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Abstract

In this paper, we derive approximations and bounds for the Esscher price of European-style arithmetic and
geometric average options. The asset price process is assumed to be of exponential L+evy type with normal
inverse Gaussian (NIG) distributed log-returns. Numerical illustrations of the accuracy of these bounds as well
as approximations and comparisons of the NIG average option prices with the corresponding Black–Scholes
prices are given.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years it has been realized that distributions of logarithmic asset returns can often be
Atted extremely well by normal inverse Gaussian (NIG) distributions (see e.g. [3,4,23,24]). It is
therefore of particular interest to study stochastic process models for stock prices and asset returns
that capture this property. For a general survey on stochastic processes of normal inverse Gaussian
type, we refer to BarndorE-Nielsen [5].

As a member of the family of generalized hyperbolic (GH) distributions, the normal inverse
Gaussian distribution is inAnitely divisible and thus generates a L+evy process (Zt)t¿0, which gives
rise to the following exponential L+evy model (see e.g. [11]). By setting

St = S0 exp(Zt);
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where (St)t¿0 denotes the asset price process over time, the log-returns of this model produce exactly
a normal inverse Gaussian distribution. (St)t¿0 is again a L+evy process. The applicability of such a
L+evy model in practice is e.g. discussed in Geman [12].
Since this market model is incomplete (cf. [7]), there are many candidates of equivalent martingale

measures for risk-neutral valuation of derivative securities. One mathematically tractable choice is
the so-called Esscher equivalent measure, a concept which was introduced to mathematical Anance
by Madan and Milne [20]; see also Gerber and Shiu [13]. This particular choice of the pricing
measure can be justiAed both within utility and equilibrium theory (cf. [6,14,15]).

In this paper we observe that the Esscher equivalent measure in the NIG model has a particularly
simple structure and we exploit this property in various ways to obtain easy computable approxima-
tions and bounds for the Esscher price of arithmetic and geometric average options. For that purpose
we adapt several techniques developed for the Black–Scholes setting to our situation.

In Section 2 we introduce various properties of the normal inverse Gaussian distribution needed for
the development of the NIG asset price model and the derivation of the Esscher equivalent measure
in Section 3. Section 4 uses the notion of stop-loss transforms, which is well-known to actuaries,
to obtain upper bounds for arithmetic average option Esscher prices. Two approximation techniques
for arithmetic average option prices are developed in Section 5. Section 6 contains approximation
methods for geometric average rate options and gives bounds for the arithmetic average option
prices in terms of the geometric price. Finally, in Section 7 we give numerical illustrations of these
bounds and approximations and also compare the Asian Esscher option prices in the NIG model
with the corresponding prices in the Black–Scholes world showing signiAcant price diEerences, which
indicates that a careful choice of the asset price model is an important issue in practice.

2. The normal inverse Gaussian distribution

The normal inverse Gaussian distribution is deAned by the density

fNIG(�;�;�;	)(x) = fNIG(x) = c exp(�(x − 	))
K1(�

√
�2 + (x − 	)2)√

�2 + (x − 	)2
(1)

with 06 |�|6 �, �¿ 0, 	∈R and

c =
��


exp(�
√
�2 − �2):

Here K1(x) denotes the modiAed Bessel function of the third kind of order 1. In general, for a real
number �, the function K�(x) satisAes the diEerential equation

x2y′′ + xy′ − (x2 + �2)y = 0:

(cf. [1]). The moment generating function of (1) is given by

MNIG(u) = exp(�(
√
�2 − �2 −

√
�2 − (� + u)2) + 	u)

from which one can deduce the following important convolution property:

fNIG(�;�;�1 ;	1) ∗ fNIG(�;�;�2 ;	2) = fNIG(�;�;�1+�2 ;	1+	2): (2)
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The NIG distribution is the special case �=− 1
2 of the generalized hyperbolic distribution given by

the density

fGH(x) =
��√

2�2�−1�2�K�(�)
e�(x−	)�(x)�−1=2K�−1=2(�(x));

with �= �
√
�2 − �2 and �(x) = �

√
�2 + (x − 	)2, which was introduced by BarndorE–Nielsen [2].

3. The NIG L�evy asset price model

As already mentioned in the introduction, the NIG distribution is inAnitely divisible and hence
generates a L+evy process (Zt)t¿0 (i.e. a stochastic process with stationary and independent incre-
ments, Z0 = 0 a.s. and Z1 is NIG-distributed; from the convolution property (2) it follows that the
increments are NIG-distributed for arbitrary time intervals).

Let now St for t¿ 0 denote the price of a nondividend-paying stock at time t and consider the
following dynamics for the stock price process (see [9])

dSt = St−(dZt + eMZt − 1 − MZt); (3)

where (Zt)t¿0 denotes the NIG L+evy motion, Zt− the left hand limit of the path at time t and
MZt = Zt − Zt− the jump at time t. Then, the solution of the stochastic diEerential equation (3) is
given by

St = S0 exp(Zt)

and it follows that the log-returns ln(St=St−1) are indeed NIG-distributed.
Since our aim is the risk-neutral valuation of derivative securities in this model and since the

model is incomplete, we have to choose an equivalent martingale measure. In this paper we choose
the method of Esscher transforms to And such a measure. This approach is applicable, whenever
the stochastic process (Zt)t¿0 has stationary and independent increments (see [10,13]). Apart from
its mathematical simplicity, this particular choice can also be economically justiAed (see [21] for a
survey on this issue).

From (2) it follows that the density of Zt is given by

f∗t
NIG(x) = fNIG(�;�; t�; t	)(x):

For a real number � let us consider the Esscher transform

f∗t
NIG(x; �) =

e�xf∗t
NIG(x)∫∞

−∞ e�yf∗t
NIG(y) dy

=
e�x

MNIG(�)t
f∗t
NIG(x); (4)

of the one-dimensional marginal distributions f∗t
NIG(x) of (Zt)t¿0. For any L+evy process (Zt)t¿0 (on

some Altered probability space (�;F; (Ft)t∈R+ ;P)) it is now possible to deAne a locally equivalent
probability measure P� through

dP� = exp(�Zt − t logMNIG(�)) dP;
such that (Z�t )t¿0 deAned on (�;F; (Ft)t∈R+ ;P�) is again a L+evy process and the one-dimensional
marginal distributions of (Z�t )t¿0 are the Esscher transforms of the corresponding marginals of
(Zt)t¿0 (see e.g. [22]). P� is called the Esscher equivalent measure.



156 H. Albrecher, M. Predota / Journal of Computational and Applied Mathematics 172 (2004) 153–168

The parameter � can now be chosen in such a way, that the discounted stock price process
(e−rtSt)t¿0 is a P�-martingale, namely if � is the (unique) solution of

r = 	 + �(
√
�2 − (� + �)2 −

√
�2 − (� + �+ 1)2); (5)

which can be derived explicitly. Here r is the constant daily interest rate. For further details
concerning the construction of the Esscher equivalent martingale measure we refer to Gerber and
Shiu [13].

The following observation will substantially simplify the calculation of Esscher prices in the NIG
model:

Lemma 1. The Esscher transform of a NIG-distributed random variable is again NIG-distributed.
In particular,

fNIG(�;�;�;	)(x; �) = fNIG(�;�+�;�;	)(x): (6)

Proof. From

fNIG(�;�;�;	)(x; �) =
e�x

MNIG(�)
��


exp(�
√
�2 − �2 + �(x − 	))

K1(�
√
�2 + (x − 	)2)√

�2 + (x − 	)2

=
��


e�	+�
√
�2−�2−�

√
�2−(�+�)2

MNIG(�)
e�

√
�2−(�+�)2+(�+�)(x−	) K1(�

√
�2 + (x − 	)2)√

�2 + (x − 	)2

it follows that we have to prove∫ ∞

−∞
e�x
��


e�
√
�2−�2+�(x−	) K1(�

√
�2 + (x − 	)2)√

�2 + (x − 	)2
dx = e�	+�

√
�2−�2−�

√
�2−(�+�)2 ;

which is equivalent to∫ ∞

−∞
��


exp(�
√
�2 − (� + �)2 + (� + �)(x − 	))

K1(�
√
�2 + (x − 	)2)√

�2 + (x − 	)2
= 1: (7)

But Eq. (7) holds for |� + �|¡� and the latter condition is always satisAed due to the choice of
the Esscher optimal � as the solution of (5).

As a Arst example, the value at time t of a European call option with exercise price K and maturity
T can be represented by a simple analytical expression: From ECt = E�[e−r(T−t)(ST −K)+ |Ft] and
Lemma 1 it follows that

ECt = St

∫ ∞

k
fNIG(�;�+�+1; (T−t)�; (T−t)	)(x) dx − e−r(T−t)K

∫ ∞

k
fNIG(�;�+�; (T−t)�; (T−t)	)(x) dx

(8)

with k = ln(K=St). This value can be computed numerically.
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4. Stop-loss transforms and upper bounds for arithmetic average options

We will now focus on the evaluation of the Esscher price of a European-style arithmetic average
call option at time t given by

AAt =
e−r(T−t)

n
E�


(
n−1∑
k=0

ST−k − nK

)+
∣∣∣∣∣∣ Ft


 ; (9)

where n is the number of averaging days, K the strike price, T the time to expiration and r the
risk-free interest rate.

The main diOculty here is to And the distribution of
∑
Si, which is a sum of dependent random

variables. Simon et al. [25] recently derived upper bounds for the price of an arithmetic average
option in an arbitrage-free and complete market by means of stop-loss transforms and the theory of
comonotone risks. In the sequel we will adapt their technique to the NIG model.

Let F(x) be a distribution function with support D ⊆ R+, then its stop-loss transform !F(r) is
deAned by

!F(r) =
∫
[r;∞)∩D

(x − r) dF(x):

A stop-loss ordering of distribution functions F(x) and G(x) with support in R+ can now be deAned
in the following way: F(x) is said to precede G(x) in stop-loss order (F6sl G), if

!F(r)6!G(r) for all r ∈R+:

Next, we can rewrite the price of the arithmetic average option given by (9) to

AAt =
e−r(T−t)

n
!FsAn(T )

(nK) (10)

for a given value St = s with FsAn(T ) = P
�(An(T )6 x|St = s), where

An(T ) =
n−1∑
k=0

ST−k :

In this way we have transformed the problem of pricing an arithmetic average option to calculating
the stop-loss transform of a sum of dependent risks. Hence we can apply results on bounds for
stop-loss transforms to our option pricing problem.

A positive random vector (X1; : : : ; Xn) with marginal distributions F1(x1); : : : ; Fn(xn) is called
comonotone, if FX1 ;:::;Xn(x1; : : : ; xn) = min{F1(x1); : : : ; Fn(xn)} holds for every x1; : : : ; xn¿ 0. It
immediately follows that a comonotone random vector (X1; : : : ; Xn) with given marginal distribu-
tions F1(x1); : : : ; Fn(xn) is uniquely determined. It can easily be shown (see e.g. [8]) that an up-
per bound for the stop-loss transform of a sum of dependent random variables

∑n
k=1 Xk with

marginal distributions F1(x1); : : : ; Fn(xn) is now given by the stop-loss transform of the sum
∑n

k=1 Yk ,
where (Y1; : : : ; Yn) is the comonotone random vector with marginal distributions F1(x1); : : : ; Fn(xn),
i.e.

∑n
k=1 Xk6sl

∑n
k=1 Yk . Let us deAne FR(x) := P�

(∑n
k=1 Yk6 x

)
, then we have ([8])

F−1
R (x) =

n∑
k=1

F−1
k (x) for each x∈R+
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and

!FR(x) =
n∑
k=1

!Fk (F
−1
k (FR(x))) for each x∈R+:

Hence this upper bound of the arithmetic average option price can be viewed as a sum of prices of
European call options with strike prices F−1

k (FR(x)). The following proposition is an adaption of the
result of Simon et al. [25] to our situation. Let in the sequel F(x2; t2; x1; t1) denote the conditional
distribution function of St2 under the equivalent Esscher martingale measure P� given St1 = x1, i.e.

F(x2; t2; x1; t1) =P�(St2 6 x2|St1 = x1)

=P�
(
Zt2−t1 6 ln

x2
St1

)

=
∫ ln(x2=St1 )

−∞
fNIG(�;�+�; (t2−t1)�;(t2−t1)	)(z) dz; t2¿ t1:

Proposition 1 (Simon et al. [25]). Let k∗ be such that T − k∗6 t ¡T − k∗ + 1 and Kj = nK −∑n−1
k=j ST−k for j¡n, Kn = nK . Let AAt be the price of an arithmetic average option at time t

as given in (9) and let furthermore ECt(*k; T − k) be the price of a European option with strike
price *k and time to expiration T − k. Then we have for Kk∗ ¿ 0

AAt6
e−r(T−t)

n

k∗−1∑
k=0

!F(·; T−k; s; t)(*k) =
1
n

k∗−1∑
k=0

e−krECt(*k; T − k); (11)

where

*k = F−1(FR(Kk∗); T − k; s; t); k = 0; : : : ; k∗: (12)

Moreover, this choice of the strike prices *k is best possible.
In case Kk∗ 6 0, we have

AAt =
St
n

k∗−1∑
k=0

e−kr +
e−r(T−t)

n

n−1∑
k=k∗

ST−k − e−r(T−t)K:

Proposition 1 shows (for Kk∗ ¿ 0) that the price of an arithmetic average option is bounded from
above by the price of a portfolio of time-delayed European-style call options with exercise prices
*k , and this bound is optimized by the above choice of *k .
In order to obtain a bound for the arithmetic average option price we thus have to calculate k∗

strike prices *k using (12) and then evaluate (11) using (8). A numerical illustration of the accuracy
of these bounds is given in Section 7.

5. Two approximations for the distribution of the arithmetic mean

In this section we study approximations of the arithmetic option price (9) by means of Edgeworth
series expansions. For notational simplicity we will assume t=0 and n=T in (9), i.e. the averaging
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starts at time t = 1 and we determine the price at time t = 0

AA0 =
e−rT

n
E�
[(

n∑
k=1

Sk − nK

)+∣∣∣∣∣F0

]
: (13)

The extension to the general case is straightforward. Recall that the cumulants of a random variable
X with distribution function F are deAned by

,i(F) =
[
9i ln E[etX ]

9ti

]
t=0

; i = 1; 2; : : :

and can also be expressed in terms of moments. For the Arst four cumulants we have

,1(F) = E[X ];

,2(F) = E[(X − E[X ])2];
,3(F) = E[(X − E[X ])3];
,4(F) = E[(X − E[X ])4] − 3,22(F):

In the sequel we will make use of the following classical result:

Lemma 2 (Jarrow and Rudd [17]): Let F and G be two continuous distribution functions with
G ∈C5 and ,1(F)=,1(G), and assume that the 9rst 9ve moments of both distributions exist. Then
we can expand the density f(x) in terms of the density g(x) as follows

f(x) = g(x) +
,2(F) − ,2(G)

2
92g
9x2 (x) − ,3(F) − ,3(G)

3!
93g
9x3 (x)

+
,4(F) − ,4(G) + 3(,2(F) − ,2(G))2

4!
94g
9x4 (x) + .(x);

where .(x) is a residual error term.

We will now approximate the distribution function of
∑n

k=1 Sk (which we denote by F) by
a lognormal distribution G (see [19,26] for a similar procedure in the Black–Scholes case). The
density of the lognormal distribution is given by

g(x) = fLN(x) =
1

/
√
2x

exp
(

− (ln x − 	)2

2/2

)
,(0;∞)(x):

Let us deAne

Ri =
Si
Si−1

; i = 1; : : : ; n:

and

Ln = 1

Li−1 = 1 + RiLi; i = 2; : : : ; n:
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Then we have

n∑
k=1

Sk = S0(R1 + R1R2 + · · · + R1R2 : : : Rn) = S0R1L1:

Since we can rewrite equation Eq. (13) to

AA0 =
e−rT S0
n

E�
[(
R1L1 − nK

S0

)+∣∣∣∣F0

]
;

it remains to determine E�[(R1L1)m] for m=1; 2; 3; 4. Because of the independent increments property
of a L+evy process, we have E�[(R1L1)m] = E�[Rm1 ]E�[Lm1 ] and

E�[Lmi−1] = E�[(1 + LiRi)m] =
m∑
k=0

(
m

k

)
E�[Lki ]E�[Rki ]: (14)

In order to apply recursion (14), we need to determine the moments E�[Rki ]:

Lemma 3. For all k ∈N we have

E�[Rki ] = exp(�(
√
�2 − (� + �)2 −

√
�2 − (� + �+ k)2) + k	): (15)

Proof. Since Ri is log-NIG distributed (namely Ri
d∼LNIG(�; � + �; �; 	)), the result follows from

E�[Rki ] =
∫ ∞

0
xk
��
x

exp(�
√
�2 − (� + �)2 + (� + �)(ln x − 	))

K1(�
√
�2 + (ln x − 	)2)√

�2 + (ln x − 	)2
dx

=
∫ ∞

0
euk

��


exp(�
√
�2 − (� + �)2 + (� + �)(u− 	))

K1(�
√
�2 + (u− 	)2)√

�2 + (u− 	)2
du

=MNIG(�;�+�;�;	)(k):

The moments E�[Lm1 ] (m=1; 2; 3; 4) and subsequently the cumulants ,i(F) can now be calculated
recursively using (14), (15) and the fact that E�[Lkn] = 1 for all k ∈ {0; : : : ; m}. The parameters of
the approximating lognormal distribution are chosen in such a way that the Arst two moments of
the approximating log-normal and the original distribution coincide (a so-called Wilkinson approxi-
mation):

	̃ = 2 ln(,1(F)) − 1
2 ln(,

2
1(F) + ,2(F))

/̃2 = ln(,21(F) + ,2(F)) − 2 ln(,1(F)):

In this way we have derived a lognormal approximation pricing formula for an arithmetic average
option in the NIG model, which we call the Turnbull–Wakeman price AATW

0 at time t = 0.
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Proposition 2. The price at time 0 of a European-style arithmetic average option in the NIG model
with maturity T and strike price K is

AATW
0 = e−rT S0

n

(
e	̃+(/̃2=2)2

(
	̃ + /̃2 − ln(nK=S0)

/̃

)
− nK

S0
2
(
	̃ − ln(nK=S0)

/̃

))

−e−rT S0
n

(
,3(F) − ,3(G)

3!
9g(nK=S0)

9x +
,4(F) − ,4(G)

4!
92g(nK=S0)

9x2

)

If only the Arst two cumulants are considered, we call the corresponding approximation the Levy
price AAL

0 given by

AAL
0 = e−rT S0

n

(
e	̃+

/̃2

2 2
(
	̃ + /̃2 − ln nK=S0

/̃

)
− nK

S0
2
(
	̃ − ln nK=S0

/̃

))
:

Another possibility is to approximate the arithmetic average
∑n

k=1 Sk by a NIG distribution by
matching the Arst four moments. Since the cumulants of a NIG(�; �; �; 	)-distributed random variable
H are given by

,1(H) = 	 +
��

(�2 − �2)1=2
;

,2(H) =
�2�

(�2 − �2)3=2
;

,3(H) =
3�2��

(�2 − �2)5=2
;

,4(H) =
3�2�(�2 + 4�2)
(�2 − �2)7=2

;

the parameters �̃; �̃; �̃ and 	̃ of the approximating NIG distribution are the solution of the equation
system ,k(H) = ,k(F) for k = 1; : : : ; 4, where F again denotes the distribution function of

∑n
k=1 Sk .

This leads to

�̃ =
3,2(F),3(F)

3,2(F),4(F) − 5(,3(F))2
;

�̃2 =
3,2(F)�̃
,3(F)

+ �̃2;

�̃=
,2(F)(�̃2 − �̃2)3=2

�̃2
;

	̃ = ,1(F) − �̃�̃

(�̃2 − �̃2)1=2
:
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Finally, the option price is given by

AANIG
0 = e−rT S0

n

∫ ∞

d
(x − d)fNIG(�̃; �̃; �̃; 	̃)(x) dx with d= nK=S0:

This value can be calculated numerically (see Section 7 for a numerical example).

6. Arithmetic and geometric average options

Let us consider a geometric average option with Esscher price given by

GA0 = e−rT E�[(GT − K)+|F0]; (16)

where GT = (
∏n
k=1 Sk)

1=n and K denotes the strike price. Again, we have chosen t = 0 and n = T
(the generalization to arbitrary t¿ 0 and arbitrary starting times of the averaging period is straight-
forward). Taking the logarithm of GT , we get

lnGT =
1
n

n∑
k=1

ln Sk = ln S0 +
1
n

n∑
k=1

ln
Sk
S0
;

which can also be written as

lnGT = ln S0 +
1
n

(
n ln

S1
S0

+ (n− 1) ln
S2
S1

+ · · · + ln
Sn
Sn−1

)

and hence we have

lnGT = ln S0 + X1 +
n− 1
n

X2 + : : :+
1
n
Xn

with Xk
iid∼NIG. Unfortunately, the distribution of lnGT is not NIG anymore. However, we will

approximate it by a NIG distribution. For that purpose, we determine the cumulants:

,1(lnGT ) = ln S0 +
(n+ 1)

2
,1(X1);

,2(lnGT ) =
1
n2
,2(X1)

(
1
3
(n+ 1)3 − 1

2
(n+ 1)2 +

1
6
(n+ 1)

)
;

,3(lnGT ) =
1
n3
,3(X1)

(
1
4
(n+ 1)4 − 1

2
(n+ 1)3 +

1
4
(n+ 1)2

)
;

,4(lnGT ) =
1
n4
,4(X1)

(
1
5
(n+ 1)5 − 1

2
(n+ 1)4 +

1
3
(n+ 1)3 − 1

30
(n+ 1)

)
:

As above, the parameters �∗; �∗; �∗; 	∗ of the approximating NIG distribution X can be obtained by
solving the system of equations ,k(X )=,k(lnGT ) (k=1; : : : ; 4). Then, the price of a European-style
geometric average option at time 0, where the distribution of lnGT is approximated by the NIG
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Table 1
Comparison of simulated Asian option prices and the SL upper bound of Section 4

Stock T r K EC0 AAMC
0 SL upper bound Rel. error (%)

Bayer 10 0.1 34 2.1574 2.0729 (±0.0016) 2.0759 0.14
(S0 = 36) 35 1.2622 1.1059 (±0.0014) 1.1246 1.69

36 0.5849 0.3505 (±0.0010) 0.3924 11.95
37 0.1980 0.0539 (±0.0004) 0.0796 47.68

0.05 34 2.0946 2.0376 (±0.0015) 2.0409 0.16
35 1.2061 1.0718 (±0.0014) 1.0921 1.89
36 0.5396 0.3298 (±0.0010) 0.3723 12.89
37 0.1795 0.0487 (±0.0004) 0.0728 49.49

20 0.1 34 2.3508 2.1435 (±0.0021) 2.1532 0.45
35 1.5210 1.2174 (±0.0019) 1.2549 3.08
36 0.8771 0.5047 (±0.0014) 0.5731 13.55
37 0.4284 0.1399 (±0.0008) 0.1891 35.17

0.05 34 2.2306 2.0787 (±0.0021) 2.0909 0.59
35 1.4173 1.1577 (±0.0019) 1.1976 3.45
36 0.7894 0.4648 (±0.0013) 0.5270 13.38
37 0.3796 0.1237 (±0.0007) 0.1705 37.83

NYSE C.I. 10 0.1 47 3.1885 3.0983 (±0.0013) 3.0984 0.00
(S0 = 50) 48.5 1.7191 1.6061 (±0.0013) 1.6107 0.29

50 0.5181 0.3114 (±0.0008) 0.3455 10.95
20 47 3.3807 3.1841 (±0.0017) 3.1852 0.04

48.5 1.9558 1.7086 (±0.0017) 1.7149 0.37
50 0.8044 0.4610 (±0.0011) 0.5179 12.34

distribution, is given by

GANIG
0 = e−rT

∫ ∞

K
(x − K)fLNIG(�∗ ; �∗ ; �∗ ; 	∗)(x) dx: (17)

This value can be calculated numerically.
Next, we derive bounds for AA0 using approximation (17) for the geometric average option price.

Since the geometric average is always less or equal the arithmetic average, we have

GA0 = e−rTE�[(GT − K)+|F0]6 e−rTE�[(AT − K)+|F0] = AA0;

where AT = 1=n
∑n

k=1 Sk . Following Vorst [27], a straightforward upper bound for AA0 can be
derived using

(AT − K)+ = max{GT − K;GT − AT} + AT − GT6 (GT − K)+ + AT − GT ;

which implies AA06 e−rTE�[(GT − K)+ + AT − GT |F0] and thus the upper bound

AA06GA0 + e−rT (E�[AT |F0] − E�[GT |F0])= : AAU
0 : (18)

The expected value E�[AT |F0] = S0=nE�[R1L1] in (18) can be calculated by recursion (14), and
E�[GT |F0] ≈ MNIG(�∗ ; �∗ ; �∗ ; 	∗)(1), since lnGT is approximated by a NIG distribution (cf. Lemma 3).
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Table 2
Comparison of simulated Asian option prices and approximations of Section 5

Stock T r K AAMC
0 AAL

0 r.e. (%) AATW
0 r.e. (%) AANIG

0 r.e. (%)

Bayer 10 0.1 34 2.0729 2.0719 0.05 2.0732 0.02 2.0728 0.01
(S0 = 36) 35 1.1059 1.1054 0.05 1.1055 0.04 1.1056 0.03

36 0.3505 0.3577 2.05 0.3487 0.51 0.3498 0.20
37 0.0539 0.0510 5.38 0.0555 2.97 0.0543 0.74

0.05 34 2.0376 2.0366 0.05 2.0381 0.02 2.0377 0.01
35 1.0718 1.0712 0.06 1.0717 0.01 1.0719 0.01
36 0.3298 0.3367 2.09 0.3282 0.49 0.3292 0.18
37 0.0487 0.0459 5.75 0.0499 2.46 0.0489 0.41

20 0.1 34 2.1435 2.1427 0.04 2.1440 0.02 2.1435 0.00
35 1.2174 1.2197 0.19 1.2164 0.08 1.2172 0.02
36 0.5047 0.5105 1.15 0.5037 0.20 0.5043 0.08
37 0.1399 0.1393 0.43 0.1410 0.79 0.1402 0.21

0.05 34 2.0787 2.0772 0.07 2.0788 0.01 2.0784 0.01
35 1.1577 1.1596 0.16 1.1566 0.10 1.1574 0.03
36 0.4648 0.4704 1.21 0.4641 0.15 0.4646 0.04
37 0.1237 0.1230 0.57 0.1246 0.73 0.1238 0.08

NYSE C.I. 10 0.1 47 3.0963 3.0983 0.07 3.0977 0.05 3.0978 0.05
(S0 = 50) 48.5 1.6061 1.6049 0.08 1.6069 0.05 1.6068 0.04

50 0.3114 0.3162 1.54 0.3101 0.42 0.3109 0.16
20 47 3.1841 3.1850 0.03 3.1851 0.03 3.1851 0.03

48.5 1.7086 1.7051 0.21 1.7081 0.03 1.7078 0.05
50 0.4610 0.4651 0.89 0.4613 0.07 0.4617 0.15

Vorst [27] also proposed the approximation

AAV
0 = e−rTE�[(GT − K ′)+|F0] with K ′ = K − (E�[AT |F0] − E�[GT |F0])

for the price of an arithmetic average value option, leading to

AAV
0 = e−rT

∫ ∞

K ′
(x − K ′)fLNIG(�∗ ; �∗ ; �∗ ; 	∗)(x) dx:

This integral can be calculated numerically.

Remark. Since our asset price model is arbitrage-free, put-call parity holds and thus the above
techniques can also directly be applied to put options of Asian type.

7. Numerical illustrations and comparison with the Black–Scholes model

We now give some numerical illustrations of the accuracy of the bounds and approximations
derived in the previous sections for options on the stock of Bayer AG and on the NYSE Composite
Index, respectively. For that purpose the parameters of our NIG model are estimated from historical
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Table 3
Comparison of simulated Asian option prices and approximations of Section 6

Stock T r K AAMC
0 AAV

0 r.e.(%) GAMC
0 (± s.e.) GANIG

0 r.e.(%) AAU
0

Bayer 10 0.1 34 2.0729 2.0728 0.01 2.0692 (±0.0015) 2.0691 0.01 2.0728
(S0 = 36) 35 1.1059 1.1060 0.01 1.1026 (±0.0014) 1.1025 0.01 1.1063

36 0.3505 0.3498 0.20 0.3483 (±0.0010) 0.3478 0.14 0.3516
37 0.0539 0.0537 0.37 0.0530 (±0.0004) 0.0532 0.38 0.0570
38 0.0052 0.0052 0.00 0.0050 (±0.0001) 0.0052 4.00 0.0089

0.05 34 2.0376 2.0377 0.01 2.0339 (±0.0015) 2.0340 0.01 2.0377
35 1.0718 1.0723 0.05 1.0687 (±0.0014) 1.0688 0.01 1.0726
36 0.3298 0.3291 0.21 0.3278 (±0.0010) 0.3272 0.18 0.3310
37 0.0487 0.0483 0.82 0.0478 (±0.0004) 0.0479 0.21 0.0517
38 0.0045 0.0045 0.00 0.0044 (±0.0001) 0.0044 0.00 0.0082

20 0.1 34 2.1435 2.1437 0.01 2.1363 (±0.0021) 2.1362 0.01 2.1439
35 1.2174 1.2178 0.03 1.2112 (±0.0019) 1.2113 0.01 1.2189
36 0.5047 0.5041 0.12 0.5001 (±0.0014) 0.4999 0.04 0.5076
37 0.1399 0.1389 0.72 0.1372 (±0.0007) 0.1373 0.07 0.1449
38 0.0273 0.0263 3.66 0.0262 (±0.0003) 0.0259 1.15 0.0336

0.05 34 2.0787 2.0786 0.01 2.0717 (±0.0021) 2.0713 0.02 2.0788
35 1.1577 1.1582 0.04 1.1519 (±0.0018) 1.1518 0.01 1.1593
36 0.4648 0.4644 0.09 0.4606 (±0.0013) 0.4605 0.02 0.4681
37 0.1237 0.1227 0.81 0.1213 (±0.0007) 0.1212 0.08 0.1288
38 0.0227 0.0221 2.64 0.0218 (±0.0002) 0.0218 0.00 0.0294

N.C.I. 10 0.1 47 3.0983 3.0978 0.02 3.0965 (±0.0013) 3.0959 0.02 3.0978
(S0 = 50) 48.5 1.6061 1.6068 0.04 1.6043 (±0.0013) 1.6050 0.04 1.6068

50 0.3114 0.3109 0.16 0.3103 (±0.0008) 0.3098 0.16 0.3116
51.5 0.0055 0.0054 1.82 0.0053 (±0.0001) 0.0054 1.89 0.0072

20 47 3.1841 3.1851 0.03 3.1803 (±0.0017) 3.1814 0.04 3.1851
48.5 1.7086 1.7079 0.04 1.7051 (±0.0017) 1.7043 0.05 1.7080
50 0.4610 0.4615 0.11 0.4587 (±0.0011) 0.4594 0.15 0.4631
51.5 0.0305 0.0302 0.98 0.0298 (±0.0003) 0.0299 0.34 0.0337

data of the respective underlying by maximum likelihood methods (the corresponding estimates are
� = 81:6, � = 3:69, � = 0:0103, 	 = −0:000123 (Bayer) and � = 136:29, � = −8:95, � = 0:0059,
	 = 0:00079 (NYSE)). Table 1 compares the stop-loss upper bound for the Esscher price of the
European-style arithmetic average option of Section 4 with a Monte Carlo simulated price AAMC

0
obtained by generating 1 million sample paths (given together with its standard error based on an
asymptotic 95% conAdence interval). For convenience, the European call option price EC0 is also
given. For this and all the following tables the number of averaging days n equals the number of days
T until maturity. The inverse distribution function needed for the calculation of *k is interpolated,
since there is no analytic expression available. The numerical values indicate that the accuracy of
the upper bound is satisfying if the option is in the money.

In Table 2 we compare the approximation techniques for the arithmetic average option developed
in Section 5 and give the relative error with respect to AAMC

0 . The results show that the NIG
approximation outperforms the Turnbull–Wakeman approximation, which itself is superior to the
Levy approximation in most cases.
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Table 4
Comparison of simulated Asian option prices in the NIG model and the Black–Scholes model

Stock T r K AAMC
0

(BS)AA0 r.d. (%) GAMC
0

(BS)GA0 r.d. (%)

Bayer 10 0.1 34 2.0729 2.0718 0.05 2.0692 2.0681 0.05
(S0 = 36) 35 1.1059 1.1042 0.15 1.1026 1.1018 0.07

36 0.3505 0.3577 2.05 0.3483 0.3552 1.98
37 0.0539 0.0510 5.38 0.0530 0.0503 5.09
38 0.0052 0.0028 46.15 0.0050 0.0025 50.00

0.05 34 2.0376 2.0365 0.05 2.0339 2.0328 0.05
35 1.0718 1.0709 0.08 1.0687 1.0679 0.08
36 0.3298 0.3369 2.15 0.3278 0.3348 2.14
37 0.0487 0.0462 5.13 0.0478 0.0455 4.81
38 0.0045 0.0023 48.89 0.0044 0.0022 100.00

20 0.1 34 2.1435 2.1416 0.09 2.1363 2.1351 0.06
35 1.2174 1.2177 0.02 1.2112 1.2127 0.12
36 0.5047 0.5095 0.95 0.5001 0.5054 1.06
37 0.1399 0.1385 1.00 0.1372 0.1369 0.22
38 0.0273 0.0226 17.22 0.0262 0.0222 15.27

0.05 34 2.0787 2.0761 0.13 2.0717 2.0698 0.09
35 1.1577 1.1578 0.01 1.1519 1.1531 0.10
36 0.4648 0.4700 1.12 0.4606 0.4663 1.24
37 0.1237 0.1226 0.89 0.1213 0.1214 0.08
38 0.0227 0.0189 16.74 0.0218 0.0188 13.76

NYSE C.I. 10 0.1 47 3.0983 3.0977 0.02 3.0965 3.0959 0.02
(S0 = 50) 48.5 1.6061 1.6049 0.08 1.6043 1.6031 0.08

50 0.3114 0.3166 1.67 0.3103 0.3151 1.55
51.5 0.0055 0.0042 23.64 0.0053 0.0041 22.64

20 47 3.1841 3.1850 0.03 3.1803 3.1813 0.03
48.5 1.7086 1.7053 0.19 1.7051 1.7015 0.21
50 0.4610 0.4656 1.00 0.4587 0.4627 0.87
51.5 0.0305 0.0316 3.61 0.0298 0.0300 0.67

The numerical values for the Vorst approximation AAV
0 and its relative error w.r.t. AAMC

0 are
depicted in Table 3. Moreover, the approximation GANIG

0 is compared with the simulated geometric
price GAMC

0 . And Anally the upper bound AAU
0 is given. Since the expression E�[GT ] needed for

the evaluation of AAU
0 is itself obtained through approximation (cf. Section 6), we always have

AAV
0 6AAU

0 , but it may happen that AAU
0 is not an upper bound for the numerical value AAMC

0 .
It may be interesting to compare the numerical results for the Esscher option prices obtained in the

NIG model to the corresponding values in the Black–Scholes setting. In the Black–Scholes model
there is an explicit pricing formula for the geometric average option (see [18])

(BS)GA0 = e−rT (e	̂+/̂
2=22(d1) − K2(d2)) with d1 =

	̂ + /̂2 − lnK
/̂

; d2 = d1 − /̂;

where

	̂ = ln S0 +
T + T=n

2

(
r − /2

2

)
; /̂2 = /2T

(2n+ 1)(n+ 1)
6n2

:
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Here /2 denotes the variance of the log-returns, which can again be estimated from historical data.
The arithmetic average option price (BS)AA0 in the Black–Scholes model can not be obtained by an
explicit formula. Thus we use a Quasi-Monte Carlo simulated price (cf. [16]).

In Table 4 the Esscher option prices of the NIG model are compared with the corresponding
Black–Scholes prices and the relative diEerence is given. Note that in the Black–Scholes setting the
Esscher pricing principle also yields the correct (unique) option prices. The Black–Scholes prices
diEer signiAcantly from the NIG Esscher prices; in particular they tend to be lower if the option
is in and out of the money and higher than the NIG prices, if the option is at the money. These
diEerences indicate that an appropriate choice of the asset price model is of great importance for
the issue of option pricing.
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