the learning process. Moreover, it is important to
consider that training of an animal in a discrimination task
changes, and presumably optimizes, odor representations [79–
82]. Hence, care must be taken in interpreting reaction times in a
specific experimental paradigm as constraints for neuronal
computations.

It has been frequently hypothesized that pattern decorrelation
should be reflected in a behavioral speed-accuracy tradeoff
because more decorrelated representations at later times should
allow for more accurate discrimination. Such a speed-accuracy tra-
deoff has indeed been observed in rodents [83–85]. However, these
observations could also be explained by other processing strategies
such as temporal integration. In fact, the trial-to-trial variability
(coefficient of variation) of MC odor responses decreases as the
response approaches the steady state. Odor representations do
therefore not only evolve towards increasingly distinct states but
also accumulate information over time by other mechanisms.
Reaction time measurements are therefore consistent with a func-
tion of pattern decorrelation in odor discrimination but do not pro-
vide conclusive evidence by themselves.

As a consequence of the data processing inequality, decorrela-
tion per se does not increase the information content of activity
patterns and, thus, cannot improve pattern classification by an
optimal classifier (ideal observer). However, it can improve the
performance of suboptimal classifiers and it can facilitate the pro-
cess of finding some classifier with an acceptable tolerance range
[22]. Pattern classification may thus have multiple benefits. For
example, it may enable the use of pattern classification strategies
that are suboptimal for highly correlated inputs but otherwise
advantageous. Furthermore, it may decrease the time and effort
it takes to learn new classifiers. Moreover, decorrelated representa-
tions can be more tolerant to noise arising at later stages of
processing.

As a consequence of these benefits, pattern decorrelation may
permit the brain to use simple classification strategies. Hence,
the investment into decorrelation may reduce the overall overhead
for information processing and allow for faster learning of classi-
fiers. Decorrelation appears particularly important for pattern clas-
sification by attractor-like networks and associative memory. A
central function of these operations is to map input patterns repre-
senting different items onto separate output patterns (pattern
separation) but to converge inputs representing noisy or incom-
plete versions of the same item onto a common output pattern
(pattern completion). High correlations between patterns repre-
senting different items may thus lead to incorrect pattern comple-
tion. Moreover, high correlations increase the risk of a destructive
phenomenon known as catastrophic interference [13]. Models of
associative memory and related pattern classification procedures
thus assume that input patterns are at least partially decorrelated
[11,12,16,17,21].

These considerations suggest two hypotheses that may be
addressed to study potential reflections of pattern decorrelation
in behavior. First, representations of odors that cannot be discrimi-
nated may remain highly correlated during an odor response. This
hypothesis is based on the assumption that associative memory
networks or related classification strategies may be unable to dis-
tinguish highly correlated inputs. Second, more efficient decorrela-
tion of odor representations may be reflected by faster learning in a
discrimination task. This hypothesis is based on the assumption
that pattern decorrelation enables faster learning of new classi-
fiers. Importantly, detailed measurements of pattern decorrelation
are required to test both of these hypotheses.

The first hypothesis has been addressed in adult zebrafish. Mik-
lavc and Valentinčič [86] used an associative conditioning task to
examine odor discrimination between 62 pairs of amino acids. Cor-
relations between the corresponding activity patterns had been
determined in previous experiments [23–25]. Fish failed to discri-
minate only two of the 62 odor pairs, Phe/Tyr and Val/Ile. Initial
correlations between the corresponding activity patterns were
high but not substantially different from correlations between var-
ious other activity patterns. After the reorganization of activity pat-
terns, however, correlations between the representations of Phe/
Tyr and Val/Ile remained high while other correlations decreased
(Fig. 2C). Furthermore, a specific zebrafish strain that decorrelated
activity patterns evoked by Phe/Tyr also discriminated these odors
in the behavioral test (Valentincic, unpublished observations; see
[22]). These results are consistent with the first hypothesis that
pattern decorrelation affects the ability to discriminate similar
odor pairs.

Results pertaining to the second hypothesis have been obtained
in mice. Behavioral experiments showed that more trials are
needed to reach asymptotic performance in a discrimination task
when the similarity of odor pairs is increased [84]. More recently,
Gschwend, Carleton and colleages directly measured the decorrela-
tion of various odor-evoked activity patterns in the OB and trained
mice to discriminate the same odorants in a behavioral task. The
rate of learning during the early phase of training could be pre-
dicted quantitatively from the amount of pattern decorrelation
observed in the OB. These results strongly support the second
hypothesis that pattern decorrelation increases the rate of discri-
mination learning.

Another approach to examine whether pattern decorrelation
affects higher olfactory processing is to examine how neurons in
higher brain areas decode patterns of MC activity. As mentioned
above, Dp neurons appear to be tuned to those components of
MC output patterns that are decorrelated and particularly informa-
tive about precise odor identity. Consistent with this observation,
odor-evoked activity patterns in Dp were not highly correlated,
even in response to similar amino acids [47,48]. These results indi-
cate that pattern decorrelation in the OB shapes odor representa-
tions in higher brain areas.

6. Conclusions and outlook

Pattern decorrelation is a useful computation for pattern classi-
fication, an operation that is at the core of various higher brain
functions. Experiments in the olfactory system have characterized
pattern decorrelation in some detail, provided insights into the
underlying circuit mechanisms, and indicate that this computation
influences information processing in higher brain areas and beha-
vior. Pattern decorrelation in the OB is a computation that depends
on multivariate features of neuronal activity and higher-order fea-
tures of connectivity [26,54]. Experimental and theoretical ana-
lyses of this computation have been greatly facilitated by
exploiting advantages of adult zebrafish as an experimental model
[38,39].

Our results suggest that pattern decorrelation is one of the
primary functions of the OB. Another important computation in
the OB is pattern equalization [35]. This computation is closely
related to normalization and similar to computations in the insect
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antennal lobe [87]. It stabilizes both the mean and the distribution
of neuronal activity against variations in stimulus intensity.
Together, decorrelation and equalization create distinct and partially
concentration-invariant representations of different odors that are
well-suited for discrimination by simple classifiers and associative
networks. We therefore propose that a main function of the OB is
to reformat odor representations for efficient pattern classification,
which may be performed in various higher brain areas.

A separation of odor representations has also been observed in
mice (Gschwend, Carleton and colleagues; unpublished observa-
tions) and in the antennal lobe of insects [88]. In the antennal lobe
of locusts, odor representations are separated most efficiently dur-
ing the dynamic phase rather than in the steady state [88]. The rea-
son and functional significance of this species difference is
currently unclear. One possibility is that the olfactory system of
locusts is specialized to process transient odor representations
because natural odor stimuli are usually short-lived. Moreover,
computations in the antennal lobe and in the OB may not be iden-
tical because odor representations are decoded differently in
higher brain areas of insects and vertebrates.

Several lines of evidence indicate that pattern decorrelation in
the OB is achieved by a mechanism closely related to reTIDe, which
relies on sparse feedback. The most obvious candidate pathway for
this feedback is through granule cells, a large population of inter-
neurons that are sparsely connected to MCs [77,89]. It would thus
be interesting to analyze the precise architecture of MC–granule
cell networks in more detail to quantify connection sparseness,
to identify deviations from stochastic connectivity such as over-
represented ‘‘circuit motifs’’, and to examine whether connectivity
between neurons is related to their tuning properties. In general,
the analysis of computations that depend on higher-order features
of connectivity will be greatly facilitated if these connectivity fea-
tures can be measured directly. This ambitious goal may now be
addressed through exhaustive reconstructions of neuronal wiring
diagrams by three-dimensional electron microscopy approaches
[1,9,10,39,90], ideally in combination with measurements and
manipulations of neuronal activity patterns.
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