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Abstract 

In this work, we prepared aluminum-doped (Al) zinc oxide (ZnO) thin films using the sol-gel method, glass substrates have been 
used with zinc acetate as cations source and 2-methoxiethanol as solvent. The obtained experimental results show that the ZnO 
deposited films are relatively uniform. Optical measurements demonstrate that the deposited ZnO layers have a band gap of 
3.26eV which is close to that of the monocrystalline ZnO, about 3.3eV. It was found that the roughness decreases by increasing 
the dopants concentration. Whatever the used substrate, transmission was observed between 75% and 99% for films deposited on 
ZnO:Al. Robust solar cells can be performed using from this study. 
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1. Introduction 

In the last decades, the development of thin films materials has contributed to the expansion of electronics and 
optoelectronics performance, including the lowering of the component cost by a mass production. Thin films can be 
produced from a wide range of compositions such as conductive materials, insulators, semiconductors and polymers 
[1-3]. There is a family of oxides which, in addition to being transparent, can become conductive (n-type) if it has an 
excess of electrons in their network. This excess of electrons can be created either by structural defects inducing an 
imbalance in the stoichiometry of the oxide, or by an appropriate doping [4]. These oxides are called, transparent     
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conductive oxides (TCO). They have a high gap, actually they are a degenerated semiconductors, i.e. their Fermi PN 
level is closed to the conduction band (CB), and even within this band for the highly doped TCO. This means that 
the CB is already full of electrons at room temperature, making then the TCO conductors. In addition, the high gap 
of TCO (about 3-4eV) prevents them to absorb the photons having an energy smaller than the gap, and thus makes 
them transparent for the visible light. junctions were performed with the n-type TCO such as the p-SrCu2O2 / n-ZnO 
to construct a LED [5]. The ZnO may be a p-type semiconductor, therefore, transparent PN junctions produced 
whilst ZnO are possible. With antimony doping, J.M. Bean team shows a p-type character on ZnO deposited layers, 
which has achieved PN junction ZnO-based while its emission is near to the UV and visible [6]. Moreover, many 
researches are carried out on p-ZnO for LED applications [7]. 

 
Nomenclature 
ZnO zinc oxide 
TCO  transparent conductive oxides 
CB conduction band 
LED      Light-Emitting Diode 
Al          Aluminum 
AFM     Atomic force microscopy  

Eg          Variation of the gap 
T           Temperature  

2. Resistivity measurement 

We will determine some properties of the ZnO:Al thin films developed by the spin-coating method. To study the 
influence of the concentration and the precursor on its properties, we used two doping sources AlCl3 and 
Al(NO3)3 with different concentrations, the impact of the thermal treatment is made by annealing at different 
temperatures. We have obtained results for the résistance of the films after annealing of 500°C, for one 
hour with a film thickness of 100nm. Figure 1 shows the evolution of the ZnO:Al films resistivity as function of the 
Al-dopant concentration.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

 
Figure 1 : Electrical resistivity of  ZnO: Al films as function of dopant concentration for different annealing 

temperature using Al(NO3)3.
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4. Results of AFM analysis  

A 3D AFM images of the surface of the Al-doped ZnO films using both doping agents AlCl3 and (Al (NO3)3), are 
shown in Figures 4 (a, b) and 5 (a, b). The surface morphology of the films depends to the concentration of the Al, 
in the case of low concentration; the surfaces are homogeneous comparing to those observed with high 
concentration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 (a,b): AFM Images of different concentrations of dopant and annealing at 450°C using AlCl3: (a) 0.5%, (b) 6%. 

Figure 5 (a,b): AFM Images of different concentrations of dopant and annealing at 450°C using(Al(NO)3)3: (a) 1%, (b) 6%. 
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The roughness is reduced with the increase of the dopant concentration (Table .1) as in the case of In doped ZnO 
[16, 17]. This decrease can be explained by the fact that the decrease of the electric conductivity to the high doping 
levels may be attributed to degradation of the morphology of the film ((b) and (d)). Differences in the roughness as a 
function of dopant as was shown by [18], could be attributed to differences constants AlCl3 and Al hydrolyzation 
(NO3)3, which could lead to different growth mechanisms. 

5. Transmission and optical gap 

The optical properties of the Al-doped ZnO thin films were determined from the transmission measurement in the 
range of 400-2400 nm. Figure 6 (a, b) shows the transmission spectra of ZnO with different concentrations of dopant 
according to the conditions of the layers deposited by the sol-gel method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

Figure 6 (a,b): Transmission spectra of ZnO: Al thin films, with annealing at 450°C and different concentrations of 
Al :(a) AlCl3as dopant, (b) Al(NO3)3,as dopant. 

 

(a) 

(b) 
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All films have a very high transparency (> 90%). On the other hand, it was observed that with the increase of the 
doping proportion, a shift of absorption threshold towards higher energies. This discrepancy is due to the increase in 
the concentration of free carriers in the material blocking the lowest states in the conduction band [19-21]. These 
results are not significant and are consistent with the values obtained by the same method for the In-doped ZnO [16]. 

The shift in the absorption edge is also equal to the variation of the gap Eg which is expressed by [22]. 
Therefore, the films were prepared with a substrate temperature of 450°C at different doping values contain a high 
concentration of free electrons [23] which is in perfect agreement with the change in their optical gap and electrical 
conductivity. 

Figure 7 (a, b) illustrate the variation of ( h )2 as function of the photon energy of the thin film of ZnO:Al to 
different concentrations of doping and annealing temperature T = 450°C, using both AlCl3 doping agents and 
Al(NO3)3. It is clear that the dopant reduces the absorption coefficient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 (a,b): Variation of ( h )2 as function of photon energy for ZnO:Al film sat different doping concentrations, 
annealing at 450°C, (a) AlCl3 as dopant,( b)  Al(NO3)3as dopant. 

(a) 

(b) 
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     We note that the increase in Al affects the coefficient ( h )2 . If Al increases from 0.5 to 6%, then the coefficient 
( h )2 decreases. Also Al concentration induces a change in the optical gap. The optical gap is defined by the 
intersection of the gradient of the curve 2=f(h ) with the energy axis h . In figure 7.a, we examined the effect of Al 
films produced by AlCl3 at T = 450 ° C. Then we repeated the same work with films realized by Al(NO3)3 . We note 
that the coefficient ( h )2 is more important in films achieved by AlCl3 as films performed by the second component 
Al(NO3)3 . But the optical gap constantly varies in the range [3.21-3.31] (eV). 

In Table 1, we reported the values of the optical gap of the ZnO film doped with two dopants AlCl3 and 
Al(NO3)3, and for different doping percentages. As can be seen, the addition of dopant tends to reduce the gap 
whatever the nature of the dopant. When the concentration of the dopant increases; the disorder increases with the 
optical gap, then it reduced increasingly. The values are generally between 3.08 and 3.27 eV, the optical gap values 
are comparable to those found in [24] and which vary between 3.31 eV and 3.21 eV. This reduction of the gap with 
the doping level is primarily due to distortions in the network due to the introduction of impurities (doping) and the 
increase of the concentration of free electrons. This is possibly the result of occupying interstitial sites in the dopant 
atoms because they represent the major native donor in the ZnO film [25]. 

 

Table 1 : Optical gap of ZnO:Al with annealing temperature at 450°C and for different concentrations of Al using AlCl3and (Al(NO3)3) as dopant 

Dopant AlCl3  Al(NO3)3 
Al (%)   0.5 2 3 6   1   2  3   6 
Optical 

Gap(eV)     3.25 3.25 3.26 3.13  3.27 3.26 3.24 3.08 

 

6. Conclusion  

This work involves the synthesis and study of the doping of zinc oxide thin layers developed by a spin-coateur. 
To achieve these deposits, we used the sol-gel technique using a zinc acetate solution using, separately, the different 
sources of dopant (Al(NO3)3 and AlCl3). It is noted for a doping of less than 2% Al resistivity decreases; thence to 
2% increases considerably, by against the increase of the annealing temperature decreases. It has been shown that 
the roughness is reduced with the increase in concentration of dopants. The prepared samples of ZnO: Al has a 
transparency greater than 90% and a decrease of the optical gap. The influence of aluminum was investigated on 
( h )2 to an annealing temperature T = 450°C. These structures made of thin films of ZnO:Al are very useful for 
photovoltaic applications. 
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