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Abstract The sequence of Bcl-2 homology domains, BH1 and
BH2, is known to be conserved among anti- and pro-apoptotic
members of Bcl-2 family proteins. But structural conservation
of these domains with respect to functionally active residues
playing role in heterodimerization-mediated regulation of apop-
tosis has never been elucidated. Here, we have suggested the for-
mation of an active site by structurally conserved residues in
BH1 (glycine, arginine) and BH2 (tryptophan) domains of Bcl-
2 family members, which also accounts for the functional effect
of known mutations in BH1 (G145A, G145E) and BH2
(W188A) domains of Bcl-2.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Bcl-2 family members play an important role in embryogen-

esis, tissue remodeling and immune response through their

action as either inhibitors (anti-apoptotic) or promoters (pro-

apoptotic) of apoptosis. Bcl-2 family members are classified

as anti-apoptotic or pro-apoptotic on the basis of possessing
Abbreviations: BH, Bcl-2 Homology; G, Glycine; A, Alanine; K,
Lysine; E, Glutamic acid; R, Arginine; W, Tryptophan; 1MAZ, E. coli
Bcl-XL (GI 2098338); 1BXL, E. coli Bcl-XL/Bak complex (GI 26246-
21); 1PQ0, Mouse Bcl-XL (GI 37927566); 1PQ1, Mouse Bcl-XL/Bim
complex (GI 37927568); 1WSX, Mouse Mcl-1 (GI 56966992); 1AF3,
Rat Bcl-XL (GI 2392082); 1G5M, Human Bcl-2 Isoform 1 (GI 1378-
6963); 1GJH, Human Bcl-2 Isoform 2 (GI 14719780); 1LXL, Human
Bcl-XL (GI 2098333); 1R2D, Human Bcl-XL (GI 42543462); 1G5J,
Human Bcl-XL/Bad complex (GI 13096159); 1MK3, Human Bcl-W
(GI 31615587); 1F16, Human Bax-alpha (GI 11513492); 1Q59A, EB2
virus BHRF-1 protein (GI 37927821); 1K3K, Kaposi�s sarcoma virus 2
(GI 20663999); 1TY4, C. elegans CED-9/EGL-1 complex (GI 55670-
071)
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Bcl-2 homology domains (BH) i.e., BH1, BH2, BH3 and

BH4. Several anti-apoptotic members such as Bcl-2, Bcl-XL

and Bcl-W possess all four BH domains. Other anti-apoptotic

members such as Mcl-1, BHRF-1, and KSHV-Bcl-2 possess

homology only in BH1, BH2 and BH3 domains. The pro-

apoptotic proteins of Bax subclass possess sequence homology

in BH1, BH2 and BH3 domains, while the members of the

BH3 subclass such as Bid have strong homology only in

BH3 region. Firstly discovered member of this family, Bcl-2,

is folded into eight a-helices, possess all four homology do-

mains i.e., BH4 (10–29 amino acids), BH3 (90–107 amino

acids), BH1 (133–152 amino acids), BH2 (184–199 amino

acids) in addition to one X domain (192–203 amino acids)

and one regulatory/flexible loop domain (30–90 amino acids).

Its BH1 and BH2 domains along with BH3 domain form a

solvent accessible hydrophobic receptor cleft essential for het-

erodimerization with pro-apoptotic proteins through their a-
helical, amphipathic BH3 domain [1]. Reports have shown that

BH1 and BH2 domains are essential for co-immunoprecipita-

tion of Bcl-2 with Bax and for prolongation of cell survival in

the setting of induced apoptosis on IL-3 deprivation and gamma

irradiation. Substitution of G145 (in BH1 domain) with A/

E and W188 (in BH2 domain) with A abrogates Bcl-2 hetero-

dimerization potential and its death repressor activity [2,3].

Although the sequence conservation of BH1 and BH2 domains

is known within the Bcl-2 family, their structural conservation

with respect to amino acid residues forming an active site has

never been elucidated. Functional active site of a protein is a

region that performs any of the diverse set of activities includ-

ing acting as an enzyme active site or being a binding region

for a small molecule or a macromolecule [4]. Detailed knowl-

edge of an active site may provide a new insight into the molec-

ular mechanism by which Bcl-2 family members balance

cellular proliferation and death. To analyze the role played

by predicted active site residues in heterodimerization, we

docked Bcl-2 with BH3 domain of pro-apoptotic protein

Bax. The docking results were consistent with the experimen-

tally obtained data for Bcl-XL/Bak and Bcl-XL/Bad complexes

[5,6].

To analyze the structural conservation of residues in BH1

and BH2 domains of Bcl family proteins, we chose Bcl-2 as

a model. The homology models of Bcl-2 and Bax BH3 domain
ation of European Biochemical Societies.
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were generated at SWISS-MODEL server [7]. The model of

Bcl-2 was generated because only the chimeric NMR structure

of Bcl-2 is solved in which the regulatory loop domain was

replaced with that of Bcl-XL [8]. However, to identify con-

served residues in Bcl-2, we needed an intact structure. The

models of Bcl-2 and Bax BH3 domain were checked for their

conformational accuracy in secondary and tertiary structure.

As the sequence of a protein diverges, only those residues

which are required for its biochemical activity, functional

activity, proper folding and transport will be absolutely con-

served so that the structure made of these active site residues

in 3D space should also remain conserved [4]. Therefore, we

identified the structural homologs of Bcl-2 in PDB database

(Protein Data Bank) [9] and structurally aligned them to find

the similar folded residues. This helped us to identify the com-

monality of local structural pattern (active site) in proteins of

Bcl-2 family. The distance between Ca atoms of predicted res-

idues, presumed to be forming an active site in each Bcl-2

structural homolog, was found out to be near the mean value

that suggested their superimposition in both position and ori-

entation. We then docked active site residues in Bcl-2 with

BH3 domain of Bax to analyze their importance in Bcl-2-Bax

heterodimerization. On the basis of these results, we have

hypothesized the structural explanation of reported mutations

in BH1 (G145A, G145E) and BH2 (W188A) domains of

Bcl-2, which functions to abolish its potential as cell survival

regulator.
2. Materials and methods

The Bcl-2 and Bax BH3 domain homology models were generated
using SWISS-MODEL, an automated protein homology-modeling ser-
ver available at www.expasy.org. The secondary structure of models
was predicted by NPS@GORI [10] and PredictProtein server [11,12].
The models were analyzed for their correctness in stereochemistry,
non-bonded-atomic interactions, 3D profile and protein volume using
structure analysis and verification server (SAVS) [13–18]. We searched
Fig. 1. Homology model of Bcl-2 is colored according to RasMol ‘‘Tempe
anisotropic temperature (beta) value stored in the PDB file. Typically this give
values are colored in warmer (red) colors and lower values in colder (blue) co
RasMol ‘‘Group’’ color scheme, which color codes residues by their position
from blue through green, yellow and orange to red. The N terminus of prote
PDB database using BLAST 2.2.10 [19] to find structural homologs of
Bcl-2 in BH1 and BH2 domains with known tertiary structure. All
homologs were structurally aligned with Bcl-2 in SPDB viewer using
its iterative fit option [20]. The distance between Ca atoms of structur-
ally conserved residues was measured using distance-measuring tool of
SPDB viewer. To show the superimposability of active site, its mean
distance value was calculated. Hex 4.1 was used to dock Bax BH3 do-
main with Bcl-2 homology model. The parameters used were, search
mode-full, post processing-backbone bumps, receptor range-45�, li-
gand range-90�, electrostatic calculations-enabled and the final search
was done at N = 30 [21,22].
3. Results

3.1. Structure of Bcl-2 and BH3 domain of pro-apoptotic protein

Bax

All Bcl-2 homology domains (BH1, BH2, BH3, and BH4),

regulatory domain and X domain was modeled by SWISS-

MODEL server except transmembrane domain. It was modeled

from R6 to R207 out of 239 amino acids in Bcl-2 full protein.

In secondary structure conformation, the model shows seven

a helices, a1 (E8–Y23), a2 (V87–R102), a3 (A108–R112), a4
(A121– L132), a5 (T139–N158), a6 (P163–D186) and a7
(D191–L196) and an unstructured loop, which is regulatory/

flexible loop domain. BH3 domain of Bax protein was all a-heli-
cal in secondary structure conformation, encompassing 59–73

amino acid residues (Fig. 1).

3.2. Identification of Bcl-2 Structural homologs in BH1 and BH2

domains

The Bcl-2 protein sequence was input as a query in BLAST,

calculation matrix used, BLOSUM62 [24] and E value selected,

100. The proteins with greater than or equal to 40% structural

identity in BH1 and BH2 domains were: 1MAZ (homology

57%) [8], 1BXL (homology 54%) [5], 1PQ0 (homology 57%)

[6], 1PQ1 (homology 57%) [6], 1WSX (homology 52%) [25],

1AF3 (homology 57%) [26], 1G5M (homology 70%) [27],

1GJH (homology 71%) [27], 1LXL (homology 57%) [8],
rature’’ color scheme, which color codes each atom according to the
s a measure of the mobility/uncertainty of a given atom�s position. High
lors. Homology model of BH3 domain of Bax is colored according to
in a macromolecular chain. Each chain is drawn as a smooth spectrum
ins is colored blue and the C terminus of proteins is drawn in red [23].
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1R2D (homology 57%) [28], 1G5J (homology 54%) [29],

1MK3 (homology 48%) [30], 1F16 (homology 56%) [31],

1Q59A (homology 43%) [32], 1K3K (homology 44%) [33]

and 1TY4 (homology 40%) [34]. Except three proteins, 1K3K,

1Q59 and 1TY4, all proteins were either pro-apoptotic or anti-

apoptotic members of Bcl-2 family. The proteins 1K3K and

1Q59were fromKaposi�s sarcomavirus 2andEpstein-Barr virus

2, respectively. The 1TY4 protein is a Bcl-2 homolog, CED-9,

present in C. elegans in complex with EGL-1 and CED-4.
3.3. Prediction of structurally conserved/active site residues

All Bcl-2 homologs were aligned structurally in SPDB viewer

(Fig. 2). On alignment three residues viz. G145, R146 and

W188 of Bcl-2 were found to be forming a similar fold in each

protein. This prompted us to measure the distance between
Fig. 2. Structural alignment of Bcl-2 homologs showing conservation of gly
Bcl-2 family proteins. PDB ID of homologous proteins is followed by starting
the sequence of Bcl-2 homology model, i.e., G145, R146 and W188.

Table 1
Distance in angstrom (Å) between residue pair forming an active site in Bcl

Name PDB ID (organism) Structu
residues

Homology model BCL-2 (Human) G145
Bcl-XL 1MAZ (E. coli) G138
Bcl-XL/Bak complex 1BXL (E. coli) G138
Bcl-XL 1PQ0 (Mouse) G138
Bcl-XL/Bim complex 1PQ1 (Mouse) G138
Mcl-1 1WSX (Mouse) G243
Bcl-XL 1AF3 (Rat) G138
Bcl-2 Isoform 1 1G5M (Human) G145
Bcl-2 Isoform 2 1GJH (Human) G145
Bcl-XL 1LXL (Human) G138
Bcl-XL 1R2D (Human) G138
Bcl-XL/Bad complex 1G5J (Human) G142
Bcl-W 1MK3 (Human) G93
Bax-alpha 1F16 (Human) G108
BHRF-1 protein 1Q59A (EB2 virus) G99
Bcl-2 homolog 1K3K (Kaposi�s sarcoma virus 2) G85
CED-9/EGL-1 complex 1TY4 (C. elegans) G169
these three residues in all the proteins. We observed that the

distance between them is almost equal and, the mean distance

was also found to be nearly same (Table 1).

This shows that these residues are superimposable in position

and orientation in 3D space in each structural homolog. It im-

plies that these residues are perhaps involved in the formation

of an active site in Bcl-2 structural homologs and any mutation

within predicted active site is most likely to abrogate the hetero-

dimerization of pro- and anti-apoptotic members of Bcl-2 fam-

ily. This has been demonstrated experimentally for the predicted

residues G145 (in BH1 domain) and W188 (in BH2 domain) in

Bcl-2; their substitution with A disrupts the pore forming ability

of the Bcl-2 protein [35] and completely abrogates its hetero-

dimerization and consequently death repressor activity in IL-3

deprivation, gamma irradiation and glucocorticoid-induced

apoptosis [3,36,37]. Similarly, the substitution of G138A,
cine and arginine in BH1 domain and tryptophan in BH2 domain of
amino acid number for each sequence. Residue numbers are shown for

-2 and its family members

rally conserved Distance between active
site forming residues (Å)

Mean
distance
(Å)

G–R R–W W–G

R146 W188 3.83 11.92 12.90 9.55
R139 W181 3.82 11.65 12.82 9.43
R139 W181 3.82 12.93 13.53 10.09
R139 W181 3.80 11.62 12.61 9.34
R139 W181 3.79 12.23 13.21 9.74
R244 W286 3.79 12.28 13.21 9.76
R139 W181 3.86 11.82 12.92 9.53
R146 W188 3.79 11.57 12.93 9.43
R146 W188 3.79 11.45 12.64 9.29
R139 W181 3.83 11.42 12.71 9.32
R139 W181 3.82 11.57 12.67 9.35
R143 W185 3.80 12.63 13.15 9.86
R94 W136 3.80 12.41 13.89 10.03
R109 W151 3.82 12.97 14.90 10.56
R100 W143 3.80 10.05 11.35 8.4
R86 W127 3.80 13.01 13.57 10.12
R170 W212 3.80 14.70 16.63 11.71



Fig. 3. (A) Bcl-2 (blue) active site residues interacting with Bax (green). The interacting residues are numbered and shown in spacefilled display in
Rasmol, rest of the residues are shown in ribbon display. (B) R146 forms a double intermolecular hydrogen bond with D68 on one side and a single
intermolecular hydrogen bond with D71 on the other side, which is the main docking site of BH3 domain of pro-apoptotic proteins. This interaction
is shown to stabilize the dimeric complex formation. The residue K64 interacts hydrophobically with W188 in the hydrophobic receptor cleft,
whereas it intramolecularly binds with D68.
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R139Q in Bcl-XL alters the accessibility, and binding properties

of BH3 receptor cleft of Bcl-XL to pro-apoptotic proteins [5].

3.4. Interaction of active site residues in Bcl-2 with BH3 domain

of Bax

The Bcl-2 protein was docked to BH3 domain of Bax protein

to understand the role of active site residues in Bcl-2 and Bax

heterodimerization. The best docking solution was present

among the first energy minimized cluster in Hex-docked com-

plexes (Fig. 3A). The Ca RMS deviation of the best-docked

structure was �1.00 with zero backbone bumps. The active site

residue, R146 of Bcl-2, forms a hydrophilic hydrogen bond

with D68 and D71 of Bax peptide (Fig. 3B). The importance

of hydrogen bonding interaction in between R and D can be

understood from the solved complex of Bcl-XL and Bak pep-

tide (1BXL), where interaction between D83 of Bak and

R139 of Bcl-XL stabilizes the complex formation. D83, which

is completely conserved within Bcl-2 family, when substituted

with A in Bak peptide markedly reduces the binding of peptide

to Bcl-XL. Moreover, conserved R139 mutation to E in Bcl-XL

inhibits its anti-apoptotic activity and binding to Bak protein

[5]. Similarly, the same interaction was observed in three-

dimensional NMR structure of anti-apoptotic protein Bcl-XL

complexed to a 25-residue peptide (1G5J) from the death pro-

moting BH3 region of Bad. In this complex R139 of Bcl-XL

interacts with D156 of Bad peptide [6]. In vivo, Bax mutant

D68A is shown to retain the ability to homodimerize but failed

to interact with Bcl-2, as determined by yeast two-hybrid as-

says and co-immunoprecipitation analysis using transfected

293 mammalian cells. The co-expression of wild type Bcl-2

with Bax mutant, D68A, rescues cells from apoptosis indicat-

ing the importance of D68 in heterodimerization interaction

and induction of apoptosis by inhibiting Bcl-2 cell survival

potential [38].

The other active site residue, W188, was within the docking

distance with K64 of Bax peptide, whereas G145 provides the

space, due to its small size, required for accommodating D68

within the groove formed by G145 and R146. Therefore, it

may be contemplated that any other amino acid in place of
G would sterically inhibit the entry of D68 required to stably

heterodimerize Bax protein with Bcl-2 (Fig. 3A). These interac-

tions were never shown earlier, which account for the abroga-

tion of Bcl-2 activity in which the clones expressing the Bcl-2

mutants G145A/E and W188A in FL5.12 and 2B4 cell lines

were not able to heterodimerize with pro-apoptotic proteins

and subsequently unable to inhibit programmed cell death

[3]. Since substitution of G145A/E and W188A abrogates het-

erodimerization, therefore, we also measured distance between

Ca atoms of G145 and W188. On substitution G145A or

W188A or both, the distance between G145 and W188 remains

the same, however A in place of G and W involves itself in the

formation of an intramolecular hydrogen bond with A149

(with nitrogen) and L185 (with oxygen) in Bcl-2, respectively

(data not shown). The formation of hydrogen bond subse-

quently disturbs the accessible surface of active site in which

A replaces the smaller G and probably suppresses the cleft

accessibility, whereas the side chain of W that may be func-

tionally interacting with, e.g., D64 of pro-apoptotic protein

Bax, is no longer available. The presence of bulky group of

E in G145E substitution perhaps suppresses the stabilization

of heterodimeric complex between anti- and pro-apoptotic

proteins mediated through the predicted active site.

Similar types of interactions were observed in other experi-

mentally solved complexes such as 1BXL, 1PQ1 and 1G5J.

Although there is a difference in binding affinity of Bcl-2 family

proteins towards pro-apoptotic Bax, Bad, Bim and Bak pep-

tides due to difference in residues lining the hydrophobic recep-

tor cleft [5,6,27,39], the position of predicted active site

residues remains conserved sequentially as well as structurally

in each of Bcl-2 structural homologs.
4. Conclusion and discussion

We have reported here the interaction of only three residues

with Bax protein, however there may be other residual interac-

tions, to verify the presence of an active site in Bcl-2 and its

family members. These three residues may be providing the



G.U. Gurudutta et al. / FEBS Letters 579 (2005) 3503–3507 3507
basic structural skeleton onto which pro-apoptotic proteins

sit, whereas the interactions in between other residues decide

the specificity and efficacy of Bcl-2 family members for

heterodimerization. For example, the three-dimensional struc-

ture of 1Q59 does not contain prominent hydrophobic groove

that mediates binding to pro-apoptotic family members. How-

ever, it does binds to Bax, Bak and to Bad with low affinity.

This binding may be attributed to the predicted active site res-

idues which are structurally conserved in 1Q59 protein also

[32].

This knowledge of structural conservation of residues in

BH1 and BH2 domains of Bcl-2 family members may be

potentially exploited in better understanding of hitherto unre-

vealed mechanism of cell death regulation.
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