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Motivation: This paper presents a workflow designed to quantitatively characterize the 3D structural
attributes of macroscopic tissue specimens acquired at a micron level resolution using light microscopy.
The specific application is a study of the morphological change in a mouse placenta induced by knocking
out the retinoblastoma gene.
Result: This workflow includes four major components: (i) serial section image acquisition, (ii) image pre-
processing, (iii) image analysis involving 2D pair-wise registration, 2D segmentation and 3D reconstruc-
tion, and (iv) visualization and quantification of phenotyping parameters. Several new algorithms have
been developed within each workflow component. The results confirm the hypotheses that (i) the volume
of labyrinth tissue decreases in mutant mice with the retinoblastoma (Rb) gene knockout and (ii) there is
more interdigitation at the surface between the labyrinth and spongiotrophoblast tissues in mutant pla-
centa. Additional confidence stem from agreement in the 3D visualization and the quantitative results
generated.
Availability: The source code is available upon request.
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1. Introduction Homozygous deletion of Rb in mice results in severe fetal and pla-
This paper presents an imaging workflow designed to quantita-
tively characterize 3D structural attributes of microscopic tissue
specimens at micron level resolution using light microscopy. The
quantification and visualization of structural phenotypes in tissue
plays a crucial role in understanding how genetic and epigenetic
differences ultimately affect the structure and function of multi-
cellular organisms [1–5].

The motivation for developing this imaging workflow is derived
from an experimental study of a mouse placenta model system
wherein the morphological effects of inactivating the retinoblas-
toma (Rb) tumor suppressor gene are studied. The Rb tumor sup-
pressor gene was identified over two decades ago as the gene
responsible for causing retinal cancer (retinoblastoma) but has also
been found to be mutated in numerous other human cancers.
ll rights reserved.
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cental abnormalities that lead to lethality by prenatal day 15.5 [6–
8]. Recent studies suggest that Rb plays a critical role in regulating
development of the placenta and Rb�/� placental lineages have
many fetal abnormalities [8–10].

Our previous work suggested that deletion of Rb leads to exten-
sive morphological changes in the mouse placenta including possi-
ble reduction of total volume and vasculature of the placental
labyrinth, increased infiltration from the spongiotrophoblast layer
to the labyrinth layer, and clustering of labyrinthic trophoblasts
[8]. However, these observations are based solely on the qualita-
tive inspection of a small number of histological slices from each
specimen alone. In order to fully and objectively evaluate the role
of Rb deletion, a detailed characterization of the mouse placenta
morphology at cellular and tissue scales is required. This permits
the correlation of cellular and tissue phenotype with Rb�/� geno-
type. Hence, we develop a microscopy image processing workflow
to acquire, reconstruct, and quantitatively analyze large serial sec-
tions obtained from a mouse placenta. In addition, this workflow
has a strong visualization component that enables exploration of
complicated 3D structures at cellular/tissue levels.
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Using the proposed workflow, we analyzed six placentae sam-
ples which included three normal controls and three mutant
(Rb�/�) samples. A mouse placenta contains a maternally derived
decidual layer and two major extra-embryonic cell derivatives
namely, labyrinth trophoblasts and spongiotrophoblasts (Fig. 1).
Placental vasculature that lays embedded within the labyrinth
layer is the main site of nutrient-waste exchange between mother
and fetus and consists of a network of maternal sinusoids interwo-
ven with fetal blood vessels. The quantitative analysis of placentae
samples validates observations published in [10] that Rb-deficient
placentae suffer from a global disruption of architecture marked by
increased trophoblast proliferation, a decrease in labyrinth and
vascular volumes, and disorganization of the labyrinth–spongio-
trophoblast interface.

To summarize, in this paper, we report the architecture and
implementation of a complete microscopic image processing
workflow as a novel universal 3D phenotyping system. The result-
ing 3D structure and quantitative measurements on the specimen
enable further modeling in systems biology study. While some of
the algorithms presented here are optimized for characterizing
phenotypical changes in the mouse placenta in gene knockout
experiments, the architecture of the workflow enables the system
to be easily adapted to countless biomedical applications including
our exploration of the organization of tumor microenvironment
[16].

1.1. Related work

The quantitative assessment of morphological features in bio-
medical samples is an important topic in microscopic imaging.
Techniques such as stereology have been used to assess 3D attri-
butes by sampling a small number of images [17]. Using statisti-
cal sample theory, stereological methods allow the researcher to
gain insights on important morphological parameters such as cell
density and size [18,19]. However, an important limitation of
stereology is that it is not useful for large scale 3D visualization
and tissue segmentation, both of which are potentially critical
for biological discovery. Therefore, we need new algorithms to
enable objective large scale image analysis. Since our work in-
volves multiple areas of image analysis research, we delegate
algorithmic literature review to the corresponding subsections
in Section 2.

There has been some work focusing on acquiring the capability
for analyzing large microscopic image sets. Most of these efforts in-
volve developing 3D anatomical atlases for modeling animal sys-
tems. For instance, in [20], the authors developed a 3D atlas for
the brain of honeybees using stacks of confocal microscopic
images. They focus on developing a consensus 3D model for all
key functional modules of the brain of the bees. In the Edinburgh
Mouse Atlas Project (EMAP), 2D and 3D image registration algo-
rithms have been developed to map the histological images with
3D optical tomography images of the mouse embryo [21]. Apart
from atlas related work, 3D reconstruction has also been used in
clinical settings. In [1], the authors build 3D models for human cer-
vical cancer samples using stacks of histological images. The goal
was to develop an effective non-rigid registration technique and
identify the key morphological parameter for characterizing the
surface of the tumor mass. In this paper, instead of focusing on a
single technique, we present the entire workflow with a compre-
hensive description of its components (Fig. 2).

2. Components and algorithms of the workflow

In this section, we describe the components of the workflow
and the related image processing algorithms. Please refer to Fig.
2 for a schematic representation of the three stages.
1. In the first stage, large sets of histological slides are produced
and digitized. The preprocessing of the images includes color
correction to compensate for intensity inconsistency across
slides due to staining variations and pixel-based color classifica-
tion for segmenting the image components such as cell nuclei,
white spaces (including purported vasculature spaces), cyto-
plasm, and red blood cells. These standard preprocessing steps
build the foundation for the next two stages of investigation.

2. The second (middle) stage consists of image registration and seg-
mentation. The registration process aligns 2D images in a pair-
wise manner across the stack. Pair-wise alignments provide
3D coordinate transforms to assemble a 3D volume of the
mouse placenta. The segmentation process identifies regions
corresponding to different tissue structures such as the laby-
rinth and spongiotrophoblast layers. In our current realization,
the image registration and segmentation process do not directly
interact with each other. However, in other applications, results
from image segmentation provide the landmarks that may used
in image registration [16].

3. The final stage (bottom) of the workflow supports user-interac-
tion, exploration via visualization and quantification. For this
project, the quantification is focused on testing three hypothe-
ses about the effects of Rb deletion in placental morphology. We
provide the hypotheses specifics later in Section 2.6. The quan-
tification step in our workflow provides measurements of mor-
phological attributes relevant to the hypothesis. The
visualization step allows the researcher to further study the
3D structures in detail. Volumetric rendering techniques are
developed because we are interested in visualization of multi-
ple interleaving types of tissue that will further confirm the
quantifications.

The details in the three levels of the workflow are given in Sec-
tions 2.1–2.6. Please note that in stage 2, we adopt a multiresolu-
tion strategy. For example, image registration/segmentation is
carried out at lower resolutions in order to reduce computational
costs. Furthermore, we note that the performance of a segmenta-
tion algorithm is dependent on the resolution scale. Later stages of-
ten process segmented images at different resolutions. Hence,
multiple algorithms have been developed for the same technical
component.

2.1. Data acquisition

2.1.1. Image acquisition and stitching
Six mouse placenta samples, three wild-type and three Rb�/�,

were collected at embryonic day 13.5. The samples were fixed in
formalin, paraffin-embedded, sectioned at 5-lm intervals and
stained using standard haematoxylin and eosin (H&E) protocols.
We obtained 500–1200 slides approximately for each placenta
specimen that were digitized using a Aperio ScanScope slide scan-
ner with 20� objective length and image resolution of 0.46 lm/
pixel. Digitized whole slides were acquired as uncompressed
stripes due to the constrained field-of-view of the sensor. The dig-
itization process also produces a metadata file that contains global
coordinates of the stripes and describes the extent of any overlap
with adjacent stripes. This file is used to reconstruct the digital file
of the whole slide from the stripes using a custom Java application
that we developed for this purpose.

2.1.2. Image re-sampling
Each serial section produces a digitized RGB format image with

dimensions approximately 16 K � 16 K pixel units. An entire set of
the placenta image stacks (each containing approximately 500–
1200 images) occupies more than three Terabytes (Tb) of data
storage. The processing of such large datasets is beyond the



Fig. 1. (a) A mouse placenta reconstructed in 3D with the described imaging workflow. (b) Zoomed placenta image showing the different tissue layers. The tissue between the
two thick black boundaries is the labyrinth tissue. The pocket area is an example of the infiltration (interdigitation) from the spongiotrophoblast layer to the labyrinth layer.
The cells in the left circle are glycogen cells.
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computational capability of most workstations, especially since
most imaging algorithms require the full image to be loaded into
memory. For certain tasks, it is convenient to down-sample images
by a factor of 2–10 depending on the algorithm and performance.
The down-sampling process employs linear interpolation to main-
tain continuity of the features.

2.2. Image preprocessing

2.2.1. Color correction
Digitized images of sectioned specimens usually exhibit large

staining variations across the stack. This occurs due to idiosyncra-
cies in the slide preparation process, including section thickness,
staining reagents and reagent application time. The process of col-
or correction seeks to provide similar color distributions (histo-
grams) in images from the same specimen. This process greatly
facilitates later processing steps, because consistent color profiles
narrow the range of parameter settings in algorithms. Color correc-
tion is accomplished by normalizing all images in a specimen to a
standard color histogram profile. The standard histogram is com-
puted from a manually pre-selected image with a color profile that
is representative of the whole image stack.
The color profiles are normalized using MATLAB’s Image Tool-
box histogram equalization function [22]. We ensure that pixels
representing foreground tissue alone participate in the color nor-
malization process. We developed an algorithm to identify fore-
ground tissue pixels from background by thresholding the image
in HSL (hue, saturation, and luminance) color space. The HSL color
space is less sensitive to intensity gradients within a single image
that result from light leakage near edges of glass slides.

2.2.2. Pixel-based color segmentation
Pixels in an H&E-stained image correspond to biologically sali-

ent structures, such as placental trophoblast, cytoplasm, nuclei,
and red blood cells. These different cellular components can be dif-
ferentiated based on color in each specimen, and the per-pixel clas-
sification result is used in image registration and segmentation.

A maximum likelihood estimation (MLE) algorithm is imple-
mented to classify the pixels into four classes in the RGB color
space: red blood cells, cytoplasm, nuclei, and background [15].
For simplicity, we assume that the histograms of the bands of data
have normal distributions. The a priori information related to the
four classes is learnt via the following training process. For the
image dataset of each placenta specimen (usually contains



Fig. 2. The imaging workflow for characterizing phenotypical changes in micros-
copy data. Components that involve manual intervention are identified.
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500–1200 images), one representative image is selected as train-
ing image (the same one used to normalize the color profile). A
custom-built application randomly selects pixels from the images,
displays patches of the training image centering at the selected
pixel and highlights the center pixels. The user then chooses
among the four classes and a pass option. This procedure provides
the training samples and their classifications from manual input.
The spatial locations and RGB triplet values are used as attributes
for these randomly selected pixels. The covariance matrices, mean
values and prior probability weights are then calculated for each
individual class. The maximum logarithmic probability rule is in-
voked to determine the final class membership. Here, the pixels
classified as background are from three possible sources. One
source is the white background of the images. In each image,
the foreground (the region corresponding to the specimen) is sur-
rounded by a large region of white background space. Therefore,
pixels in the largest region of background can be easily removed.
Another source of background pixels is the white space in the
blood vessels. Since most red blood cells are removed from the
blood vessel during the preparation of the slides, the regions cor-
responding to cross-sections of blood vessels usually appear in the
form of small white areas with a small number of red pixel clus-
ters (red blood cells). The pixels corresponding to the blood ves-
sels are important in determining the area of vasculature space
in the images. The third source of white pixels is the cytoplasm
areas for large cells such as giant cells in the spongiotrophoblast
layer and the glycogen cell clusters. An example of the pixel clas-
sification result is shown in Fig. 3. The classification results are
used in the subsequent stages based on requirements in classifica-
tion granularity.
2.3. Image registration

During the slide preparation process, a tissue section is
mounted with a random orientation on the glass slide. The section
remains displaced in orientation and offset from the previous
sliced section. The nature of physical slicing causes deformation
and non-linear shearing in the soft tissue. Image registration seeks
to compensate for the misalignment and deformation by aligning
pair-wise images optimally under pre-specified criteria. Hence, im-
age registration allows us to assemble a 3D volume from a stack of
images. In our study, we employ rigid and non-rigid registration
algorithms successively. While rigid registration provides the rota-
tion and translation needed to align adjacent images in a global
context, it also provides an excellent initialization for the deform-
able registration algorithm [1]. Non-rigid registration compensates
for local distortions in an image caused by tissue stretching, bend-
ing and shearing [22,24,26–29].

2.3.1. Rigid registration algorithms
Rigid registration methods involve the selection of three com-

ponents: the image similarity metric (cost function), the transfor-
mation space (domain), and the search strategy (optimization)
for an optimal transform. We present two algorithms for rigid reg-
istration. The first algorithm is used for reconstructing low-resolu-
tion mouse placenta images. The second algorithm is optimized for
higher resolution images.

2.3.1.1. Rigid registration via maximization of mutual informa-
tion. This algorithm exploits the fact that the placenta tissue has
an elongated oval shape. We carry out a principal component anal-
ysis of the foreground region to estimate the orientation of the pla-
centa tissue. This orientation information is used to initialize an
estimate of the rotation angle and centroid translation. After the
images are transformed into a common coordinate reference
frame, a maximum mutual information based registration algo-
rithm is carried out to refine the matching [12,23]. The algorithm
searches through the space of all possible rotation and translations
to maximize the mutual information between the two images.

MI based methods are effective in registering multi-modal
images where pixel intensities between images are not linearly
correlated. While the placenta images are acquired using the same
protocol, they have multimodal characteristics due to staining
variations and the occasional luminance gradients. Rigid body reg-
istration techniques requiring intrinsic point or surface-based
landmarks [41] and intramodal registration methods [42] that
relying on linear correlation of pixel values are inadequate under
these conditions.

It has been shown [43] that MI registration with multiresolu-
tion strategies can achieve similar robustness compared to direct
registration. Studholme and Hill [44] reported no loss in registra-
tion precision and significant computational speed-up when com-
paring different multiresolution strategies. We adopt the
multiresolution approach, using 3-level image pyramids. The im-
age magnifications used were 10�, 20�, and 50�. Optimal trans-
forms obtained from a lower magnification are scaled and used
as initialization for registration of the next higher magnification.
Registration is then performed on the images, potentially with dif-
ferent optimizer parameters, to refine the transforms. The process
is repeated for each magnification level to obtain the final trans-
forms. We note that at magnifications higher than 50�, the compu-
tation cost for registration outweighs the improvements in
accuracy. The details of the implementation can be found in [12].

2.3.1.2. Fast rigid registration using high-level features. This algo-
rithm segments out simple high-level features that correspond to
anatomical structures such as blood vessels using the color-based



Fig. 3. An example of the color segmentation. (a) A 200-by-200 pixels patch of the original image (down-sampled by four times for visualization purposes). (b) Segmented
background region. Most of the white background regions correspond to blood vessels. A small fraction of them (in the bottom left corner of the image) correspond to
cytoplasm regions for the large cells in the spongiotrophoblast layer. (c) Segmented cytoplasm region. (d) Segmented cell nuclei region. (e) Segmented red pixels corresp-
onding to the remaining red blood cells in the blood vessels.
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segmentation results in both images. Next, it matches the seg-
mented features across the two images based on similarity in areas
and shapes. Any two pairs of matched features can potentially be
used to compute rigid transformation between the two images.
The mismatched features are removed with a voting process,
which selects the most commonly derived rigid transformation
(rotational and translational) from the pairs of matched features.
This algorithm was implemented to register large images with high
speed [11].

2.3.2. Non-rigid registration
In our workflow, the rigidly registered image stack serves as in-

put for further refinement using non-rigid methods. In order to
visualize a small localized tissue microenvironment, non-rigid reg-
istration was conducted by manually selecting point features in
each slice of the microenvironment. While we obtained good qual-
ity visualizations, repeating this procedure is cumbersome and
forced us to consider automated techniques.

There are many previous studies on automatic non-rigid regis-
tration [45–48]. Johnson and Christensen present a hybrid land-
mark/intensity-based technique [45]. Arganda-Carreras et al.
present a method for automatic registration of histology sections
using Sobel transforms and segmentation contours [47]. Leung
and Malik et al. use the powerful cue of contour continuity to pro-
vide curvilinear groupings into region-based image segmentation
[48]. Our data does not, however, have well defined contours on
a slice by slice basis. Thus, contour based registration techniques
fail on our dataset.

In our approach, automated pair-wise non-rigid registration is
conducted by first identifying a series of matching points between
images. These points are used to derive a transformation by fitting
a non-linear function such as a thin-plate spline [26] or polynomial
functions [25,28]. We have developed an automatic procedure for
selecting matching points by searching for those with the maxi-
mum cross correlation of pixel neighborhoods around the feature
points [11].

Normally, feature points in an image are selected based on their
prominence. Our approach differs with the previous ones in that
we select points uniformly. For instance, we choose points that
are 200 pixels apart both vertically and horizontally. The variation
in a 31 � 31 pixels neighborhood centered at each sampled point is
analyzed. The selection of the neighborhood window size depends
on the resolution of the image so that a reasonable number of cells/
biological features are captured. Please note that we only retain
feature points belonging to the foreground tissue region. The
neighborhood window is transformed into the grayscale color
space and its variance is computed. We retain the selected point
as a feature point only when the variance of the neighboring win-
dow pixel intensity value is large enough (which implies a complex
neighborhood). The unique correspondence of a complex neighbor-
hood with a novel region in the next image is easy to determine.
On the other hand, regions with small intensity variance tend to
generate many matches and prone to false-positives. For example,
consider an extreme example in which a block of white space can
be matched to many other blocks of white spaces without knowing
the correct match. This step usually yields about 200 features
points that are uniformly distributed across the foreground of each
image.

In the second step, we rotate the window around the feature
point by the angle that is already computed in the rigid registration
procedure. This gives a template patch for initialization in the next
image. In the next image, a much larger neighborhood (e.g.,
100 � 100 pixels) is considered at the same location. A patch in this
larger neighborhood with the largest cross correlation with the
template patch from the first image is selected. The center of this
patch is designated as the matching feature point. The two steps
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together usually generate more than 100 matched feature points
between the two images. These points are then used as control
points to compute the non-linear transformation using the thin-
plate splines or polynomial transformations [25,28]. In this project,
we tested both six-degree polynomial transformations and piece-
wise affine transformations. The 3D reconstructions are similar in
both schemes while the piecewise affine transformation is easier
to compute and propagate across a stack of images. Fig. 4 shows
renderings of the placenta that were reconstructed using the rigid
and deformable registration algorithms. This approach is used to
generate high-resolution 3D reconstructions of the samples.

2.4. Image segmentation

In processing biological images, a common task is to segment
the images into regions corresponding to different tissue types.
For analysis of the mouse placenta, we segmented images into
three tissue types, labyrinth trophoblast, spongiotrophoblast,
and glycogen cells (a specialized derivative of the spongiotropho-
blast lineage). Each H&E-stained tissue type can be classified by
distinctive texture and color characteristics of cell nuclei and
cytoplasm and by presence of vacuoles and red blood cells. The
Fig. 4. Comparison of rigid and deformable registration algorithms. A stack of 25
images were registered using rigid registration algorithm (top) and non-rigid reg-
istration algorithm (bottom) and the 3D reconstruction results are rendered. The
frontal views show the cross-sections of the reconstructed model. The benefits of
using deformable registration algorithms are clearly visible in the frontal view of
the image stack cross-section. In the top frontal view which is the cross-section
of the rigid registered images, the structures are jaggy and discontinuous. In the
bottom frontal view, the results from the non-rigid (deformable) registration
algorithm display smooth and continuous structures.
segmentation algorithm, therefore, is based on object texture, col-
or, and shape.

The automatic segmentation of natural images based on texture
and color has been widely studied in computer vision [30–32].
Most segmentation algorithms contain two major components:
the image features and the classifier (or clustering method). Image
features include pixel intensity, color, shape, and spatial statistical
features for textures such as Haralick features and Gabor filters
[33,34]. A good set of image features can substantially ease the de-
sign of the classifier. Supervised classifiers are used when training
samples are available. Examples of such classifiers include Bayes-
ian classifier, K-nearest neighbor (KNN), and support vector ma-
chine (SVM). If no training example is available, unsupervised
clustering algorithms are needed. Examples of such algorithms
are K-means, generalized principal component analysis (GPCA)
[32], hierarchical clustering, and self-organizing maps (SOM). Ac-
tive contour algorithms, such as the level-set based ones
[35,37,39], can also be considered as an unsupervised method.

In our project, both manual and automatic segmentation pro-
cedures have been conducted on the image sets. For each pla-
centa, manual segmentation of the labyrinth layer was carried
out on ten images that are evenly spaced throughout the image
stack. These manually segmented images are used as the
ground-truth for training and testing the automatic segmentation
algorithms. In addition, manual segmentation allows for higher le-
vel of accuracy in the estimation of area of the labyrinth layer,
which also translates to more accurate volume estimates. How-
ever, manual segmentations are not feasible for the purpose of
visualizing the boundary between the labyrinth and the spongio-
trophoblast layers since it is impractical to manually segment all
the images. Instead, we adopted automatic segmentation for this
purpose.

2.4.1. New features for histological images
In histology-based microscopy images, there has been little

work on the automatic segmentation of different types of tissues
or cell clusters in histological images. Due to the complicated tis-
sue structure and large variance in biological samples, none of
the commonly used image segmentation algorithms that we have
tested can successfully distinguish the biological patterns in micro-
structure and organization [13]. To solve this problem, we de-
signed new segmentation algorithms. The idea was to treat each
tissue type as one type of heterogeneous biomaterial composed
of homogeneous microstructural components such as the red
blood cells, nuclei, white background and cytoplasm. The distribu-
tion and organization of these components determine the tissue
type. For such biomaterials, quantities such as multiple-point cor-
relation functions (especially the two-point correlation function)
can effectively characterize their statistical properties [36] and
thus serve as effective image features.

The two-point correlation function (TPCF) for a heterogeneous
material composed of two components is defined as the probabil-
ity that the end points of a random line with length l belong to the
same component. TPCF has been used in analyzing microstruc-
tures of materials and large images in astrophysics. However,
our study marks the first time that TPCF is introduced in charac-
terizing tissue structures in histological images. For materials
with more than two components, a feature vector replaces the
probability with each entry being the correlation function for that
component. In our work, the four components are cell nuclei,
cytoplasm, background, and red blood cells, which are obtained
through pixel classification in the preprocessing stage. In addition
to the two-point correlation function, three-point correlation
function and lineal-path function can also be similarly defined.
These functions form an excellent set of statistical features for
the images, as demonstrated in Section 3.
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2.4.2. Supervised classification
In addition to feature selection, another aspect of the segmenta-

tion problem is to select the classification procedure. In our project,
we selected the K-nearest neighbor (KNN) due to both its effective-
ness and easy implementation [14]. For each placenta specimen,
about 500–1200 serial images are generated. Due to the large var-
iation in morphology, intensity and cell distributions across the
different placenta datasets, the KNN classifier is trained on a per
placenta dataset basis prior to segmenting all the images.

Within each placenta dataset, 10 evenly spaced images were
selected from the stack. These 10 images were then manually
segmented by the pathologist. A representative image of the 2D
morphology for this placenta specimen was selected by the pathol-
ogist as the training sample from the set of 10 images. Image
patches of size 20-by-20 pixels were randomly generated and
labeled as labyrinth, spongiotrophoblast, glycogen cells or back-
ground. A patch lying on the boundaries remained ambiguous
and was not chosen into the training dataset. A total of 2200 re-
gions were selected from the image slide (800 for labyrinth, 800
for spongiotrophoblast, and 600 for the background) for training.
Please note that the color correction of the serial section stacks
(Section 2.1.2) allowed the tissue components to share similar
color distributions across the images and hence training based on
a representative slide was applicable throughout. The remaining
nine images were used for validation purposes as ground-truth.

2.4.3. Evaluation of the automatic segmentation algorithm
In our study, we found that automatic segmentation tends to

generate relatively large error in images obtained from the end re-
gions of the placenta slice sequence, which can bias the volume
estimation. However, for the mid-section of the sequence, auto-
mated segmentation provided a visually satisfactory boundary be-
tween the two layers of tissues. These tests were carried out in
three placentae with one control and two mutants. The observa-
tion is further confirmed by a quantitative evaluation process as
shown in Fig. 6. In the figure, the automatically segmented laby-
Fig. 5. Visualizing the interdigitation at the interface of the labyrinth and the spongio
detected pockets are colored using a heat map. Red regions indicate large pockets and y
rinth is overlaid on the manually segmented labyrinth tissue. For
all the manually segmented images, the error is measured as the
ratio between the area encircled by the two tissue boundaries
(manually and automatically generated boundaries) and the man-
ually segmented labyrinth area. For the three samples, the mean
errors are 6.6 ± 1.6%, 5.3 ± 3.3%, and 16.7 ± 7.4%. The two samples
(one control and one mutant) with mean error less than 8% are
then used for visualization. As shown in Fig. 6e and f, the discrep-
ancy between the two segmentation methods can be attributed to
two major factors: the use of a large sliding window in automatic
segmentation which leads to the ‘‘dilation effect”, and the discrep-
ancy in assigning the large white areas on the boundary. This white
region is actually the cross-section of a blood vessel at the bound-
ary of the labyrinth tissue layer and the spongiotrophoblast tissue
layer. The designation of such regions usually requires post-pro-
cessing based on explicit anatomical knowledge which is not incor-
porated in the current version of the automatic segmentation
algorithm.

2.5. Visualization in the 3D space

We are interested in quantifying the 3D finger-like infiltration
(referred as pockets) that occurs on the labyrinth–spongiotropho-
blast tissue interface of the mouse placenta (Fig. 5). The presence
of pockets has a direct correlation with surface morphological
parameters such as interface surface-area, convolutedness, and
the extent of tissue infiltration.

The registered stack of images is treated as volume data and
visualized using volumetric rendering techniques. In volumetric
rendering, a transfer function maps the feature value (e.g., pixel
intensity) to the rendered color and opacity values. It allows the
user to highlight or suppress certain values by adjusting the trans-
fer function. In our approach, we evolve a front in the close vicinity
of the target surface. The front initially represents a global shape of
the surface without pockets. As the front progresses towards the
target surface, it acquires the features on the surface and finally
trophoblast tissue layers in control (left) and mutant (right) mouse placenta. The
ellow regions indicate shallow pockets.



Fig. 6. Evaluation of the automatic segmentation algorithm. (a) The solid line is the manually marked boundary and the dashed line is the automatic segmentation result. The
boundary estimation error is defined as the ratio between the shaded area and the gray area. (b–d) Examples of images with boundary estimation errors being 2.5%, 8.4%, and
16.5%. The boundary is in the top portion of the image. The dark gray area is the manual segmentation result, and the light gray area is the automatic segmentation result. (e
and f) A larger view of the difference between manual segmentation (black) and automatic segmentation (white).

870 K. Mosaliganti et al. / Journal of Biomedical Informatics 41 (2008) 863–873
converges to it. This leads to a natural definition of feature size at a
point on the contour as the distance traveled by it from the initial
front to the target surface. Surface pockets have larger feature sizes
compared to the flat regions owing to the larger distances tra-
versed. Hence, they are suitably extracted. Fig. 5 shows the resul-
tant visualizations from a transfer function that highlights high
feature values implemented using the Visualization Toolkit (VTK)
from Kitware Inc. [38]. The details of the implementation can be
found in [49].

2.6. Quantification

Our application requires the quantitative testing of three
hypotheses regarding the morphological changes in mouse pla-
centa induced by the deletion of Rb. These hypothesized changes
include the increased surface complexity between the labyrinth
layer and the spongiotrophoblast layer, the reduced volume of
the labyrinth layer, and reduced vasculature space in the labyrinth
layer. Here, we describe the quantification processes for measuring
the three morphological parameters.

2.6.1. Characterizing the complexity of the tissue layer interface
Rb mutation increases the number of shallow interdigitations at

the interface of the spongiotrophoblast and the labyrinth tissue
layers. In order to quantify the increased interdigitation, we calcu-
late the number of pixels at the interface and the roughness of the
interfacial area between the two layers, based on the assumption
that increased interdigitation is manifested as increased area of
the interface and greater roughness. The number of pixels at the
interface is computed based on the image segmentation results.
In addition, given the fractal nature of the surface-area between
the two tissue layers, the boundary roughness is quantified by cal-
culating the Hausdorff dimension, a technique that is well-known
and commonly used in geological and material sciences for
describing the fractal complexity of the boundary [40]. Typically,
the higher the Hausdorff dimension, the more rough the boundary.
In order to calculate the Hausdorff dimension, we take the 2D seg-
mented image and overlay a series of uniform grids with cell size
ranging from 64 to 2 pixels. Next, we count the number of grid cells
that lie at the interface of the two tissue layers. If we denote the
cell size of the grids as e and the number of grid cells used to cover
the boundary as N(e). Then the Hausdorff dimension d can be com-
puted as

d ¼ �lime!0ðlnðNðeÞÞ=lnðeÞÞ:

In practice, d is estimated as the negated slope of the log–log curve
for N(e) versus e.

2.6.2. Estimating the volumes of the labyrinth tissue layer in mouse
placentae

The volume of the labyrinth is estimated using an approach
analogous to the Riemann Sum approximation for integration in
calculus. The labyrinth volume for a slice is computed from the
pixel count of the labyrinth mask obtained from the 2D segmenta-
tion, the 2D pixel dimensions, and section thickness. The labyrinth
volume is accumulated across all serial sections in a dataset to ob-
tain an approximation of the total labyrinth volume.

2.6.3. Estimating the vascularity in the labyrinth tissue layer
The vascularity of the labyrinth is estimated by the ratio of total

blood space volume to total labyrinth volume, which is referred to
as intravascular space fraction. The estimation of total labyrinth



Fig. 7. Intravascular space fraction estimation. The intravascular space fraction is
measured for each sample in ten manually segmented images. The mean and
standard deviation of the measurement are presented here.
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volume is described in the above section. The total blood space is
calculated by counting all pixels previously classified as red blood
cell pixels or as background pixels within the labyrinth tissue. The
labyrinth mask generated by the segmentation step is used to iden-
tify the background pixel in the second case. The intravascular
space fraction is then computed.

3. Results: a case study on the effects of Rb deletion in
placental morphology

3.1. Manual and automated stages

Whole slide imaging for histology and cytology usually involves
a large amount of data and is typically not suitable for manual
annotation. Three-dimensional processing of serial sections further
motivates the need for automation of different stages in the work-
flow. However, biological systems are characterized by a high inci-
dence of exceptions, and these are especially evident in systems
with high-level of detail such as microscopic imaging. Human
intervention and semi-automated approaches are often essential
components in image analysis workflows. The manual components
are identified in the schematic representation shown in Fig. 2.

3.2. Results

The last stage of the workflow discussed in Section 2 generates
results for the application—namely quantified parameters and
visualizations. For this project, the quantification is focused on
testing the three hypotheses about the effects of Rb deletion in pla-
cental morphology, namely reduced volumes of the placental lab-
yrinth layer (Section 3.2.3), decreased vasculature space in the
labyrinth layer (Section 3.2.4), and increased roughness of the
boundary between the labyrinth and spongiotrophoblast layers
(Sections 3.2.1 and 3.2.2).

3.2.1. Reconstruction and visualization in 3D
Fig. 5 shows the final reconstructed mouse placenta using rigid

registration results. Different tissues are highlighted by incorporat-
ing the segmentation results in the transfer function adjustment
during volumetric rendering. Earlier, in Section 2.5, we mentioned
about the 3D finger-like infiltration that occurs on the labyrinth–
spongiotrophoblast tissue interface of the mouse placenta. The
presence of pockets has a direct correlation with surface morpho-
logical parameters such as interface surface-area, convolutedness
and the extent of tissue infiltration. We automatically detect pock-
ets using a level-set based pocket detection approach to determine
a pocket size feature measure along the interface [16]. The bottom
section of the figure shows the infiltration structure in detail by
using these feature measurements in the transfer function. The
resulting visualization reveals extensive shallow interdigitation
in mutant placenta in contrast with fewer but larger interdigita-
tions in the control specimen. These observations are quantita-
tively verified by calculating the fractal dimension.

3.2.2. Quantifying complexity of the tissue interface
We first computed the number of pixels at the interface

between the two tissue layers in littermates. The number of inter-
face pixels for the controls are 1738 and 2374 (in the images
down-sampled by 20 times to save computational cost for the
image segmentation algorithm) while the interface pixels for the
corresponding mutants are 3413 and 4210, respectively. Therefore
in both cases, the numbers of interface pixels are almost doubled in
mutants than in controls. However, the result for computing the
Hausdorff dimension is not as significant. Among the three pairs
of littermates, the increase in the Hausdorff dimensions in mutants
comparing to the controls are only 3%, 2.5%, and 0.5% when the grid
cell sizes between 2 and 64 pixels are used. However, in the
mutant placenta, the number of grid cells of size no more than
8 pixels that lie on the interface layer is significantly increased.
This suggests that most of the disruption at the interface is due
to small shallow interdigitations which are difficult to be charac-
terized using fractal dimensions. This observation supports our re-
sult determined in Section 3.2.1 above on surface pockets.
Available work in the literature have also reported difficulty in
computing fractal dimensions [1].

3.2.3. Volume of labyrinth tissue layer estimation
The volume of the labyrinth tissue layer for each specimen was

estimated by summing the areas of the labyrinth layer in each of
the ten manually segmented images then multiplying by the dis-
tance between consecutive images. This method gives a first order
approximation of the labyrinth layer volume. The estimated vol-
umes of the labyrinth layer for the three control mice are 11.0,
9.0, and 12.8 mm3. While the measurements for their correspond-
ing littermates are 7.9, 8.2, and 9.3 mm3. A consistent reduction
of labyrinth layer volume in the range of 9–28% is, therefore,
observed for the three pairs of littermates.

3.2.4. Intravascular space fraction estimation
The intravascular space fraction is estimated by combining the

color segmentation and image segmentation results. We compute
the percentage of white and red pixels in the segmented labyrinth
layers. As shown in Fig. 7, for all three pairs of mutant and control
samples, significant decrease in intravascular space fraction is
observed.

The reduction in the volume and the intravascular space of the
labyrinth layer in the mouse placenta is consistent with our
hypothesis that Rb deletion causes significant morphological dis-
ruption in mouse placenta which negatively affects fetal
development.

4. Conclusion and discussion

In this paper, we presented an imaging workflow for recon-
structing and analyzing large sets of microscopy images in the
3D space. The goal of this work is to develop a new phenotyping
tool for quantitatively studying sample morphology at tissue and
cell level. We developed a set of algorithms that include the major
components of the workflow using a mouse placenta morphology
study as a driving application. This workflow is designed to
acquire, reconstruct, analyze, and visualize high-resolution light
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microscopy data obtained from a whole mouse placenta. It allows
the researchers to quantitatively assess important morphological
parameters such as tissue volume and surface complexity on a
microscopic scale. In addition, it has a strong visualization compo-
nent that allows the researcher to explore complicated 3D struc-
tures at cellular and tissue levels. Using the workflow, we
analyzed six placenta including three controls and three Rb�/�

mutant with gene knockout and quantitatively validated the
hypotheses relating to Rb in placenta development [10]. Analysis
of placenta indicated that Rb mutant placenta exhibit global dis-
ruption of architecture, marked by an increase in trophoblast pro-
liferation, a decrease in labyrinth and vascular volumes, and
disorganization of the labyrinth–spongiotrophoblast interface.
The analytical results are consistent with previously observed
impairment in placental transport function [8,10]. These observa-
tions include an increase in shallow finger-like interdigitations of
spongiotrophoblast that fail to properly invade the labyrinth and
clustering of labyrinth trophoblasts that was confirmed with the
3D visualization. Due to the intricacy of carrying out experiments
with transgenetic animals, we had only a small number of placenta
samples which just satisfied the basic statistical requirement.
However, the consistent changes in placental morphology we have
obtained from large scale image analysis and visualization provide
strong evidence to support our hypothesis.

One of the major challenges we faced in the process of workflow
development was to strike a good balance between automation
and manual work. On one hand, large data size forced us to develop
automatic methods to batch process the images. On the other
hand, large variations in the images required us to take several
manual steps to circumvent the technical difficulties and achieve
more flexibility. While this work was largely driven by the mouse
placenta study, it is subsequently applied to process other data sets
including our ongoing work in phenotyping the mouse breast
tumor microenvironment. Other directions include developing a
parallel processing framework for handling images in their original
high-resolution and a middleware system to support the execution
of the workflow on multiple platforms, improving the accuracy of
the image segmentation algorithm to obtain higher accuracy and
better time performance, and extending the image registration
algorithm to deal with images from slides stained with different
staining techniques (e.g., H&E versus immunohistochemical stain-
ing) so that we can map molecular expression to different types of
cells.
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