
Pergamon
Math. Applic. Vol. 27, No. 4, pp. 23-35, 1994

Printed in Great Britain. All rights reserved
0898-1221/94 $6.00 + 0.00

089%1221(93)EOOO7-S
Copyright@1994 Elsevier Science Ltd

An Approximate Sign Detection Method
for Residue Numbers and its Application

to RNS Division

C. Y. HUNG AND B. PARHAMI*
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, U.S.A.

(Received July 1993; accepted August 1993)

Abstract-we present new division algorithms for Residue Number System (RNS). The algo-
rithms are based on a sign estimation procedure that computes the sign of a residue number to be
positive, negative, or indeterminate. In the last case, magnitude of the number is guaranteed to be in
a limited interval whose size is related to the cost of the sign estimation process. Our division algo-
rithms resemble SRT (Sweeney, Robertson, and Tocher) division; quotient digits in the set j-1,0,1}
are computed one by one. Assume that the RNS has n moduli, n residue processors, and b bits per
modulus, and that each b-bit addition/subtraction takes unit time. Our sign estimation procedure
uses relatively small lookup tables and takes O(logn) time. The first division algorithm based on the
new sign estimation procedure requires O(n blogn) time. A second algorithm, which improves the
time complexity to O(n b), is the fastest algorithm proposed thus far. Intermediate between the two
algorithms are a number of choices that offer speed/cost tradeoffs.

Keywords-Algorithms, Computer arithmetic, Residue number systems, Sign estimation, SRT

division.

1. INTRODUCTION

Residue number systems (RNS) present the advantage of fast addition and multiplication over

other number systems, and have thus received much attention for high-throughput computations,

especially in digital signal processing. However, certain operations such as overflow detection,

magnitude comparison, and division are quite difficult in RNS. By finding more efficient algorithm

for division, many application areas for which RNS was previously infeasible can be explored.

We present two new division algorithms for residue numbers. The algorithms are based on a

sign estimation procedure that when given a number in residue representation, computes its sign

to be positive, negative, or indeterminate. In the last case, the magnitude of the input number is

guaranteed to be small and within known bounds.

Assume that the RNS has n moduli, n residue processors, and b bits per modulus, and that

each b-bit addition/subtraction takes unit time. Our sign estimation procedure uses relatively

small lookup tables having a total size of O(n 2b logn) bits; in comparison, the mixed-radix

conversion procedure requires tables of size O(n2 zb) bits. Each sign estimation takes O(logn)

time with n adders of widths O(logn) bits. The first division algorithm to be discussed requires

O(n b log n) time. A second algorithm, which improves the time complexity to O(n b), is the

fastest algorithm proposed thus far. As in most works on residue arithmetic, we assume that

* Author to whom all correspondence should be addressed.

?Lp=et by AM-73

23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81980039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

24 C. Y. HUNG AND B. PARHAMI

there are n residue processors capable of performing n parallel residue additions/multiplications

in constant time. Any comparison-based division requires at least O(log Q) comparisons, where

Q is the magnitude of the quotient, and thus must have worst case complexity of at least O(n b).

Our second algorithm is therefore asymptotically optimal within this class of algorithms.

Several algorithms for general residue division have been proposed in the past. Based on

algorithm structure, there are two classes: comparison-based and subtractive. Comparison-based

algorithms [l-3] determine the quotient by the iteration

A’=A-2iqiD,

where A and A’ are the current and next dividend, D is the divisor, and qi is a quotient digit.

A is compared with 2i D to determine qi. Typically the quotient is generated digit-sequentially

as a radix-2 positional number. Of the three existing works, the digit set (0, 1) is used in [l]

and [3] and {-l,O, 1) is used in [2] (and in this paper). The methods to perform comparisons,

or equivalently, sign detections, are all different: [l] uses mixed radix conversion, [2] uses parallel

search, and [3] formulates the problem in terms of parity detection. Algorithms in this class have

more predictable performance. Both [l] and [3] have the same time complexity of 0(n2 b). The

algorithm in [2] can theoretically achieve O(nb) time complexity, but only with an impractical

hardware cost of 0(2(n-1)b).

The second class of algorithms [4-71 determine the quotient by the iteration

A’=A-QiD.

The quotient Qi generated in each iteration is typically a full-range residue number rather than

belonging to a small set. The first three algorithms use mixed radix forms of A and D, take 1

or 2 leading digits, and access a large table for Qi. Szabo and Tanaka 17, pp. 91-951 use a mixed

radix form of D, approximate D as a product of moduli, and find Qi by a scaling procedure.

Chren [5] claims improvement over the three other algorithms in this class with experimental

data. However, generally speaking, the performance of this class of algorithms is strongly data-

dependent and difficult to analyze.

In this paper, a residue number system is specified by a list of n pairwise relatively prime

moduli, ml, mz, . . . , m,. A number X is represented by a list of residues (Xl, X2,. . . , Xn). Let

M = nrni represent the product of all moduli. Conventionally, for unsigned numbers, the

dynamic range of an RNS is 0 5 X 5 M - 1. For signed numbers, the dynamic range is’

-[$j 5x5 [?I.

Let b be the number of bits needed to represent each residue. For efficiency of the algorithm and

convenience of analyzing its complexity, we assume that the magnitudes of the moduli are more

or less uniform. This assumption leads to

1ogM x nb.

Range notations in the form [z, y],[z, y),(s, y], and (z, y) are used, where parentheses stand for

open boundaries and brackets stand for closed boundaries. For example, (2, y] E {Z 1 z < z 5 y}.

We use the expression]rly as an extension to the notion of x mod y, where x and y are arbitrary

positive real numbers. Formally, if r =]x(~, then 0 5 r < y, and r = x - ky for some integer k.

The multiplicative inverse of x modulo y is written as]~-l]~. By definition, Ix (5-l]y(y = 1.

In the lookup tables we store some truncated fractional numbers. Truncation of a number x

below the -tth bit, or the 2-t weighted bit, is represented as [~]z_,, and is related to the exact

value by the inequality

[x12_, < z < [X12-” -I- 2-t. (1)

‘When M is even, generally an extra negative value is represented. This is consistent with our subsequent

sssumption of lsll E [0, $) being positive and lsll E [i, 1) being negative.

Approximate Sign Detection Method 25

2. SIGN ESTIMATION

Our sign estimation algorithm is baaed on the Chinese Remainder Theorem for converting

a residue number to its magnitude. Given a signed number X = (X1,X2,. . .,X,), we have,

according to the theorem,

Dividing both sides of equation (2) by M, we obtain

The quantity F(X) = I$ I1 E [0, 1) contains both magnitude and sign information. If F(X) E

[0,1/2), X is positive and F(X) is the magnitude of X relative to M. Otherwise X is negative

and 1 - F(X) is the relative magnitude of X.

The RNS division problem is solved if F(X) can be computed economically. In comparison-

based division, a k-bit quotient can be computed by k comparisons, and would take O(k) time if

F(X) could be computed in constant time. Unfortunately, computing F(X) involves addition of

n fractional numbers, each of which has to be log M + logn x n b + log n bits long to guarantee

a correct sign result. Note that computing F(X) is as expensive as a full residue-to-binary

conversion.

However, a very close estimate of the quotient, in fact off by at most one, can be obtained

by using a proper estimate of F(X). The estimate of F(X), which we call EF,(X), requires

only [logn] steps, where each step involves a small number of single-precision additions and

subtractions. An exact F(X) always gives us the correct sign of X, whereas E&(X) leads to

three possible conclusions: The sign of X is positive (X 2 0), negative (X < 0), or indeterminate.

In the last case F(X) is too close to the critical boundaries 0, l/2, or 1 for the estimate to

accurately determine the sign. The procedure to obtain one of the three answers will be called

“sign estimation”, with its outcome denoted by E&(X). Thus, E Sa(X) E {i-, -, &}.

The parameter (Y for E F&(X) and E Z&(X) controls the accuracy of sign estimation: a number

X with ES,(X) = f is guaranteed to be in the range [-2-aM, 2+M) if the input number to

the procedure is known to be in the range

-(;-2-“)MsX< (;-2-)M.

Intuitively, this limitation precludes F(X) being close to l/2, so that the indeterminate sign can

imply that F(X) is close to 0 or 1, which implies that the magnitude of X is small. It will become

apparent in the analysis to follow why the range of the input is thus limited. This limitation

somewhat reduces the dynamic range of computation, but the reduction is negligible if 2-Q is

made small.

The procedure for computing E F,(X) is as follows. A set of n lookup tables is constructed,

one for each modulus. For each modulus mi, and for j = 0, 1, . . . , rni - 1, the entry E F, [i] b] is

computed as

EFaMbl= [~~~(:)-1~mil~2_o~ (5)

i.e., we truncate each term in the summation of equation (3) below the -Pth bit, where

P=cY+ pogn1. (6)

26 C. Y. HUNG AND B. PAFLHAMI

To compute E F,(X), the tables are looked up using residues Xi as indices and outputs are

summed modulo 1:
I n I

E F,(X) = c E Fa[i] [Xi] . (7)
i=l 1

The estimated sign E Se(X) is determined by testing E F,(X) against some fixed bounds.

If 0 5 E F,(X) < ;,

1
If -2 < EF,(X) < 1-2-‘2,

Otherwise,

Correctness of the sign estimation

i<n,O<jL:mj--1,a.s

F]il

Note that

ES,(X) = f, and X 2 0. (6)

ES,(X) = -, and X < 0. (9)

ES,(X) = f, and - 2-aM I X < 2+’ M. (10)

procedure is proved as follows. We define F[i] [j], for 1 5

(11)

and therefore F[i] [j] and F(X) are the exact counterparts of E F,[i] [j] and E Fa(X). Applying

equation (l), we have

E F,[i] [j] 5 F[i] [j] < E F,[i] [j] + 2-O. (12)

Summing n terms of both E Fa[i] [j] and F[i] [j] an considering the fact that by equation (6) d

n .2-p < 2-a, we obtain

eEFaji][Xi] I eF[i][Xi] < kEF,F][Xi] +2-CL.
i=l i=l i=l

(13)

Taking modulo 1 over both summations leads to

EF,(X)<F(X)<EF,(X)-t2-0ifEF,(X)<1-2-e.

Otherwise,

(14)

EF,(X) 5 F(X) < 1 or 0 I F(X) < EFa(X) + 2-a - 1.

Limiting the input range as in equation (4) implies

0 I F(X) I ; - 2-Q or 5 +2-O < F(X) < 1.

(15)

(16)

For the positive sign, we assert 0 5 E Fe(X) < l/2, which together with equation (14) imply

O<F(X)<;+2-? (17)

Intersection of (16) with the above to leads to 0 5 F(X) < l/2 - 2-a, thus guaranteeing a
positive sign for X. If the input X were allowed to be in the range ((l/2 - 2-Q)M, M/2) U

[-M/2, -(l/2 - 2-“)M), equation (16) would not be true, and the conclusion that X ‘2: 0 could

not be reached.
For the negative sign, we assert l/2 5 E F,(X) < 1 - 2-a, which together with equation (17)

give us l/2 5 F(X) < 1, thus guaranteeing a negative sign for X. The remaining interval,

1 - 2-O 5 E F, (X) < 1, with equation (15) indicate

1 - 2-a I F(X) < 1 or 0 5 F(X) < 2-a, (16)

which in turn implies -2-“M 5 X < 2-aM.

Approximate Sign Detection Method 27

The time required to perform sign estimation is O(logn), assuming table lookup and com-

parisons take constant time. With the E F,[i] [j] tables precomputed, we need to perform n

table lookups in parallel, sum up the outputs of tables modulo 1 to form E F,(X), then compare

E F,(X) against the 2 constants l/2 and 1 - 2- a2 to determine E Z&(X). The width of additions

is ,O = CY + [log n1 = 4 + [logn] for the first division algorithm and 5 + 2rlog 7~1 for the second

one. The O(log n) time complexity is obvious if each P-bit addition can be completed in constant

time. Even if addition time is linear in operand length, we may use a carry-save adder tree to

obtain in O(logn) time two operands of length p. These two operands are then added in time

p = O(log n) using a simple ripple-carry adder or in less time using any fast adder design.

3. A DIVISION ALGORITHM

We present a division algorithm in this section, and then an improved version in the next

section. The division algorithm is as follows. Given A and D, it computes Q and R such that

A=QD+RandOIR<D.

1. Setj=O,Q=O

2. WhileES,([M/8J-2D)#-doD=2D,j=j+l

3. WhileES,(A-D)#-doA=A-2D,Q=Q+2

4. Fori=1,2,3 ,..., jdobegin

5. Case ES,(A) of

6. +:A=2(A_D),Q=2(Q+l)
7. -:A=2(A+D),Q=2(Q-1)
8. f:A=2A,Q=2Q
9. end

10. end

11. Case E $(A) of

12. +:A=A-D,Q=Q+l
13. -:A=A+D,Q=Q-1
14. end

15. If E&(A) = - or (E,!&(A) = f and S(A) = -) then A = A + D, Q = Q - 1

16. R = 2-jA.

For ease of description and analysis, we assume that both the dividend A and the divisor D are
positive. The algorithm can be easily modified to deal with negative dividend or divisors. It is

also not difficult to deal with operands of unknown sign. We just repeatedly double the operand

until its sign can be detected by the sign estimation procedure. We also require D < 3M/16.

This condition appears to be rather restrictive. However, for large divisors not satisfying this

constraint, we can find the quotient easily by at most a few subtractions of D from A. The

dividend A can have the full range for positive numbers [0, M/2).

The sign estimation procedure is used early in the algorithm to normalize A and D and in the

main loop to determine changes to the quotient. The precision parameter Q is set to 4 for all

instances of sign estimation in the algorithm. Thus, 2-a M = M/16.

The overall structure of the algorithm is similar to the well-known SRT division (Sweeney,

Robertson, and Tocher, see, e.g., [8, pp. 226-2291). The divisor D is first scaled up to make the

most use of the precision of sign estimation. Then in the for loop, the quotient Q is adjusted

by -1, 0, or 1 and repeatedly doubled. Essentially we are generating a radix-2 quotient digit in

the digit set (-1, 0, 1) in each iteration, with the most significant digit coming out first and the

least significant digit last. Finally a possible correction of -1 on the quotient is made, and the

remainder R is produced by scaling A back. Detailed description of the algorithm follows.

Line 1 sets the counter j and quotient Q to zero. On line 2, D is repeatedly doubled until

20 > [M/8J is guaranteed. The number of doublings required is registered in j and is used

2Should not count zero since E F. (X) 2 0 is always true.

28 C. Y. HUNG AND B. PARHAMI

for the loop count. If Din denotes the input divisor, we have D = 2j Din after the while loop

terminates. Moreover, we must have LM/8J - 20 < 0 because the last ES, yields a negative

sign and [M/S] - D 2 -M/16 because the next to the last ES, must have yielded a positive

or indeterminate sign. Since 20 > [M/8] implies 20 2 LM/SJ + 1, we have

or D > M/16. For the upper bound of D, we have

D<

Thus, D is normalized to
M 3M
E’DI-.

16 (19)

On line 3, A is repeatedly reduced by 20 until ES,(A - D) = -, and meanwhile, Q is

repeatedly incremented by 2. Upon termination of the while loop, we have A - D < 0 in view of

the last sign estimation and A + D 2 -M/16 in view of the next to the last ES,. It follows that

-D - M/16 I A < D. (20)

The number of times A is reduced is at most 4, since A < M/2 and D > M/16.

Lines 4 to 10 comprise the main loop of the algorithm, with i counting from 1 to j. In each

iteration, E&(A) is computed, and then based on the returned sign, one of the lines 6, 7, or 8

is executed. We assert that during the execution of the for loop, A is always in the range

-20 I A < 20. (21)

This is proved by induction on the loop count. When the loop is entered, we know -20 < A < D
from (19) and (20), therefore equation (21) is true. Let Ai stand for the value of A in the beginning

of ith iteration. Suppose Ai E [-20,2D), we need to show that Aif E [-20,2D). The sign

estimation procedure may declare the sign of Ai as positive, negative, or indeterminate. We have

3 cases:

l Ai is positive. In this case Ai E [0,2D). Subtracting D from A and doubling bring the

range back to [-20,2D).

l Ai is negative. In this case Ai E [-20,O). Adding D to A and doubling again bring the

range back to [-20,2D).

l Sign of Ai is indeterminate. In this case Ai E [-M/16, M/16) C [-D, D) based on

equation (19). Doubling of A brings the range back to I-20,20).

Lines 11 to 14 contain a case block similar to the one on lines 5 to 9, only A and Q are

not doubled. Thus we know after exiting this case block that A E [-D, 0). Since the desired

remainder is in the range [0, D), A needs to be increased by D if A < 0. On line 15, sign

estimation is tried first to detect a negative sign, and if the returned sign is indeterminate the

exact sign S(A) is computed. Line 16 scales A back by 2-j to obtain the remainder R, because

while A E [0, D), D is normalized to 2j Din on line 2.

Let A* and Q* denote the final values of A and Q at completion of the algorithm and let A’”
denote the input dividend. We define qi E { -1, 0, 1) to be the quotient digit (change to Q) before

doubling in iteration i. We count the second case block as iteration j + 1 and absorb the initial

and final adjustments to Q in q1 and qj+i. Unfolding the changes in Q and A, we have

Q* = (“‘((~1 *2 +qz) *2 + q3)**‘) *2 + qj+l

A* = (...(((Ai”-qlD).2-q2D).2-q3D)...).2-qj+l D

= 2’ A’” - D((** . ((ql .2 + q2) * 2 + 43) .*a) * 2 + qj+l)
=@Ain-_DQ*

=2jAin_$+Q*.

Approximate Sign Detection Method 29

Note that A* is divisible by 2j. Since A* E [O,dDi”), we know that A* is the remainder

of 2jA’” divided by 2j D’“. Therefore, R = 2-j A* is the remainder of A’” divided by Din.

Furthermore, Q* is the correct quotient for both divisions.

For all the instances of sign estimation used in the algorithm, the input range must comply

with equation (4). With (Y = 4, we must have -7M/16 5 X 5 7M/16. The instances on line 2

have input

[;I -20~ [[$j -$$[;j) C (-y,$).

The instances on line 3 have input

M M
-Is-2D,T-D

The instances on lines 5 and 11 have input

A E [-20,2D) C - [yg.

Input range of the ES, instance on line 15 is [-D, D), so is safe as well. Therefore, the input

range limitation is satisfied for all the instances.

The exact sign computation on line 15, if required, is most efficiently carried out by a residue-

to-mixed radix conversion and then a comparison against a precomputed bound in its mixed

radix representation. If we call the bound B, then B can be anywhere in the range [3M/16 + 1,

13M/16-11. It is usually possible to choose a B so that its mixed radix form has a leading nonzero

digit, and zeros for all other digits. With n single-precision residue processors, the conversion

takes O(n) time [7, pp. 43-451 and the comparison takes constant time.

To ease the task of dividing A by 2j to obtain R, all moduli should be made odd.3 In this

case we may precompute and store the residues of 2j for all possible j. The scaling takes only

constant time. In case M is even, i.e., one of the moduli is even, scaling can still be performed

in O(n) time using the base eden&n method [7, pp. 47-501. Although scaling is more expensive

when M is even, the O(n) time required does not affect the asymptotic time complexity of the

division algorithm.

The computations required by the algorithm, with the exception of sign estimation and possibly

scaling by 2-j, can all be carried out with residue arithmetic. With the rather weak assumption

that a residue addition/subtraction takes constant time, the overall time complexity of the divi-

sion algorithm is O(j log n) + O(n) = O(n b log n), since in the worst case j is close to n b. Residue

multiplication, which is required in residue-to-mixed radix conversion in exact sign computation

and in scaling by 2-j, may take O(b) time and still doesn’t affect the asymptotic time complexity.

Any comparison-based division algorithm must take at least O(log Q) = O(n b) time. The

algorithm in this section is a factor of logn over this bound. We observe that the algorithm can

be made optimal by removing a logn factor from the time complexity. The improved version,

presented in Section 5, achieves this goal.

4. EXAMPLE FOR THE FIRST ALGORITHM

In this section we present an example for our first division algorithm. The moduli are 5, 7, 9, 11.

For the first division algorithm, CY = 4, p = a + [logn] = 6. The EF,[i] [j] values are truncated

at l/64. The entries in Table 1 are 64. E F, [i] b]. To compute E S,(X), we sum up E F,[i] [Xi]
modulo 1 to find E F,(X), and compare E F,(X) with l/2 = 32/64 and 1 - 2-O: = 60/64. For

example,

EF,(2) = EFa((2,2,2,2)) = 51+54;456+2g
1

=; 2 E.

3This same condition is required by the method of sign detection through the determination of parity [3].

30 C. Y. HUNG AND B. PARHAMI

Therefore, ES,((2,2,2,2)) = f is returned.

EF,(lOO) =EF,((O,2,1,1)) = O+54i428+46 =o.
1

Therefore, E $((O, 2,1,1)) = + is returned.

As a sample division, we try A = 125 = (0,6,8,4) and D = 14 = (4,0,5,3). The correct

quotient Q = 8 = (3,1,8,8) and remainder R = 13 = (3,6,4,2) are produced. Table 2 shows the

intermediate values during execution of the algorithm.

Table 1. 64E F. [i] b] for the first division algorithm.

j

i rni 0 1 2 3 4 5 6 7 8 9 10

1 5 0 25 51 12 38

2 7 0 27 54 18 45 9 36

3 9 0 28 56 21 49 14 42 7 35

4 11 0 46 29 11 58 40 23 5 52 34 17

5. AN IMPROVED DIVISION ALGORITHM

The following division algorithm uses fewer n-operand summations to reduce the time com-

plexity.

1.

2.1

2.2

2.3

2.4

2.5

2.6

3.

4.

5.1

5.2

5.3

6.

7.

8.

9.

10.

11.
12.

13.
14.
15.
16.

Set j = 0, Q = 0

Compute D’ = E F,(D).

While D’ 5 l/16 or D’ > l/2 do begin

D=2D, D/=20’, j=j+l

If j mod ([log nJ + 1) = 0 then compute D’ = E F, (0)

end

Compute D’ = E F,(D)

WhileES,(A-D)#-doA=A-20, Q=Q+Z

Fori=1,2,3 ,..., jdobegin

If i mod [log nJ = 1 then compute A’ = E F,(A)

Compute E $(A) using A’.

Case ES,(A) of
+ : A = 2(A - D), A’ = 12(A’ - D’ - 2-a)li, Q = 2(Q + 1)

- : A = 2(A + D), A’ = /2(A’ + D’)ll, Q = 2(Q - 1)

f : A = 2A, A’ =)2A’l,, Q = 2Q

end

end

Case E S, (A) of
+:A=A-D, Q=Q+l
-:A=A+D, Q=Q-1

end
If E&(A) = - or (ES,(A) = f and S(A) = -) then A = A + D, Q = Q - 1
R=2-jA.

The overall structure of this algorithm is the same as the previous one. There are some

local modifications, and the line numbers correspond to the lines in the previous algorithm.
For example, lines 2.1 through 2.6 are spawned from line 2 of the previous algorithm. The
modifications are on lines 2.1 through 2.6 and lines 5.1 through 8. In essence, only some instances

Iteration

j=O

j=l

j=2

j=3

j=4

j=5

line 3

i=l

i=2

i=3

i=4

i=5

line 11

line 15

line 16

Approximate Sign Detection Method

Table 2. Computing 125/14 with the first division algorithm.

Variable

D

LMPI
[M/SJ - 20

D = 20

lM/SJ - 20

D=2D

LM/8j - 20

D = 20

[M/8] - 20

D = 20

LM/8J - 20

D = 20

[M/8J - 20

A

A-D

A

A=2(A-D)

Q = 2(Q+ 1)
A=2(A+D)

Q = 2(Q- 1)
A=2(A+D)

Q = 2(Q- 1)
A = 2(A - D)

Q = 2(Q+ 1)
A=2(A+D)

Q = 2(Q- 1)

A=A+D

Q=Q-1

A=A+D

&=&-I

2j

2-j

R = 2-j.4

Value

Residues mod

(5,7,9,11)

14 (4,0,5,3)
433 (3,6,1,4)
405 (0,6&‘,9)

28 (3,oM)
377 (2,6,8,3)

56 (1,0,2J)
321 (VVG)
112 (2,0,4,2)
209 (4,CV’)
224 (4,0,%4)
-15 (0,6,3>7)
448 (3$X7,3)

-463 @,6,5X’)

125 (0,6,3,4)
-323 (2,6,1,7)

125 (0,6,3,4)
-646 (4,5,2,3)

2 (‘C&2,2)
-396 (4,3,0,0)

2 KA2,2)
104 (4,‘%5,5)

2 (2,2,2,2)
-688 (2,5,5,5)

6 0,6,6,6)
-480 (0,3,6,4)

10 @,3MO)

-32 (3,3,4,1)
9 (4,2,0,9)

416 (1,3,2,9)
8 (3JA3)

32 C&4,5,10)
758 (3~2~0)

13 (3,6,4,2)

Notes

M = 3465

EF, = 6/64,ES, = +

EF, =5/64,ES, =+

EF, =4/64,ES, = +

EF, = 2/64,ES, = +

EF, =62/64,ES, =f

EF, =54/64,ES, = -

EF, = 56/64,ES, = -

EFa = 1/64,ES, = +

EF, =50/64,ES, = -

EF, =56/64,ES, = -

EF, = 0/64,ES, = +

E Fe = 50164, ES, = -

EF, = 54/64,ES, = -

EF,=61/64,ES,=zt,S=-

Quotient = 8

Remainder = 13

31

of the sign estimation procedure are changed. One implicit yet important change in the algorithm

isa=5+ [lognj.

On line 2 of the previous algorithm, the variable D is normalized by repeated doublings while

E Sa([M/S] - 20) is tested. Lines 2.1 through 2.6 perform the same normalization with slightly

more complicated operations. The E S, function is not used, instead D’, an estimate of F(D), is

compared with l/16. The comparison of D’ with l/2 is to guard against cases where D’ is just

slightly less than one for a small F(D). D’ . IS renewed by computing D’ = E Fa(D) once every

LlognJ + 1 iterations and is repeatedly doubled with the doublings of D. Recall that there is a

cost of O(logn) time for each instances of sign estimation, and the O(logn) time complexity is

due to the n-operand summation in computing the E F, function. By computing E Fa(D) once

every O(logn) times D is doubled, instead of every time, we cut down the time complexity of

the normalization step by a factor of logn.

Upon renewal, D’ has an error of 2-u with respect to F(D). With each doubling of D’ the

error is doubled as well. The extra precision of the sign estimation procedure, as reflected in the

32 C. Y. HUNG AND B. PARHAMI

larger CX, ensures that the maximal error is bounded by

2LlwPlp = &.

It follows that

D’M<D<D’M+$

After the while loop terminates, we have D’ > l/16, and therefore D > M/16. For the next to
the last test, we have (D/2)’ I l/16, so

D M M 3M

T< 16+32=32*

Therefore we have M/16 < D < 3M/16. Note that the range of the normalized D is almost
identical to equation (19) for the previous algorithm.

A similar strategy is used in the sign estimation performed in the main loop. A new variable
A’ is used to keep track of an estimate of F(A). A’ instead of E F,(A) is used in determining
E,!&(A). On line 5.1, we renew A’ from E F,(A) once every llognj iterations. For the other
iterations, A’ is obtained from updates that reflect the changes in A, as shown on lines 6,7, and 8
of the algorithm. On line 6, where D is subtracted from A, D’ + 2-a instead of D’ is subtracted
from A’ to ensure that A’ always underestimates F(A). We are interested in the growth of error
of A’ with respect to F(A). 4 For convenience, we use 6 to denote 2-Q and define AAi as the
upper bound of error in the ith iteration. We start out with A’ = E Fe(A) and update with
A’ = 2(A’ f D’) in each iteration. Thus, we have the initial condition

AAl = 6, (22)

and the recurrence
AAi = 2(AAi_l +a),2 I i I Llogn].

For i > Llogn] f 1, the process repeats itself. The solution of this recurrence is

AAi = (2i + 2+’ - 2) 6.

(23)

(24)

Therefore, the worst case occurs at i = Llog nj :

AA mBx = (2Llol3nl + 2llognl-1 - 2)J < 2LlognJ+l&

With (Y = 5 + Llog n] and 6 = 2-a, we have

and indeed the upper bound error is no greater than the upper bound error of E F,(A) with
respect to F(A) in the previous algorithm (with Q = 4).

Compared with the previous algorithm, D is in an almost identical range and the upper bound
error of E Sa(A) is no greater. Proof of correctness for this algorithm is almost identical to that
for the previous algorithm, and is therefore omitted.

The asymptotic time complexity is improved to O(nb). In the worst case, we still have O(nb)
iterations on the normalization while loop and the main loop. The n-operand summation is per-
formed once every O(logn) iterations instead of every iteration. Therefore, the time complexity

4The error of D’ with respect to F(D) is just their difference, F(D) - D’, because D is in a tight range
(M/16,3&f/16]. Strictly speaking, the error of A’ with respect to F(A) is how much A’ falls behind in a modulo
one ring, i.e., the minimal d such that d 2 0 and A’ + dl = F(A).

Approximate Sign Detection Method 33

is cut down by a factor of logn. We keep the sign estimation on lines 3, 11, and 15, since it is
performed only fixed number of times there.

In this algorithm we use longer additions, having widths of 5 + 2[log n] bits as opposed to
4 + [logn] bits in the first algorithm. However, in most practical systems such additions can be
completed in a constant number of clock cycles. As an example, 11-bit additions will be required
for n = 8. Besides, carry-save addition can be used in much the same way as in the previous
algorithm to guarantee O(logn) time complexity for the sign estimation procedure even under
the assumption of linear-time addition.

Obviously there is room for trade-offs in the spacing of the E F, computations and the width
of additions. We may for example reduce the two spacings on lines 2.4 and 5.1 by 1 to [logn]
and [log n] - 1, respectively, and reduce the additions width to 4 + 2 [log n] .

6. EXAMPLE FOR THE SECOND ALGORITHM

In this section we present an example for our second division algorithm. The moduli are again
5,7,9,11, and the dividend and the divisor are 125 and 4 as in the first example. We require
o = 5 +]lognJ = 7 for the second algorithm, leading to P = (Y + [logn] = 9. The E F,[i] [j]
values are truncated at l/512. Table 3 shows the entries 512. E F, [i] [j]. A number X is declared
positive if E Fa(X) E [0,255/512], negative if E F,(X) E [256/512,479/512], and indeterminate
if E F,(X) E [480/512,511/512]. Table 4 shows the intermediate values during execution of the

division algorithm.

Table 3. 512E Fa [i] b] for the second division algorithm.

j
i mi 0 1 2 3 4 5 6 7 8 9 10

1 5 0 204 409 102 307

2 7 0 219 438 146 365 73 292

3 9 0 227 455 170 398 113 341 56 284

4 11 0 372 232 93 465 325 186 46 418 279 139

7. CONCLUSIONS

A sign estimation procedure has been proposed. The procedure either returns the correct sign
or indicates that the magnitude of the input is in a limited range. Two division algorithms
based on this sign estimation procedure were presented. With n moduli, b bits per modulus, and
the assumption that there are n residue processors capable of n parallel residue operations in
constant time, the first algorithm achieves O(n b log n) time complexity. The second algorithm
modifies the sign estimation process of the first algorithm, essentially performing most of the sign
estimations incrementally, and improves the time complexity to O(nb). It is the fastest general
RNS division algorithm proposed thus far.

Several obvious variations of the division algorithms can be devised to make the algorithms
more efficient for specific applications. For example, the normalizations of A and D can be
simplified or even skipped if the ranges of A and D are known in advance. The computation
of the quotient Q can be omitted if we are only interested in the remainder, as in a modulo
operation. The single exact sign computation can be avoided if an error of 1 in the quotient (or
error of D in the remainder) can be tolerated.

In addition to the formal proofs of correctness presented in this paper, the algorithms have
been experimentally evaluated for several moduli sets with 2 to 5 moduli. For each moduli set, all
permissible A, D pairs were tested. In all these cases, correct results were obtained as expected.

We are currently investigating efficient residue division algorithms for fixed divisors [9], as-
suming that some preprocessing based on D is allowed. Other potential research topics include:

34 C.Y.HUNG AND B. PARHAMI

Table 4. Computing 125/14 with the second division algorithm.

Iteration

j=o
j=l

j=2

j=3

j=4

j=5

line 2.6

line 3

i=l

i=2

i=3

i=4

i=5

line 11

line 15

line 16

Variable

D

D=2D

D = 2D

D=2D

D = 20

D=2D

D

A

A-D

A

A = 2(A - D)

Q = 2(Q+ 1)
A=2(A+D)

Q = z(Q- 1)
A

A=2(A+D)

&=2(Q- 1)
A = 2(A - D)

Q = YQ+ 1)
A

A=2(A+D)

Q = 2(Q- 1)

A

A=A+D

&z&-l

A

A=A+D

Q=Q-1

2j
2-j

R = 2-j‘4

Value

Residues mod

(5,7,9,II)

14 (4,0,5,3)
28 (3,0,1,6)
56 (1,0,2,1)

112 (2,0,4,2)
224 (4,0,8,4)
448 (3,0,7,8)

448 (3,0,7,8)
125 (0,6,8,4)

-323 (2,6,L7)

125 (0,6,8,4)
-646 (4,5,2,3)

2 (2,2,2,2)
-396 (4,3,0,0)

2 (2,2,2,2)
-396 (4,3,0,0)

104 (4,6,5,5)
2 (2,2,2,2)

-688 (2,5,5,5)
6 (I,6,6>6)

-688 (2,5,5,5)
-480 (0,3,6,4)

10 UJ,3,I,W

-480 (0,3,6,4)
-32 (3,3,4,I)

9 (4,2,0,9)
-32 (3,3,4J)
416 (I,3,2,9)

8 (3,1,8,8)
32 (2,4,5,IO)

758 (3,2,2,IO)
13 (3,6,4,2)

Notes

D’ = E F,(D) = l/512 < l/16

D’ = 21512 < l/16

D’ = 41512 < l/16

D’ = EFa(D) = 15/512 < l/16

D’ = 301512 < l/l6

D’ = 601512 2 l/16

D’ = E F,(D) = 64/512

E Fe = 4621512, ES, = -

A’ = E Fe(A) = 17/512, E S, = +

A’ = 4181512, ES, = -

A’ = E Fa(A) = 4531512, ES, = -

A’ = 101512, ES, = +

A’ = EFa(A) = 4081512, ES, = -

E F,(A) = 440/512, E S, = -

E Fa(A) = 5061512, ES, = -

Quotient = 8

Remainder = 13

adapting the algorithms for special classes of moduli (e.g., 2" f l), adapting the algorithms for

specific applications, study of the fault tolerance aspect of the algorithms, and applications of the

sign estimation process to other residue operations such as square rooting and base extension.

REFERENCES

1.

2.

3.

4.

5.

6.

Y.A. Keir, P.W. Cheney and M. Tannenbaum, Division and overflow detection in residue number systems,
IRE B-ansactions on Electronic Computers EC-11 (4), 501-507 (August 1962).
M.-L. Lin, E. Leiss and B. McInnis, Division and sign detection algorithms for residue number systems,
Computers Math. Applic. 10 (4/5), 331-342 (1984).
M. Lu and J.-S. Chiang, A novel division algorithm for the residue number system, IEEE Runsactions on
CO77LpUteTS 41 (8), 1026-1032 (August 1992).
D.K. Banerji, T.Y. Cheung and V. Ganesan, A high speed division method in residue arithmetic, In Pro-
ceedings of the Fifth Symposium on Computer Arithmetic, pp. 158-164, IEEE Press, (May 1981).
W.A. Chren Jr., A new residue number system division algorithm, Computers Math. Applic. 19 (7), 13-29
(1990).

E. Kinoshita, H. Kosako and Y. Kojima, General division in the symmetric residue number system, IEEE
Transactions on Computers C-22 (2), 134-142 (February 1973).

Approximate Sign Detection Method 35

7. N. Saabo and RI. Tanaka, Residue Arithmetic and its Applications to Computer Technology, McGraw-Hill,
(1967).

8. K. Hwang, Computer Arithmetic, Principles, Architecture, and Design, John Wiley & Sons, Inc., New York,
(1979).

9. C.Y. Hung and B. Parhami, Fast RNS division algorithms for fixed divisors with application to RSA
encryption, Manuscript. University of California, Department of Electrical and Computer Engineering,
(March 1993).

