JOURNAL OF COMPUTER AND SYSTEM SCIENCES 51, 110-134 (1995)

On the Expressive Power of Datalog: Tools and a Case Study*

PHokION G. Kovrarris®

Computer and Information Sciences, University of California, Santa Cruz, California 950664

AND

MOSHE Y. VarDI}

[BM Almaden Research Center, 650 Harry Road, San Jose, California 95120

Received March 23, 1993

We study here the language Datalog{ #), which is the query
language obtained from Datalog by allowing equalities and inequalities
in the bodies of the rules. We view Datalog() as a fragment of an
infinitary logic L* and show that L“ can be characterized in terms of
certain two-person pebble games. This characterization provides us
with tools for investigating the expressive power of Datalog{ #).
As a case study, we classify the expressibility of fixed subgraph
homeomorphism queries on directed graphs. S. Fortune, J. Hopcroft,
and J. Wyllie { Theoret. Comput. Sci. 10 (1980}, 111-121} classified
the computational complexity of these queries by establishing two
dichotomies, which are proper only if P # NP. Without using any com-
plexity-theoretic assumptions, we show here that the two dichotomies
are indeed proper in terms of expressibility in Datalog(). € 1995
Academic Press, Inc.

1. INTRODUCTION

The study of rule-based query languages has been a focal
area of research in database theory during the past few years
[U89 7. A significant part of this research has concentrated
on the language Datalog, which, in its purest form, is the
language of function-free and negation-free Horn clauses.
As a query language, Datalog can be viewed as the data sub-
language of general logic programming. Datalog programs
always express queries that are computable in time bounded
by a polynomial in the size of the underlying database.
Moreover, in spite of its syntactical simplicity, Datalog can
capture queries that are complete for polynomial time
computations, such as the path systems query [Coo74].

The exact expressive power of Datalog is completely
understood in certain cases. More specifically, if only

* A preliminary version of this paper appeared in “Proceedings 9th
ACM Symp. on Principles of Database Systems, March 1990,” pp. 61-71.

! Partially supported by NSF Grant CCR-8905038.

! Present address: Computer Science Department, Rice University,
Houston, Texas 77251.

0022-0000/95 $12.00 1o

Copyright € 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ordered databases are considered, then a query is expressible
by a Datalog program if and only if it is computable in poly-
nomial time. This result is implicit in [Imm86, Var82] and
stated explicitly in [Pap85, BG87].

The picture, however, changes dramatically on general
{unordered) databases. In this case, as pointed out first in
[CH85], there are natural polynomial time properties that
are not expressible by any Datalog program. This follows
easily from the fact that, in general, Datalog prgrams com-
pute queries that are strongly monotone; i.e., they are pre-
served by adding tuples to database predicates (EDBs), or
by adding elements to the universe of the database, or by
identifying elements of the universe of the database (i.e.,
collapsing multiple elements into a single element). Thus, if
a query is not strongly monotone, then there is no Datalog
program that expresses it.

One natural way to increase the expressive power of
Datalog, without changing the semantics, is to allow
equalities ¥ =v and inequalities u # v in the bodies of the
rules. After all, these constructs are quite natural in a
database query language. This extension of Datalog, which
we will denote by Datalog(#), was considered first by
Shmueli [Shm87], who showed that it is more expressive
than Datalog, and then it was investigated further in
[GMSVB7, AG89], where it was shown that Datalog(#)
differs from Datalog in more aspects than just expressive
power. If a query is computed by a Datalog(#) program,
then it has the property that it is monotone; i.e., it is preser-
ved by adding new elements to the universe of the database
and by adding tuples to the database predicates. As a result,
there is no Datalog(#)} program that expresses the comple-
ment of the transitive closure query, or any other polyno-
mial time query that lacks the above monotonicity property.

The preceding remarks establish that the Datalog(#)
queries and, a fortiori, the Datalog queries, form a proper
subset of the polynomial time queries. So far, however, not

DATALOG: TOOLS AND CASE STUDY

much progress has been made towards a complete under-
standing of which monotonic queries are expressible in
Datalog variants. Lakshmanan and Mendelzon [LM89]
studied this problem and made some progress by showing
that the even simple path query, ie., the query whether a
directed graph contains a simple path of even length
between two distinguished nodes, is not expressible in
Datalog(#). Even simple path is a monotone query that
is known to be NP-complete. Although the result of
Lakshmanan and Mendelzon [LM89] is an immediate
consequence of P NP, the point of it is that it can be
established directly without appealing to complexity-
theoretic conjectures.

In this paper we continue the study of the expressive
power of Datalog(#) by developing tools and focusing on
a case study. The main feature of our approach is the con-
sideration of Datalog variants as fragments of the logic
L_.,. This is an infinitary logic that extends first-order logic
by allowing infinitary conjunctions and disjunctions (cf.
[Kei71]). It turns out that Datalog(#) can be viewed as a
strict fragment of L“, the latter being the existential nega-
tion-free fragment of L, where, in addition, formulas are
restricted to contain a finite number of distinct variables.
Since L® contains Datalog(#), one can prove negative
results about the expressive power of Datalog(#) by
proving negative results about the expressive power of L*.

The advantage of dealing with L, instead of directly
dealing with Datalog(#), is that the expressive power of L“
can be completely characterized in terms of existential
pebble games, which are a refinement of the pebble games
considered in Immerman [Imm82]. Indeed, a variant of
existential pebble games, called inductive pebble games, was
already used by Lakshmanan and Mendelzon [LM89] to
prove results directly about Datalog(#). However, the
exact relationship between inductive pebble games and
Datalog(#) is unclear, while, in contrast, we show that
existential pebble games completely characterize the
expressive power of L®.

We demonstrate the usefulness of our tools by consi-
dering a class of queries that we call pattern-based queries.
Intuitively, a structure satisfies a pattern-based query Q ifit
contains a pattern from a set of patterns that can be
generated in polynomial time. The even simple path query
of Lakshmanan and Mendelzon is an example of a pattern-
based query. We show that for pattern-based queries there
is an intimate relationship between their computational
complexity and their expressibility in L“. More precisely,
we use our game-theoretic characterization of L* to show
that if a pattern-based query is expressible in L, then it can
be evaluated in polynomial time. It follows immediately that
if P # NP, then no pattern-based NP-complete query, such
as the even simple path query, is expressible in L®.

The connection between complexity and expressibility is
further illuminated by considering the class of fixed sub-

571/51/1-8

Il

graph homeomorphism queries. Here we have a fixed pattern
graph H and we have to determine whether it can be
homeomorphically embedded in a given directed graph.
Thus, fixed subgraph homeomorphism queries form a sub-
class of pattern-based queries. The complexity of fixed
subgraph homomorphism queries was completely classified
by Fortune er al. [FHWS80] in terms of two dichotomies.
They defined a class C of pattern graphs and showed that
H-subgraphs homeomorphism query is (1) polynomial for
pattern graphs H in C, (2) NP-complete for pattern graphs
H in the complement C of C, and (3) polynomial for acyclic
input graphs. Of course, the two dichotomies, pattern
graphs in C versus pattern graphs in C and general input
graphs versus acyclic input graphs, are proper only if
P #NP.

Without using any complexity-theoretic assumptions, we
show here that the two dichotomies are indeed proper in
terms of expressibility in Datalog(#). More specifically,
on the positive side we show that the H-subgraph
homeomorphism query is expressible in Datalog(#) for
every pattern graph H in the class C, and we also prove
that if only acyclic graphs are allowed as inputs, then
the H-subgraph homeomorphism query is expressible in
Datalog(#) for every pattern graph H. The first result
uses the reduction in [FHWS80] of H-subgraph
homeomorphism queries for pattern graphs H in C to
network flow queries and the well-known max-flow min-cut
theorem (cf. [Bol79]). For acyclic input graphs, Fortune ez
al. [FHW80] show that all fixed subgraph homeomophism
queries can be reduced to questions about winning
strategies in certain single- player pebble games on the input
graph. These questions, in turn, can be answered by a poly-
nomial time algorithm. A careful analysis of this algorithm
shows that it can be expressed in fixpoint logic.! Unfor-
tunately, it does not seem possible to express this algorithm
in Datalog(#). We get around this difficulty by offering a
reduction of fixed subgraph homeomorphism queries over
acyclic input graphs to questions about winning strategies
in certain fwo-player pebble games on the nput graph.
Unlike the single-player games, we show that questions
about winning strategies of the two-player games can be
answered by Datalog(#) programs.

Finally, on the negative side we demonstrate that if the
pattern graph H is in the complement C of C, then the fixed
subgraph homeomorphism query is not expressible in L*
and, a fortiori, is not expressible in Datalog(#) as well. The
proof'is an interesting illustration of how the game-theoretic
characterization of L“ can be used to translate a complexity
lower-bound proof to an expressibility lower-bound proof.

! It is perhaps worth pointing out that the proof of this fact makes a cru-
cial use of the stage comparison theorem from [Mos74]. This is a nontrivial
result in fixpoint logic, which holds for ali structures (finite or infinite) and
which has played an important role in the study of fixpoint logic on finite
structures [Imm86, GS86].

112

One of the main difficulties in game-theoretic proofs of
lower bounds is finding the right structures on which to play
the game. The idea underlying our proof'is to play the game
on structures generated by the reduction in NP-hardness
result of [FHWS80].

2. DATALOG(#)

It is well known (cf. [Au79, Gai82]) that many natural
graph-theoretic queries, such as transitive closure, connec-
tivity, acyclicity, and two-colorability, are not expressible in
relational calculus, or, equivalently, they are not first-order
definable. The above queries, however, are expressible in
Jixpoint logic, which is first-order logic augmented with the
least fixpoint operator for positive formulas [AU79, CH82].

We now consider Datalog(#), which in terms of
expressive power is equivalent to a fragment of fixpoint
logic. A Datalog(s) program is a finite collection of rules of
the form

to— 1, tay sty

The expression ¢, is the fead of the rule, while ¢, ..., ¢, form
the body of the rule. The head of the rule is an atomic
formula S(x,, .., x,), where S i1s a relational symbol. The
expressions in the body can be equalities x,=ux,,
inequalities x; # x,, or atomic formulas R(x,, .., x,,). Note
that negated atomic formulas are not allowed in a
Datalog(#) program. The relational symbols appearing in
the heads of the rules form the intensional database
predicates (IDBs), while the others are the extensional
database predicates (EDBs). One of the IDB predicates is
designated as the goal predicate of the program.,

A Datalog program is a Datalog(#) program such that
the body of every rule consists entirely of atomic formulas;
i.e., no equalities or inequalities are allowed.

Both Datalog and Datalog(#) have uniform semantics
that are usually defined in terms of least fixpoints of
monotone operators. For simplicity, assume first that 7 is a
Datalog(#) program with a single IDB predicate S of arity
r and let o be the vocabulary of the EDB predicates of 7. On
every structure A over the vocabulary ¢ the program = gives
rise to an operator @, between r-ary relations on the
universe 4 of A. If S is an r-ary relation on A, then the value
©,(S) of the operator @, on S is the relation obtained by
applying all rules of n, where the IDB predicate of = is being
interpreted by S and the EDB predicates of n are being
interpreted by the relations of the structure A. Since the IDB
predicate of # occurs positively in the bodies of the rules of
7, we have that the operator @, is monotone; ie., iIf S S,
then @ ,(S) < € ,(S"). The semantics #™ of the Datalog(#)
program = on A is defined to be the least fixpoint @ T of the
operator @, on A. This is guaranteed to exist, because 6 ,
1s a monotone operator.

KOLAITIS AND VARDI

Least fixpoint semantics are generally viewed as decla-
rative semantics. In the case of Datalog(#), the above
semantics has also a procedural counterpart that is obtained
by iterating the operator @, until its least fixpoint is
reached. Given a structure A, the IDB predicate S is
initialized to be empty. Then the rules of n are applied
repeatedly and tuples are added to the IDB predicate until
this iteration stabilizes, i.¢., until no new tuples can be added
to S. More formally, the stages @, n = 1, of the operator
© , are defined by the induction

0,=0,(7) and 0. ' =0,(04).
It can now be shown (cf. { CH85]) that the least fixpoint of
@, is equal to the union of its stages, i.e.,

ex={) o5

n=1

Actually, if A is a finite structure with s elements, then for
some n, < s” we have that
OF =070=0" forall nzn,.

If the Datalog(#) program n has more than one IDB
predicate, then the semantics is defined by considering a
system of monotone operators and iterating all operators of
this system simultaneously until the least fixpoint of the
system is reached. In this case, the semantics of = is the rela-
tion expressed by its goal predicate after the iteration
terminates. In what follows, 7™ will denote the semantics of
a Datalog(#) program =.

Chandra and Harel [CH85] were the first to point out
that Datalog and its extensions are related to the existential
fragment of fixpoint logic. More precisely, their results
imply that Datalog(#) is equivalent to the negation-free
existential fragment of fixpoint logic, while Datalog is
equivalent to the negation and inequality-free existential
fragment of fixpoint logic.

We discuss now in more detail the connections between
Datalog(#) and fixpoint logic. For simplicity, we focus
again on the case in which the program = has a single IDB
predicate S. With every rule of = we can associate an
existential first-order formula that has as matrix the body of
the rule and existential quantifiers applied to the variables
that occur only in the body (and not in the head) of the rule.
Let @(w, S) be the disjunction of all the existential first-
order formulas obtained from the rules of » this way. Note
that every relation symbol over the vocabulary o U { S} has
only positive occurrences in @(w, S). It is also easy to see
that the formula ¢(w, S) defines the operator @, uniformly
on all structures A. This means that the value @ ,(S) is given
as

O (S)={a:A ak o(w, S},

DATALOG: TOOLS AND CASE STUDY

for every structure A and every r-ary relation S on A.
It follows that the semantics of = coincides with the
least fixpoint of the formula ¢(w, S). This shows that
Datalog(#) is contained in the negation-free existential
fragment of fixpoint logic. Moreover, the converse also
holds; namely, least fixpoints of negation-free existential
first-order formulas can be obtained from Datalog(#)
programs (cf. [CH851]).

ExaMPLE 2.1. For a concrete example, let =, be the
Datalog(#) program

T(x, y,w)—E(x,), w#x, w#y
T(x, y,w)« Elx,z), T(z, p, W), w#x.

The operator &, associated with 7, is defined by the nega-
tion-free existential first-order formula ¢(x, y, w, T), where

elx, v, W, T)=(E(x, Y) AWH#X AWH#Y)
v (20 E(x, 2) A T(z, y, w) A w#Xx).

On any graph A=(V, E) the least fixpoint =" of &,
expresses the query “is there a w-avoiding path from x to y 7”
(i.e., “is there a path from x to y to that does not go through
w?™).

If 7 is a Datalog program, then the formula ¢(w, S) that
defines the operator @, is actually a negation-free and
inequality-free existential first-order formula.

ExaMPLE 2.2. Let n, be the Datalog program

S(x, y)+ E(x, y)
S(x, y) « E(x, z), S(z, y),

which computes the transitive closure query TC. The
operator @, associated with 7, is definable by the formula

o(x, y, SY=E(x, y) v (32N E(x, z) A S(z, y)),

which is, indeed, both an inequality-free and negation-free
existential first-order formula.

As mentioned in the Introduction, Datalog(#) programs
compute monotone queries, while Datalog programs com-
pute queries that are strongly monotone. This difference
stems from the lack of inequalities in Datalog programs. To
illustrate this point, note that the query “is there a path from
x to y that does not go through w?” in Example 2.1 is not
expressible in Datalog, because this query need not be
preserved when elements of the database universe are
identified.

113

3. INFINITARY LOGICS WITH A FIXED NUMBER
OF VARIABLES

The limited expressive power of first-order logic is due to
its finitary syntax and to the absence of any recursion
mechanism. Higher expressive power can be achieved by
augmenting the syntax of first-order logic with infinitary
formation rules or with fixpoint operators that act as itera-
tion constructs. In this section we consider certain infinitary
logics and investigate their relation to Datalog(#).

During the 1960s and the 1970s logicians investigated in
depth (cf. [BF85]) the infinitary logic L, which, in addi-
tion to the rules of first-order logic, allows for disjunctions
V @ and conjunctions A @ over any (possibly infinite) set
of formulas. More formally, the syntax of the infinitary logic
L., is defined as follows.

DerINITION 3.1, Let ¢ be a vocabulary consisting of
relational and constant symbols and let {v,, .., v,, ..} be a
countable set of variables. The class L, of infinitary for-
mulas over ¢ is the smallest collection of formuias such that

« it contains all first-order formulas over o.
e if pisaformulaof L, then sois —gp,

e if is a formula of L and v, is a variable, then
(Vv;)@ and (Jv,) ¢ are also formulas of L.

o if ¥isasetof L, formulas, then \V ¥ and A ¥ are
also formulas of L.

Note that in the context of infinitary logic it is quite
meaningful to consider infinite vocabularies, since a sen-
tence can refer to infinitely many relations and constants.
Since, however, our interest is focused here on finite struc-
tures, we adopt the following proviso.

Proviso. All vocabularies under consideration are

assumed to be finite.

The concept of a free variable in a formula of L, is
defined in the same way as for first-order logic. We use the
notation ¢{(u,, .., u,, ..) to denote that ¢ is a formula
of L., whose free variables are among the variables
Uy s Uy, ... A sentence of L, is a formula ¢ of L, with
no free variables. The semantics of L _, is a direct extension
of the semantics of first-order logic, with \ ¥ interpreted as
a disjunction over all formulas in ¥ and A ¥ interpreted as
a conjunction. If A is a structure over ¢ and a,, ..., a,,, ... is
a sequence of elements from the universe of A, then we write

Aa,..a,, ., Eelu,. ., u,,..)
to denote that the structure A satisfies the formula p of L,
when each variable u;, is interpreted by the element «, from
the universe of A, i > 1.

To illustrate the gain in expressive power, consider the
well-known fact that the property “there are an even num-

114

ber of elements” is not expressible by any first-order sen-
tence on finite structures. Let p, be a first-order sentence
stating that “there are exactly » elements.” Then the
infinitary sentence V_, p,, asserts that “there are an even
number of elements.”

In general, infinitary formulas may have an infinite num-
ber of distinct free or bound variables. We will now focus
attention on fragments of L, in which the total number of
distinct variables is required to be finite.

DEefFINITION 3.2. Let k be a positive integer.

o The infinitary logic with k variables, denoted by L* |

consists of all formulas of L, with at most k distinct
variables.

@

o The infinitary logic L% consists of all formulas of

L_ ., with a finite number of distinct variables. Thus,

[e 2]

L5,= U Lio

k=1

o We write L* for the collection of all first-order
formulas with at most k distinct variables.

It should be pointed out that a variable may have an infinite
number of occurrences in a formula of L% .

The family L of the infinitary languages L* , k> 1,
was introduced first by Barwise [Bar77], as a tool for
studying fixpoint logic on infinite structures. It turned out,
however, that these languages have, in addition, interesting
uses in theoretical computer science. Indeed, they underlie
much of the work in [Imm82, dR87, LM89] and they have
been also studied in their own right in [Kol85, KV90].
Intuitively, a formula ¢ of L* corresponds to a relational-
algebra expression e, (cf. [UlI89}) with infinitary unions
and intersections, such that all subexpressions of e, have
arity of at most k.

The following examples illustrate the expressive power of
Le .

ExaMPLE 3.3. Cardinalities of total orders. Assume that
the vocabulary o consists of a binary relation symbol < and
we are considering only the structures in which the inter-
pretation of < is a total order. Let 7, be a first-order
sentence asserting that “there are at least » elements.” In
general, 7, requires n distinct variables. Immerman and
Kozen [IK89] pointed out, however, that on total orders 7,
is equivalent to a sentence in L2 . For example, 7, can be
written as

@) Ax <y A BxHy<x A 3y} x <))

It follows that on total orders the sentence p,, asserting that
“there are exactly »n elements” is also in L2, since it is

ww?

equivalent to t, A T7,,,. As a result, on total orders

KOLAITIS AND VARDI

properties such as “there are an even number number of
elements,” “the universe is finite,” etc. are expressible in
L? . In general, if P is any set of positive integers, then the
property “the cardinality of the total order is a member of
P> is expressible in L? | since it is definable by

Lw?

V P

neP

2
xw

This implies, in particular, that L
sive queries on total orders.

can €xXpress nonrecur-

EXAMPLE 3.4. Paths and connectivity. Assume that the
vocabulary ¢ consists of a single binary relation £ and let
P.(x, y) be a first-order formula over o asserting that there
is a path of length n from x to y. The obvious way to write
Pn(x, y) requires n + 1 distinct variables, namely

(3xy)---(3x,)

X (E(x, x) A E(x,x;) A -+ AE(x,_, y))
It is known, however, that each p,(x, y) is equivalent to a
formulain L} , i, a first-order formula with at most three
distinct variables x, y, z (cf. [Imm82]). To see this, put

pilx, y)=Elx, y)

and assume, by induction on n, that p, _,(x, y) is equivalent
to a formula in L? . Then

Pox, M) =(ED[Ex, 2y A Bx)x=z A p,_(x, ¥))]

Thus, the transitive closure query T'C is expressible in L7 _ .

More generally, if P is any set of positive integers, then the
property “x and y are connected by a path whose length is
a number in P” is expressible in L? _ via the formula:

\ palx, y).

ne P

Typical interesting instances of this kind of query are: “x
and y are connected by a path of even lengh,” “x and y are
connected by a path whose length is a perfect square,” and
so on. This also shows that L? can express nonrecursive
queries.

Note that in the preceding example 3.4 only existential
quantifiers were used in the formulas. Moreover, no negated
atomic formulas were used. These observations motivate the
following definition.

DErFINITION 3.5. Let L* be the collection of all formulas
of L* , k>1, that are obtained from atomic formulas,
equalities, and inequalities using infinitary disjunctions,

DATALOG: TOOLS AND CASE STUDY

infinitary conjunctions, and existential quantification only.
We also put

Lk

1

oy

k

and call this logic the existential negation-free fragment of

wr
Le,.

Our next result shows that L is powerful enough to
express every Datalog(#) query.

THEOREM 3.6. If n is a Datalog(#) program, then n> is
definable by a formula of L“. Moreover, if n is a Datalog
program, then n™ is definable by an inequality- free formula
of L®.

Proof. For simplicity, we present first in detail the proof
for the case in which the Datalog(#) program = has a single
IDR predicate S of arity r.

Let o be the vocabulary of the EDB predicates of z and
consider the monotone operator © , whose least fixpoint on
a structure A over ¢ is the semantics of 7 on A. As explained
in the previous section, there is an existential formula
@(w, .., w,, S) over o U {S} that defines @, uniformly on
all structures. Thus,

0,(S)={(a,,..a)eAd" A a,,.,a, E @w,,.,w,S)}

for every structure A over ¢ and every r-ary relation S on
the universe 4 of A. Moreover, every predicate symbol from
o {S} has only positive occurrences in the formula
o(wy, ., w,, S).

Assume that the total number of distinct variables (both
free and bound) occurring in ¢(w,, .., w,, §) is equal to I
Using induction on #, we will show that every stage @7,
n>=1, of the operator @, is definable uniformly on all
structures A over o by an existential first-order formula
@"(wy, .., w,) that is negation-free and has all its variables
among those of ¢ together with r new variables y,, ..., y, not
occurring in ¢. Thus, each ¢"(w,, ..., w,) will turn out to be
an existential negation-free first-order formula at most /+r
distinct variables.

The claim is obvious for the first stage @) of &, since

@}A= @A(Q) = {(Wla) W,) A E (p(wla ey Wos g)}

and @(w,, .., w,, S) is an existential negation-free formula
over the vocabulary o U {S}.

Assume that the induction hypothesis holds for €% and
let ¢"(w,, .., w,) be an existential negation-free formula
with at most / + r variables that defines @, uniformly on all
structures. From the definition of the stages and the proper-
ties of @(w,, ..., w,, S), we have that

e+ ' '={(a,,..a,): A a,.,a, E @w,.,w, 0%}

571/51/1-9

115

We would like to apply the induction hypothesis and sub-
stitute @ in the expression above by its defining formula
¢"(wy, .., w,) without increasing the total number of
variables. To achieve this, replace in @(w,, .., w,, S) every
occurrence of a subformula of the form S{(¢,, .., t,) by the
expression

) ---@FyIln=t) A -

X((wy=y)A -

A (yr=tr) A (3%’1)"'(314',.)
A (wr= yr) A (p"(wyls ey W,)]

The resulting expression yields a formula ¢"*'(w,, .., w,)
of L'+ that defines @3*' uniformly on all structures.
Moreover, ¢"*'(w,, .., w,) is an existential negation-free
first-order formula.

It now follows that the least fixpoint #* =6F of the
operator @ is definable by a formula of L’*". Indeed, we
have that

oz=U 6:

n=1

= {(aly eey ar) : A! ag, ... d, *= \/ (P"("vl, a3 W’,)}.

n=1

Note also that if n is a Datalog program, then
o @™wy, .., w,)is actually an inequality-free formula of

L'*", since in this case each ¢"(w,, .., w,) turns out to be
an existential negation-free and inequality-free first-order
formula with at most /+ r variables.

The general case requires only minor modifications.
Indeed, if the Datalog(#) program = has more than one
IDB predicate, then the proof proceeds by considering
a system of monotone operators and showing by
simultaneous induction that all stages of the system are
definable by existential negation-free first-order formulas
with at most /+ r variables. ||

We have, thus, established that Datalog(#) is contained
in L. We should point out that this containment is a proper
one, since L® can express nonrecursive queries, while
Datalog(#) queries are always computable in polynomial
time. Note also that there are queries of very low complexity
that are not expressible in L“. For example, the parity query
(i.e., “are there an even number of elements in the universe
of the structure?”) is not expressible in L% and, conse-
quently, is also not expressible in L“ (¢f. [KV90]). Thus, in
general, there is no connection between the expressibility of
a query in L® and its computational complexity.

The preceding Theorem 3.6 constitutes a refinement of an
earlier result to the effect that on every fixed structure the
infinitary logic L% can express every fixpoint query. That
result appeared first in print in Barwise [Bar77] and
Immerman [Imm82], but is actually anticipated in the
unpublished Ph.D. thesis of Rubin [Rub75].

116

4. EXPRESSIVENESS AND PEBBLE GAMES

The results of the previous section imply that, in order to
show that a particular query @ is not expressible in
Datalog(#), it is enough to establish that Q is not definable
in L. To characterize expressibility in L?, we define a
certain relation between structures.

DerINITION 4.1, Let k& be a positive integer and let A
and B be two structures over the vocabulary o. Assume also
that a,, .., a,, and by, .., b,, are finite sequences of distinct
elements from the universes of A and B, respectively, where
1 <m <k We write

(Aca,,...a,)<F(B,b,, .. b))

to denote that for every formula ¢(u,, ..., u,,) of L* with free
variables among u,, .., u,, if A,a,....a, E @lu,, .. u,,),
then B, b,. .. b,, E @lu,, ... u,,).

In particular, we write A<X* B to denote that every
sentence of L* that is true in A is also true in B.

It is obvious that the relation =<{* is reflexive and trans-
itive. It will turn out, through, that it is not symmetric. The
connection between expressibility in L* and the relation <*
is described by the following proposition.

ProrosITION 4.2, Let 6 be a class of finite structures
over the vocabulary o and let k be a positive integer. Then the
following statements are equivalent:

\. The class ¢ is L*-definable; i.e., there is a sentence @
of L* such that for any finite structure A over o we have that

Acb<>AE o

2. If A and B are finite structures over ¢ such that A€ %
and A<*B, then Be &.

Proof. The direction (1) =>(2) follows from the defini-
tion of <*. For the other direction, assume that statement
(2) holds for the class 6. Let Ay, A, ... be an enumeration
of all finite structures over ¢ up to isomorphism (there are
countably many isomorphism classes of finite structures
over g).

Leti>0.1fj#iand A, X* A, then there is a sentence ¢,
of L* such that ¢, holds in A, and fails in A,. Thus, the con-
junction A, .« ,, @, holds for A;, but fails on all structures
A such that A; X* A. We denote this conjunction, which is
a sentence of L*, by &,.

We now claim that the countable disjunction V , ., @,,
which is a sentence of L*, defines the class €. Assume that
Ae%. Then A is isomorphic to A, for some /> 0. Thus,
AV, . P since A = @, Conversely, assume that A is
a finite structure satisfying @,, where A, e €. Since @, fails
on all structures A; such that A, <* A, it follows that
A, <" A. Consequently, Ac¥.

KOLAITIS AND VARDI

The relation =<* can be characterized in terms of certain
infinitary pebble games. The games we consider here are
asymmetric versions of the k-pebble games introduced by
Barwise [Bar77] and Immerman [Imm&2] in the study of
the infinitary logics L* k> 1.

Tw?

DErFINITION 4.3. Let ¢ be a vocabulary consisting of
relational symbols and constant symbols. Let A, B be two

structures over ¢ and let ¢,,..,¢, and d,,...d, be the
intepretations of the constant symbols of & on A and B,
respectively.

The existential k-pebble game between Players [and 11 on
the structures A and B is played as follows. Each player has
k pebbles: Player I has pebbles p,, ..., p, and Player II has
pebbles ¢, ..., ¢,. A position in the game is a placement of
some of the pebbles on the elements of A and B; the p,’s are
placed on elements of A and the g¢/’s are placed on elements
of B. A pebble g, will be placed on B immediately after the
pebble p, is placed on A. Initially, no pebble is placed. In
each round of the game, Player I picks up some pebble, say
p,. If p, is placed on A, then Player I removes p, from A, and
Player II responds by removing the pebble ¢, from B. If p, is
not placed on an element of A, then Player I places p, on
some element of A, and Player II responds by placing g, on
some element of B.

Let i,, .., i,, be the indices of the pebbles that are placed
on A (and B) after the ith round. Let a,, .., a, (b,,..,b,)
be the elements of A (B) pebbled by the pebbles p, , ..., p,,
(g, - g,,) after the ith round. If the mapping 4 with

h(a,/):b,’. 1 <j<m,
and

hic;)=d,, 1<j<,
is not a one-to-one homomorphism® between the substruc-
tures of A and B with universes

{aiw ey aik} v {C] . CI}
and

(B by} 0 {dr o di,

Ik
respectively, then Player I wins the game. Otherwise, the
game continues. Player II wins the game if he has a winning
strategy that allows him to continue playing “forever,” ie.,
if Player I can never win a round of the game.

% A one-to-one homomorphism from a structure A into a structure B is a
one-to-one mapping k4 from the domain of A into the domain of B such that
the constants of A are mapped to the corresponding constants of B and if
(w,,...w,) is a tuple in a relation R of A, then (h(w,), ... A(w,)) is a tuple
in the relation R of B.

DATALOG: TOOLS AND CASE STUDY

We give next two examples that illustrate existential
k-pebble games and reveal that the relation “Player II
wins the existential k-pebble game on A and B” is not a
symmetric relation on pairs of structures.

ExaMPLE 4.4. Paths of different lengths. Assume that
the vocabulary ¢ consists of a single binary relation symbol
E. Let A be a graph that is a directed path with m vertices
and let B be a directed path with » vertices, where n > nm > 2.
Assume that A has vertices {a,, .., a,,} and edges (a,, a,,),
I <i<m, while B has vertices {b,,..b,} and edges
(b, b, 1) 1<j<n.

It is quite clear that Player II wins the existential k-pebble
game on A and B for any & < 1. His strategy is to simply
“copy” on B the moves of Player I on A. More precisely,
whenever Player I places a pebble on a node a, of A,
Player II responds by placing a pebble on the node b, of B.

In contrast, we claim that Player I can win the existential
two-pebble game on B and A (and, hence, Player I can also
win the existential k-pebble game on B and A for any £ = 2).
Player I begins by placing his two pebbles on the nodes
b, b, of B. Player 1I has to respond by placing his two peb-
bles on two consecutive nodes of A; actually, his best option
is to place the two pebbles on a,, a,. Player I now removes
the pebble from b, and places it on b,. Player II's only
option is to remove the pebble from a, and place it on a,.
Player I can continue playing this way, moving along the
path on B and forcing Player II to move along the path on
A. After a while, Player II has two pebbleson b,, ,, b,, and
Player I has his corresponding pebbles on a,, ,, a,,. Since
n>m, Playerl can win the game in his next move by
removing the pebble from 4,,_, and placing it on &,,, . At
this point, Player II can no longer maintain a one-to-one
homomorphism.

ExaMmpLE 4.5. Disjoint paths. Assume that the voca-
bulary o consists of a single binary relation E. Let A be a
structure that is made up of two disjoint directed paths
each with 2n + 1 vertices for some n > 1 and let B be a struc-
ture that is made up of two directed paths each with 2n + 1
vertices intersecting only at their (n + 1)th vertex. Assume
that the two paths in A have a,, .., a5, ., and a, ..., a4, ,
as vertices, while the two pathsin Bhave b, .., b,, b, . 1, ...,
by, 1and by, ., b, b, Ly, ., b, as vertices, with b, , | =

n+1-

We now claim that Player I can win the existential three-
pebble game on A and B. His strategy is to first move two
pebbles along consecutive vertices on the path of the a’s on
A in such a way that Player II is forced to move two pebbles
along the corresponding vertices on the path of the bs (see
Example 44). This is done until there are pebbles on
a,,a,,, and on b,,b, . After this, Player I keeps one
pebble on a, ., and starts moving two pebbles along con-
secutive vertices on the path of the «;’s, while forcing
Player II to place pebbles along the corresponding vertices

117

on the path of the b;’s. Eventually, Player II loses because
he is forced to remove a pebble from b, | and place it on
b,, 1, at which point the function between the pebbled
vertices is not one-to-one.

In the above definition, we have described in a rather
informal way what it means to say that “Player [I wins the
existential k-pebble game.” The concept of a winning
strategy for Player Il in the existential A-pebble game is
being made precise in what follows.

DEFINITION 4.6. Assume that A and B are two struc-
tures over the vocabulary ¢ and let ¢;, 1 <;</, and d,,
1 €j </, be the interpretations of the constant symbols of o
on A and B, respectively.

A partial one-to-one homomorphism between A and B is a
function A such that its domain is a finite subset of the
universe of A containing the constants ¢, ..., ¢; of A, its
range is a finite subset of the universe of B containing the
constants d,, .., d,of B, h(¢,) =d,, 1 <j </, and such that 4
is a one-to-one homomorphism between the substructures
of A and B with universes the domain and range of 4 respec-
tively.

DerFINITION 4.7. Let k be a positive integer and let A
and B be two structures over the vocabulary o. We say that
Player II has a winning strategy for the existential k-pebble
game on A and B if there is a nonempty family # of partial
one-to-one homomorphisms between A and B such that:

o # is closed under subfunctions: if fe # and
{(c\, d\), ... (¢;,d;)} = g < f(as sets of ordered pairs), then
geH.

e M has the forth property up to k. if fes# and
| /] <k + 1, then for any element a € A there is an element b
in B such that the function f U {(a, b)} is in A#.

It turns out that <* can be characterized in terms of the
existential k-pebble game according to the following crucial
result.

THEOREM 4.8. Let k be a positive integer and let A, B be
two structures over the vocabulary . Then the following two
Statements are equivalent :

. A<*B.

2. Player 11 has a winning strategy for the existential
k-pebble game on A and B.

Proof. Let c¢;,c,and d,, .., d, be the interpretations of
the constant symbos of o and A and B, respectively. Assume
first that A <<* B. We have to show that there is a family #
of partial one-to-one homomorphisms between A and B
that provides Player II with a winning strategy for the
existential k-pebble game.

The desired family s# consists of all partial one-to-one

118

homomorphisms # between A and B such that the following
hold:

¢ The domain of 4 is a set of the form {c, .. ¢,
a, .., a,} and the range of 4 is a set of the form {d,, ..., d,,
by, ...b,}, where m <k;

. h(('j) =dj, for all j </ and h{a,)=b,, for all i <m;
. (As ap, ., am) <k (Bs bl’ b bm)‘

We show now that # has the required properties:

1. # is non-empty, because A=<*B and, thus, the
function h with h{c,)=d,, 1 < j</, is a member of H.

2. Tt is clear from the definitions that J is closed under
subfunctions.

3. It remains to show that ¥ has the forth property up
to k. Assume that he # and |h] =m +] <k + [Then there
are sequences of distinct elements a,,..,q, in A and
by, .., b,, in B, such that h(a,)=b,, 1 <i<m, and

(A, ay,..,a,)<"(B, b, ..b,).

We claim that for any element a in 4 that is different from
a,, .. a, there is an element 4 in B such that b is different
from b, ..., b,, and

(A7 al’ s Apys a)<k (B, bl’ seey bm’ b)

Assume that no such b € B exists for a certain a € A. Then for

every b € B that is different from 4., ..., b, there is a formula
Wy (vy, ..y U, v) Of L* over o such that
(A,ay,.,a,,a) = Y, (v, ..,0,,0)
and
(B,by,..h,,. by ¥ Y(v,, .., 0, v)
Hence,

(A, a,,..a,)FE (3v)<(ul FVYA - AV, #V)

A /\ d/b(vl’ Rt Dm’ v))a

beB

and, at the same time,

(B, by, ..., b,,) B (Iv) ((v1 FU)A - A (v, F#D)

s Upas v).

A A Vo

beB

KOLAITIS AND VARDI

This, however, is a contradiction, since

(Elv)((v,;év) A A, EY) AN Yo, vm,v))

beB

is an L* sentence and (A, 4a,, .., a,,)<* (B, b,, .., b,,).
Assume now that Player II has a winning strategy for the
existential k-pebble game on A and B. Let # be a family of
partial one-to-one homomorphisms providing Player II
with a winning strategy for this game. We will show, by
induction on the construction of L* formulas, that if
ylvy, .., v,,) is a formula of L* whose variables are among
v, .., Uy and whose free variables are among v,,
where m < k, then the following property (*) holds:

\
vy Upys

(x) Forall he # with |h| =14+ m and for any elements
(not necessarily distinct) a,, ..., a,, from the domain of A, we
have that if

Aa, ., a, = ¥v, ..

£ vm)9
then

B, A(a)), ..., ka,,) E ¥(v,, .., v,).

Once property (*) is established, then we will be able to con-
clude that A <* B by applying this property to sentences
of L%,

The base case in the induction is obvious, since atomic
formulas and inequalities are preserved under one-to-one
homomorphisms. The inductive steps for infinitary disjunc-
tion V and infinitary conjunction A are straightforward
using the induction hypothesis.

Assume that the formula y(v,, ..., v,,) is of the form (3Jv)
x(vy, ... v, v) and that the property (*) holds for the for-
mula x(v,, ..., v,,, t). Let & be a one-to-one homomorphism
in # such that |A| >/ + m. We have to show that ifa,, ..., a,,
are arbitrary elements (not necessarily distinct) from the
domain of 4 such that

Aa, ., a,kE= (), ..

» Ups U),

then

B, h(a,), .., ha,,) E (Fv) x(v(s .oy Uy ©).
Note that, by our assumption about the variables of i, we
must have that v is a variable v;, for some j such that
1 <j<k We now distinguish two cases, namely the case
where j > m and the case where j <m.

If j > m, then it must also be the case that m < k. Letae 4
be such that

Aay, .,a,,ak x(v,.0,,0).

DATALOG: TOOLS AND CASE STUDY

Consider the subfunction h* of h with domain the set
{c), . C}y ay, ..., a,,}. Note that h* is a member of 5, since
¥ is closed under subfunctions. By the forth property of #
applied to #* and a, there is an element b€ B such that
h* U {(a, b)} is in #. By applying the induction hypothesis
to x(vy, ... Uy, v) and to A* L {(a, b)}, we infer that

B, h(a,), .., Bla,), b = xlv,, .., v,, V)

and, hence,

Ba h(al)’ (R] h(am) }: (3U) X(U] 9 seey Um, U)'

Finally, assume that j < m. In this case v is the variable v,,
for some i with 1 < i< m. Note also that the free variables of
the formula y are among the variables v, ..., v,, and that

A Ay, @iy, Ay ys s @y = () (04, oy).

Let g be the subfunction of # with domain the set

€1y s €y Ays s Bj s Biy 1y oo A -

Observe that |g| </+m—1 </+k and that g is a member
of J#, since is closed under subfunctions. Let ae A be
such that
A, ., 0i (,0,Q;, 1,y = 20, s V).

By the forth property of # applied to g and a, there is an
element b € B such that g U {(a, b)} is in #. By applying the
induction hypothesis to x(v,, ..., v,,) and to g U {(a, b)}, we
infer that

Bs g(al)’ () g(ai— l); b’ g(ai-q»l), wery g(am) }= X(vl’ “ery 1),")

and, hence,

B’ h(al)’ rery h(am) }= (avi)X(Ul’ eeey vm)’
since g(a;)=h(a;) for j#i and the satisfaction relation
depends only on the free variables of a formula. ||

The infinitary syntax of the logic L* was used in a crucial
way in the proof of the preceding Theorem 4.8. A careful
examination of this proof reveals, however, that if the
structure B is finite, then one can restrict attention to the
first-order fragment of L* This is made precise in the
following result.

COROLLARY 4.9. Let k be positive integer, let A be a
structure over the vocabulary o and let B be a finite structure
over o. Then the following three statements are equivalent:

1. AX*B.

119

2. Every first-order sentence of the infinitary logic L*
that is true on A is also true on B.

3. Player II has a winning strategy for the existential
k-pebble game on A and B.

Proof. The argument used in the proof of Theorem 4.8
goes here through virtually unchanged. In particular, the
implication (2)=>(3) can be established using the same
argument as the one for the implication (1)=(2) in
Theorem 4.8. One need only observe that the conjunction
over the universe B of the structure B is now a conjunction
over a finite set. Thus, the resulting formula is actually a
first-order formula of L*. |

As a consequence of Proposition 4.2 and Theorem 4.8, we
obtain next a game-theoretic characterization of definability
in the logic L* for classes of finite structures.

TueoreM 4.10. Let k be a positive integer and let € be a
class of finite structures over the vocabulary o. Then the
Jfollowing two statements are equivalent

1. The class € is L*-definable, i.e., there is a sentence
of L* such that for any finite structure A over a we have that
Aeb¥<=>AE VY.

2. If A and B are finite structures over o such that A€ €
and Player II has a winning strategy for the existential
k-pebble game on A and B, then Be €.

Remark 4.11. It follows from Corollary 4.9 that the sen-
tences @, in the proof of Proposition 4.2 can be taken to be
countable conjuctions of first-order sentence of L*. Thus,
every sentence in L is equivalent to a countable disjunction
of countable conjunctions of first-order sentences of L*. This
can be viewed as a normal form for sentences of L on finite
structures.

Theorem 4.10 provides a tool for showing that certain
queries are not expressible in the existential negation-free
fragment L* of L% on finite structures and, a fortiori, not
expressible in Datalog(#) on finite structures. More specifi-
cally, in order to prove that a query Q is not expressible in
L* on finite structures it suffices to show that for every k > 1
there are two structures A, and B, such that A, satisfies Q,
B, does not satisfy Q, and Player I has a winning
strategy for the existential k-pebble game on A, and B,.
Theorem 4.10 also guarantees that this method is complere.
Namely, if Q is not expressible in L®, then such structures
A, and B, must exist for every k > 1.

Remark 4.12. 1. One can derive refinements of
Theorems 4.8, 4.9, and 4.10 that apply to Datalog. For this
we have to consider a variant of the existential k-pebble
game in which Player I wins if at some point of the game
the corresponding substructures of A and B are not
homomorphic. The result in this case is that Player II has a
winning strategy in the modified existential k-pebble game

120

if and only if every inequality-free sentence of L* that is true
in A is also true in B.

2. Lakshmanan and Mendelzon { LM897] used a variant
of existential k-pebble games, which they called inductive
pebble games, to show that on finite directed graphs the even
simple path query, i.e., the query “is there a simple path of
even length between two distinguished nodes s and 77 is
not expressible in Datalog(#). At first sight, the inductive
pebble games appear to be different than the existential
k-pebble games, because Player II has the option to play in
an “asynchronous” manner and match the moves of
Player [at some later stage. It is possible to show, however,
that “asynchronicity” is not a genuinely new feature. In par-
ticular, one can prove that no advantage is gained by using
one type of game over the other in establishing that a query
is not expressible in L“ and, a fortiori, in Datalog(#).

5. L*-EXPRESSIBILITY AND COMPUTATIONAL
COMPLEXITY

We have observed before that there is no connection
between the expressibility of a query in L and its computa-
tional complexity. In this section we show that for a certain
class of monotone queries, which includes the “even simple
path” query of [LM89], definability in L® implies that the
query is in PTIME. This, in turn makes it possible to infer,
assuming P s NP, that the NP-complete queries in that
class are not expressible in L.

DerINITION 5.1. A query Q is pattern-based if there is a
polynomial-time function a such that

1. «(B) is a set of finite structures, called patrern struc-
tures, for every finite structure B,

2. if A is in a(B), then A satisfies Q, and

3. B satisfies Q if and only if there is a pattern structure
A ea(B) and a one-to-one homomorphism from A into B.

The function « is called the patiern generator of Q.

Note that every polynomial-time query is pattern based;
simply set «(B) to be {B} or ¢, depending on whether B
satisfies Q or not.

ExaMPLE 52. 1. Even simple path query. Consider the
even simple path query, which is known to be NP-complete
[LMB89]. It holds for a directed graph G if there is a simple
path of even length between two distinguished points s and
t. If G has n nodes, then let 2(G) consist of all directed
graphs P=(V, E), where V= {1, ...k}, | <k <n, k is odd,
and E={(1,2),..,(k—1,k)}. Clearly, there is a simple
path of even length between s and ¢ in G if and only if there
is @ one-to-one homomorphism from some member of a(G)
into G mapping 1 to s and & to ¢. Thus, the even simple path
query is a pattern-based query.

KOLAITIS AND VARDI

2. Fixed subgraph homeomorphism queries. Given
directed graph H and G and a one-to-one mapping m of
the nodes of H into the nodes of G, we say that H is
homeomorphic to a subgraph of G if there exists a mapping
from the edges of H to pairwise node-disjoint simple paths
in G such that the edge (s, #) 1s mapped to a simple path
from m(s) to m(t). The H-subgraph homeomorphism query,
for a fixed graph H, is to determine for an input graph G and
a node mapping m whether A is homeomorphic to a sub-
graph of G. It is easy to see that this query is patiern-based.

We will show that if a query Q is both pattern-based and
expressible in L, then it is in PTIME. We first need a result
about the complexity of games (see [IL90] for related
results).

PROPOSITION 5.3. For every k, there is a polynomial-time
algorithm that determines who wins the existential k-pebble
game on a given pair A, B of finite structures.

Proof. The proof is based on three observations. The
first observation is that there are at most (n+ 1)* con-
figurations in the game, where # 15 the maximum number of
elements in either A or B, since each pebble can be placed
in at most n + | different ways, ie., placed on one of the n
elements or not placed at all, and there are at most & pebbles
on each structure. It follows that Player I wins the game if
and only if he wins the game in a polynomial number of
moves. More precisely, let Win, (A, B, ¢, m) denote the
assertion that Player I wins the existential k-pebble game on
the pair A, B starting in a configuration ¢ in m moves. Then,
Player I wins the game if and only if Win,(A, B, ¢,
(n+ 1)?%), where ¢, is the starting configuration of the
existential k-pebble game (1e., the configuration with no
pebble placed).

The second observation is that the question whether
Win, (A, B, ¢, m) holds is polynomially reducible to the
question whether Win,(A,B, ¢", m — 1) holds for certain
configurations ¢”. To test whether Win, (A, B, ¢, m) holds,
we simply need to find a configuration ¢’ that is reachable
from ¢ by a move of PlayerI such that Win,(A, B,
¢", m— 1) holds for all configurations ¢” that are reachable
from ¢ by a move of Player II. There are at most kn
configurations ¢’ that are reachable from ¢ by a move of
Player I, and for each ¢’ there are at most n configurations
¢" that are reachable from ¢’ by a move of Player I1. It
follows that we can determine in polynomial time whether
Win,(A, B, ¢y, (n+1)*) holds by evaluating whether
Win, (A, B, ¢, i) holds for i=1, .., (n+1)* for all con-
figurations ¢, of which there are at most (n + 1)%*.

The third observation is that the game is determined, i.e.,
either Player I or Player II wins the game. This follows from
a simple application of K&nig’s lemma to the game tree of
the existential k-pebble game. Thus, either Win, (A, B, ¢,,

DATALOG: TOOLS

(n+ 1)%) holds and Player I wins the game, or Win, (A, B,
¢o» (n+ 1)*) does not hold and Player II wins the game. ||

The idea underlying our next result is that instead of
testing whether a pattern structure A can be embedded in B
we can test whether Player II wins the game played on the
pair A and B.

ProrosiTION 5.4. Let Q be a pattern-based query with a
pattern generator o such that Q is expressible in L*. Then a
finite structure B satisfies Q if and only if there is a pattern
structure A € a(B) such that Player II wins the existential
k-pebble game on the pair A, B.

Proof. If B satisfies Q, then there is a pattern structure
A ea(B) and a one-to-one homomorphism 4 of A into B. It
follows that II wins the existential k-pebble game on A, B by
using the homomorphism 4: if Player I places his /th pebble
on an element a of A, then Player 11 places his /th pebble on
the element A(a) of B.

Conversely, if II wins the existential k-pebble game
on A,B for some pattern structure Aea(B), then, by
Theorem 4.8, B satisfies @, since by definition A satisfies

o 1

By combining Propositions 54 and 5.3 we obtain the
desired result.

THEOREM 5.5. Let Q be a pattern-based query that is
expressible in L®. Then Q can be answered in polynomial
time.

COROLLARY 5.6. Suppose P # NP. Then the even simple
path query is not expressible in L®. Similarly, if a fixed
subgraph homeomorphism query is NP-complete, then it is
not expressible in L*.

The results in Lakshmanan and Mendelzon [LM89]
actually yield a stronger result for the even simple path
query, namely that this query is not expressible in L®
(without assuming that P NP). In the next section we
show that this also the case for those fixed subgraph
homeomorphism queries that are NP-complete.

6. A CASE STUDY: FIXED SUBGRAPH
HOMEOMORPHISM QUERIES

Let H=(V,, E,) be fixed directed graph with nodes
vy, .., v; and edges e, ...,e,,. Let G=(V,E, s,,..,s,) bea
directed graph with / distinguished points s,, ..., 5, such that
s;#s; for i#j. We say that H is homeomorphic to the dis-
tinguished subgraph of G if G contains m pairwise node-dis-
joint simple paths p,, ..., p,,” such that if the edge e, in H is
from v; to v;., then p, is a path from s, to s;..

3 Two simple paths are node-disjoint if they have no point in common,
except that endpoints may be equal.

AND CASE STUDY 121

The H-subgraph homeomorphism query is to determine,
for a fixed graph H, whether H is homeomorphic to the dis-
tinguished subgraph of an input graph G. We use the term
pattern graphs to refer to such graphs H. As we observed
earlier, fixed subgraph homeomorphism queries are patten-
based queries. In what follows we assume that pattern
graphs have no isolated nodes, since if they do, then we can
remove all isolated nodes and obtain a fixed subgraph
homeomorphism query that is equivalent to the original
one.

Fortune er al. [FHWS80] classified the computational
complexity of fixed sub-graph homeomorphism queries in
terms of two different dichotomies that are described in
what follows.*

The first dichotomy is expressed in terms of the collection
C of all directed graphs with a distinguished node called the
root and with the property that either the root is the head of
every edge or the root is the tail of every edge (note that the
root can be both the head and the tail of an edge, when the
graph contains a self-loop from the root to itself). Fortune
et al. [FHW80] showed that the H-subgraph homeo-
morphism query can be answered in polynomial time if the
pattern graph H is in C, but it is NP-complete if the pattern
graph H is in the complement C of C.

For the second dichotomy Fortune et a/. [FHWS80]
considered the restriction of the subgraph homeomorphism
problem to acyclic graphs. They showed that if only acyclic
graphs are allowed as inputs, then the H-subgraph homeo-
morphism query can be answered in polynomial time for
every pattern graph H.

Note that these two dichotomies yield a computational
distinction only if P # NP. In this section, without using any
complexity theoretic assumptions, we establish that the two
dichotomies are indeed proper in terms of expressibility in
Datalog(s). More specifically, on the positive side we show
that the H-subgraph homeomorphism query is expressible
in Datalog(# } for every pattern graph H in the class C. We
also prove that if only acyclic graphs are allowed as inputs,
then the H-subgraph homeomorphism query is expressible
in Datalog(#) for every pattern graph H. Finally, on the
negative side we demonstrate that if the pattern graph H
is in the complement C of C, then the fixed subgraph
homeomorphism query is not expressible in L® and, a for-
tiori, is not expressible in Datalog(#) as well. The rest of
the present section is devoted to the proofs of these results.

6.1. Positive Results

As mentioned earlier, Fortune ez a/. [FHW80] exhibited
polynomial-time algorithms for certain cases of the fixed

4 We note that Fortune er al. actually consider multigraphs; ie., they
allow multiple edges between pairs of nodes, while we consider only
graphs; i.e., we do not allow multiple edges between pairs of nodes. Their
results, however, apply to graphs as well.

122

subgraph homeomorphism problem. We strengthen here
these results by establishing that in these cases the fixed sub-
graph homeomorphism problem is actually expressible in
Datalog(#).

THEOREM 6.1. Let H be a pattern graph in the class C.
Then the H-subgraph homeomorphism query is expressibly in
Datalog(#).

Proof. Fortune et al. show that for pattern graphs H
in C the H-subgraph homeomorphism problem can be
reduced to a network flow problem, where we want to know
whether the input graph, viewed as an appropriate directed
network with node capacities, can carry a flow greater or
equal than the outdegree & of the root (or the indegree k of
the root if the root is the tail of every edge). This reduction
establishes that the H-subgraph homeomorphism query is
decidable in polynomial time for pattern graphs H in C.

Using the max-flow min-cut theorem (cf. [Bol79]) and
the fact that k& is fixed, we can express this query by a
Datalog(#) program. We first illustrate the proof for the
case where H has nodes v, v,, v, and edges (v, v,), (v, v5). In
this case if G is an input graph and s, s,, s, are the
distinguished nodes of G, then the H-subgraph homeo-
morphism query (s, s;,s,) becomes “are there node-
disjoint simple paths from s to 5, and to 5,7

Recall that if w is a node in a graph, then a path 7 in the
graph is w-avoiding if n= does not go through w. More
generally, if ¢/, ..., t, are nodes in a graph, then a path z in
the graphis {7, ..., ,} -avoiding if = does not go through any
of the nodes ¢, ..., ¢,.

Let Q'(s, sy, 5,) be the query: “is there a path w, =y,
Wy, ..., W,, =5, from s to s, such that for every w,, 2<i<m,
there is a wavoiding path from s to §,7” We claim that
Q'(s, 5;, 52) holds precisely when there are node-disjoint
simple paths from s to s, an so s, (ie., when Q(s, s, 5,)
holds). Indeed, it is first of all obvious that if there are node-
disjoint simple paths from s to 5, and to s,, then Q'(s, 5., 5,)
holds. Conversely, assume that Q'(s, 5., §,) holds in G, but
that any two simple paths from s to s, and from s to s, inter-
sect at some node. Then by Menger’s theorem for directed
graphs (or, equivalently, by the max-flow min-cut theorem)
(cf. Bollobas [Bol79]) there is a node w in G such that any
two simple paths from s to s, and from s to s, intersect at w.
This, however, violates the fact that Q'(s, s,, 5,) holds.

Thus, it remains to show that the query Q'(x, y, z) is
expressible in Datalog(#). Let T(u, v, w) be the query “is
there a w-avoiding path from u to v?” As it was shown in
Example 2.1, T is expressible in Datalog(#). Consider now
the following program in which 7 is viewed as an EDB
predicate:

Ql(ss sl’ Sz) A E(Ss sz), T(S’ sl’ s2)
Q’(S, sl, SZ) - Q'(S, sls W‘), E(wv’ SZ), T(Ss s]! SZ)'

KOLAITIS AND VARDI

It is easy to verify that the above program does indeed
compute Q'

For the general case, suppose that the pattern graph H
has a root with outdegree k (the case where the root has
indegree k is analogous), and, furthermore, assume for now
that H does not contain a self-loop. In this case the input
graph G has distinguished distinct nodes s,s,, ..., s,, and
the H-subgraph homeomorphism query Qg(s,s,, ..., 5;)
asks whether there are k node-disjoint simple paths from s
to s, .., 8. To show that this query is expressible in
Datalog(#), we prove the expressibility of a stronger
query, where the input graph contains also distinguished
nodes ¢, ..., t; and the query is whether there are K node-
disjoint simple {¢,, .., ¢,} -avoiding paths from s to s, ..., 5.
Denote this query by O, (s, s;, ... 8k, 1y, -, £;). Note
that the original H-subgraph homeomorphism query
Ouls, sy, .y 8) 1s simply Qg o5, 5y, .., 5). We prove
expressibility of @, (s, 51, ..., ¢, #;, .., £;) in Datalog(#) by
induction on k.

For k=1, the query Q, ,(s,5,, 1, .., ;) is a generaliza-
tion of the query of Example 2.1 (indeed the query in that
example is simply @,) and is expressed by the program

Qs sy, 8, 0 1)

— FE(5,8)), S#Et, ... SFl, S1#l,.,5#F
Q1405 81, 8y, 0 1)

‘_Ql,l(sa w, tla"'a t[)s E(w'-sl)’ sl?étl"“a sl¢t1'

Assume inductively that we have shown how to express
Oi_1.1 120, in Datalog(#). Let Q; (s, Sy, .., S, I15 - 1)
be the query “is there a path w, =, w,, ..., w,, =5, from s to
s, such that for every w;, 2<i<m, there are k—1
node-disjoint simple {w,, ¢, .., #,}-avoiding paths from s
tO0 S, e Sy (1€, Qp 1 11 (S, 81, s S 1 Wiy Ly o)
holds). We claim that @ (s, sy, ..., S, t;, .., ;) holds
precisely when Q. ,(s, 51, ..., 54, 11, .., t;) holds.

Indeed, it is obvious that if there are node-disjoint
simple {r,, ..., t,}-avoiding paths from s to s,, .., s, then
Qr.i(5, 8, s Syt .y 1;) holds. Conversely, assume that
Qi (8,81, s Si» by, -y £;) holds, but there are no node-dis-
joint simple {t,, .., 1,}-avoiding path from s to s,, .., 5.
Then by Menger’s theorem for directed graphs, or, equiv-
alently, by the max-flow min-cut theorem (cf. Bollobas
[Bol79]), there are nodes wu,,..,u,_; such that any
{t,, .., t;}-avoiding path from s to any one of the nodes
Sy, ., 5 must go through one of the nodes u,, .., u,_,.
Since Qy (s, 51, ..y S5 1y, ..., ;) holds, there is a path w, =5,
Wy, .., W,, =8, from s to s, such that for every w,, 2 <i<m,
there are k — 1 node-disjoint simple {w, t,, ..., t,}-avoiding
paths from s to s, ..., 5, _,. We know that there are i, j,
where 2<i<m and 1<j<k—1, such that w,=u, It
follows that there are no k—1 node-disjoint simple
{w, t,, .., t;}-avoiding paths from s to s, ..., 5, _, which is
a contradiction.

DATALOG: TOOLS AND CASE STUDY

It remains to show that Qj ,(s, 8, .., 8¢, 1, b)) 1S
expressible in Datalog(#):

Qi 18, 81, s Sy, s 1))

— B850) O 1151085 815 vy Sps Ly e
O (8, 815 oy Siy tyy s 1))

— Ok (8, 81, s Wty o 1)), E(w, 83,

’t[)-

3 tl)

Ou 1108 81, e Speu b,

Finally, we have to deal with the case in which H does
contain a self-loop. In this case, the input graph G has dis-
tinguished distinct nodes s, s, ..., S, and the H-subgraph
homeomorphism query Qg(s, s,, ..., 5,) asks whether there
are k + 1 node-disjoint simple paths from s to s, 5, ..., 5.
Clearly, Qu(s,s,,..,s;) holds if and only if either
O o(8, 51, ..., $;) holds and G contains a self-loop on s or
there is node s, . , that is distinct from s, s, ..., 5, such that
there is an edge from s, ., to s and Q, .| o(8, Sy, s Sk 1)
holds. Thus, it is easy to see that Q, can be expressed in
Datalog(#). |

As mentioned earlier, [FHW80] showed that if the input
graphs are restricted to be acyclic, then all fixed subgraph
homeopmorphism queries can be answered in polynomial
time. We prove next that in this case the queries are actually
expressible in Datalog(#).

THEOREM 6.2. Let H be a fixed graph. Then there is a
Datalog(#) program m, that expresses the H-subgraph
homeomorphism problem for acyclic graphs.

Proof. Consider a pattern graph H with nodes v,, ..., v,.
We denote the edge between v; and v;, if it exists, by e;;. Here
the input graph G has distinguished distinct nodes s, ..., 5,
and we have to determine whether H is homeomorphic to
the distinguished subgraph of G. Consider the following
pebble game between two players on a graph G. (We note
that this game is different from the existential pebble game
described in Section 4. In particular, the current game is
played on a single structure, while the games in Section 4
were played on pairs of structures.) To each edge e; in H
there corresponds a pebble p,;. A position in the game con-
sists of a placement of a subset of the pebbles on the nodes
of G. Initially, all pebbles are placed on G: each pebble p,, is
placed on s,. A round of the game consists of the following:

 Player I points to one of the pebbles, say p;, that is
placed on a node w.

» Player Il moves p,; to a node v such that there is an
edge from u to v, there is no other pebble on v, and v is not
a distiguished node of G except perhaps s;. If v is s;, then
Player II removes p,, from G.

Player I (resp., II) wins if II (resp., I) cannot make a
move. Thus, Player II wins if and only if all pebbles have

571/51/1-10

123

been removed from G. We claim that Player II has a
winning strategy if and only if H is homeomorphic to the
distinguished subgraph of G. The proof is almost identical
to the proof of Lemma4 in [FHWS80], which relates
homeomorphism in acyclic graphs to a certain single-player
pebble game.

Suppose first that H is homeomorphic to the dis-
tinguished subgraph of G. That is, for each edge e, in H the
input graph G contains a node-disjoint simple path 7, such
that z;; is a path from s, to 5, and the paths are pairwise
node-disjoint. Then Player II’s strategy is simply to move
the pebble p,; along the path r,;. Ultimately, p; arrives at s;
and is removed.

Suppose now that Player II has a winning strategy.
Define the level of a node in G to be the length of the longest
path in G from that node. Levels are well-defined, since G is
acyclic. Suppose that Player I always points to a pebble on
a node with a maximal level among all pebbled nodes (ties
are broken arbitrarily). We know that Player II wins even
against this strategy for Player I, since Player II has a
winning strategy. Clearly, pebble p; traces a path 7, from s,
to s,. We claim that these paths are pairwise node-disjoint.
Suppose that the paths z,; and =,,, intersect at a node v that
is not their endpoint. Note that, by the rules of the game, v
is not a distinguished node of G. Suppose p,,, was placed on
v first. It must have been removed from v before p, was
placed on v. Suppose that p,; was placed on a node u when
Pmn Was removed from v. Clearly, there is a path from u to
v. Thus, the level of u is higher than the level of v, and
Player I should have pointed to p; and not to p,,,, which is
a contradiction.

It remains to show that the existence of a winning strategy
for PlayerII can be expressed in Datalog(#) We
demonstrate this on a simple example and leave the general
case to the reader. Consider a particular fixed subgraph
homeomorphism query: the two node-disjoint paths query.
Here we have to determine whether an input graph G con-
tains node-disjoint simple paths between distinguished
nodes s; and ¢, and between distiguished nodes s, and ¢,.
The four distinguished nodes are distinct. This can be deter-
mined by considering the following pebble game between
two players on the graph G. Here there are two pebbles, p,
and p,. A position in the game consists of a placement of a
subset of the pebbles on the nodes of G. Initially, p, is placed
on s, and p, is placed on s5,. A round of the game consists
of the following:

» Player I points to one of the pebbles, say p,, that is
placed on a node u.

o Player II moves p; to a node v such that there is an
edge from u to v, there is no other pebble on v, and v is not
a distinguished node of G except perhaps ¢,. If v is 7,, then
Player II removes p, from G.

Player I (resp., II) wins if II (resp., I) cannot make a move.

124

It is easy to show that Player Il has a winning strategy in
the above game if and only if the query D(s,, s5,) holds:

D(tls 12)“‘
Dt v)—E(y. ¥), DUt ¥)Y y#s, y# 1L,V #53
Dix, t,)— E(x,x"), D(x', t5), X #3$,5, X F# 15, X' #35,
DX, V) ex# V. X#FS,, XF 1, XF# 1,
YFES,, YFEL, Y EL,
E(y. 3. D(x, y'), V' #5,
Elx, x'). DX, y), X' #5,. 1]

It should be pointed out that the preceding positive
results presented in Theorem 6.1 and Theorem 6.2 depend
on the use of inequalities in Datalog(#) programs in a cru-
cial way. Indeed, fixed subgraph homeomorphism queries
are not expressible in Datalog (without inequalities), since
such queries are not preserved under homomorphisms.

6.2 Negative Results

We focus now on fixed subgraph homeomorphism
queries in which the pattern graph H is in the complement
C of the class C. Note that the results of [FHWS80] and the
preceding Corollary 5.6 imply that if P NP, then the
H-subgraph homeomorphism query is not expressible in
L®, for any pattern graph H in C.

We will derive here the same conclusion without
appealing to the assumption that P 3 NP. The main idea
behind the proof is to convert a complexity lower-bound
proof to an expressibility lower-bound proof. For this, we
first analyze the NP-hardness proof of the fixed subgraph
homeomorphism queries for pattern graphs H in C and
extract certain graphs on which we play existential k-pebble
games. We then apply the game-theoretic characterization
of L given by Theorem 4.10 to obtain the lower bound on
the expressibility of the fixed subgraph homeomorphism
queries.

Recall that the class C consists of all directed graphs with
a distinguished node and with the property that either this
distinguished node is the head of every edge or it is the tail
of every edge. It follows that the complement C of the class
C is the collection of all directed graphs G such that G
contains at least one of the following subgraphs:

1. A graph H, that consists of two disjoint edges; 1e., H,
has four distinct nodes s,, 5., 55, 5, and two disjoint edges
($1, 53), (53, 84).

2. A graph H, that is a path of length two through three
distinct nodes; i.e., H, has three distinct nodes s,, s,, 5, and
edges (5, 55), (5, §3).

3. A graph H, that is a cycle of length two; i.e., H, has
two distinct nodes s,, s, and edges (s, $,), (55, §,).

KOLAITIS AND VARDI

Note that these three graphs give rise to the following
natural fixed subgraph homeomorphism queries:

1. Given a directed graph G and four distinct nodes s,
$,, $3, 54, are there two node-disjoint simple paths from s,
to s, and from s, to 5,7

2. Given a directed graph G and three distinct nodes s,
S, 81, 1s there a simple path from s, to s, that goes through
5,7

3. Given a directed graph G and two distinct nodes s,
and s,, is there a simple cycle containing both s, and s,?

We wish to establish that if the pattern graph H is in the
class C, then the fixed subgraph homeomorphism query
with pattern H is not expressible in L. The following
lemma and the preceding description of the class C imply
that it is enough to establish this only for the subgraph
homeomorphism queries with pattern H,, H,, and H,.

LEMMA 63. Assume that F| and F, are two directed
graphs such that F| is a subgraph of F,. If the fixed subgraph
homeomorphism query with pattern F, is not expressible in
L¥, then the fixed subgraph homeomorphism query with
pattern F., is not expressible in L® as well.

Proof. We have to show that there is no k = 1 such that
the fixed subgraph homeomorphism query with pattern F,
is expressible in the infinitary logic L*. Assume that F, has
! nodes s,..,s, and that F, has m nodes s, .., s,
Si4 15 - S, As explained earlier, we can assume without
loss of generality that F, and F, contain no isolated nodes.
Since the fixed subgraph homeomorphism query with
pattern F, is not expressible in L, the direction (2) = (1) of
Theorem 4.10 implies that for each k > 1 there is a graph A4,
with distinguished nodes a,, .., a, and a graph B, with dis-
tinghuished nodes b,, ..., b, such that the following hold:

1. F,is homeomorphic to the distinguished subgraph of
Ay

2. F, is not homeomorphic to the distinguished sub-
graph of B, ;

3. Player II has a winning strategy for the existential
k-pebble game on the graphs (4,,4,,..,q,) and
(Bks bl3] bl)

Let F, — F| be the graph consisting of the edges of F, that
are not in F|, together with the nodes that are incident to
these edges. We construct a graph A4; with distinguished
nodes a,, .., a;, 4., .., a,, by adding a copy of F, — F, to
A, , where a node s, of F,— F, that happens to be also a
node of F, is identified with the associated distinguished
node a, of A,. Moreover, the nodes s, ,, ..., 5,, of F,, which
are not nodes of F|, are associated with the distinguished
nodes 4 |, .., a,, of A;. In a similar manner we construct
also a graph B, with distinguished nodes b,,..,5,,

’ ’
419 s bm‘

DATALOG: TOOLS AND CASE STUDY

We now claim that the following hold:

1. F, is homeomorphic to the distinguished subgraph
of A};

2. F, is not homeomorphic to the distinguished sub-
graph of Bj;

3. Player II has a winning strategy for the existential
k-pebble game on the graphs (A, a,, .., a;, aj (.., ay)
and (B, b,,...b,,b),,,...b,).

The first fact is obvious in view of the corresponding fact for
F, and A, above. For the second fact, one can show that the
construction described above has the property that if F, is
homeomorphic to the distinguished subgraph of By, then F,
is homeomorphic to the distinguished subgraph of B,.
Actually, this is contained in the proof of Lemma I in
[FHW801] and is established by induction on the number of
edgesin F,— F|.

Finally, Player I can win the existential k-pebble
game on A, and Bj by playing as follows. If Player I places
a pebble on a node of A4 that happens to be a node of
A,, then Player Il responds by placing a pebble on a
node of B, according to his winning strategy for the
existential k-pebble game on the graphs (4, a, .., a;) and
(B, by, ..., ;). If Player I places a pebble on a node a; of 4},
that is not a node of A4,, then Player II places a pebble on
the corresponding node &; of B;.

It now follows from the direction (1)=-(2) of
Theorem 4.10 that the fixed subgraph homeomorphism
query with pattern F, is not expressible in L*. [

The preceding Lemma 6.3 was inspired from Lemma 1 in
[FHW80], which asserts that if F, is a subgraph of F, and
the fixed subgraph heomeomorphism query with pattern F,
is NP-hard, then the fixed subgraph homeomorphism query
with pattern F, is also NP-hard.

Our next goal is to show that the fixed subgraph
homeomorphism query with pattern H | (i.e., “are there two
node-disjoint simple paths betwen two given pairs of dis-
tinct vertices?”) is not expressible in L®. The proof of this
result requires a thorough understanding of the proof that
the fixed subgraph homeomorphism query with pattern H,
is NP-hard. We now present a detailed proof of this NP-
hardness result, which is the main technical accomplish-
ment of [FHWS80].

Fortune et @l [FHWS80] show that the SATIS-
FIABILITY problem for Boolean formulas in conjunctive
normal form has a polynomial-time reduction to the fixed
subgraph homeomorphism query with pattern H,. A key
ingredient of their reduction is a special graph, called a
switch, that is depicted in Fig. 1. If p is a simple path in the
switch, then we say that p is passing through the switch if it
starts at a node having indegree zero and ends at a node
having outdegree zero. Among the several paths that are
passing through the switch, we single out the following six:

125

FIGURE 1

plc,a)isthepath5 5453521,
p(b,d)isthepath6' -2' > 759 - 12.
ple, f)isthepath8 -9 — 10’ - 4' > 11"
g(c,a)isthe path5' -4 -3 52" > 1.
q(b,d)isthepath6 -2 -7 -9 - 12"
q(g,h)isthepath8—-9-10-4 > 11.

AN O i h e

The crucial combinatorial properties of the switch are
presented in the lemma below, whose proof can be easily
derived by inspecting the switch (cf. also [FHW801]).

LEMMA 6.4. Suppose that two node-disjoint paths are
passing through the switch, with one starting at node b and the
other ending at node a. Then the path ending at a must start
at ¢ and the path starting at b must end at d. Moreover, these
two paths must be either p(c, a) and p(b,d) or q{c, a) and
q(b, d). In the first case, p(e, f) is the only path that is passing
through the switch and is node-disjoint from these two paths,
while in the second case q(g, h) is the only such path.

We describe now the reduction of the SATISFIABILITY
problem to the fixed subgraph homeomorphism query with
pattern H,, as given in [FHW80]. Assume that ¢ is a
Boolean formula in conjunctive normal form with variables
Xy, .., X, and clauses ¢, .., ¢;. Using this formula we will
construct a graph G, that will give rise to an instance of the
fixed subgraph homeomorphism query with pattern H,.

The graph G, has two main “building blocks,” one for the
variables of ¢ and one for its clauses. In addition, there are

126

FIGURE 2

several switches, one for each occurrence of a literal in a
clause of ¢.

The building blocks for the variables x,, ..., x, of ¢ are
suitable copies of the graph of Fig. 2, one for each variable
x;. The left column of vertical edges is associated with the
literal x;, while the right column is associated with the literal
X,;. The number of edges in each vertical column is equal to
the number of occurrences of its associated literal in the for-

e

KOLAITIS AND VARDI

mula ¢. When we construct the graph G, later on, each ver-
tical edge will be replaced by a path of the form g(g, #) from
an appropriate switch. The building blocks for the variables
are linked together by connecting the bottom node of the
graph for x; with the top node of the graph for x, .

The building block for the clauses ¢, ..., ¢; of ¢ has nodes
ngy, .., n; With certain node-disjoint paths from n;_,, to n,
1 <j</ The number of paths from the node n,_, to the
node 7, is equal to the number of literals occurring in the
clause ¢;, 1 <</

The graph G, is now constructed from these building
blocks and the switches as follows (see Fig. 3):

1. For each occurrence of a literal y in a clause c;, we
replace one of the vertical edges in the column associated
with y by the path g(g, #) of the switch associated with this
occurrence. We also set one of the paths from the node n;
to n; to be the path p(e, /) of the same switch.

2. We link all the switches together by first imposing an
arbitrary order on the switches and then connecting the d

S,

b node of
furst switch

d node of
last switch

5,

¢ node of
last switch

a node of
first switch

FIGURE 3

DATALOG: TOOLS AND CASE STUDY

node of each switch to the b node of the next switch and the
a node of each switch to the ¢ node of the previous switch
(see Fig. 4).

3. We link the building blocks for the variables to the
building block for the clauses by adding an edge from the
bottom of the building block for the variable x, to the
node n,.

4. Finally, we add four distinguished nodes s, 55, 55, 54
and the following five edges: an edge from s, to the ¢ node

FIGURE 4

127

of the last switch; an edge from the a node of the first switch
to 5,; an edge from s; to the & node of the first switch; an
edge from the d node of the last switch to the top of the
building block for variable x,; finally, an edge from #, to s,.

Figures 5 and 6 depict the graphs G, for the cases where ¢
is the formula x, v x, and the formula x, A x,, respectively.

Fortune et al. [FHWS80] showed that the SATIS-
FIABILITY problem with instance a Boolean formula ¢
reduces to the H|-subgraph homeomorphism query with
input the graph (G, sy, 5,, 53, 54). In other words, they
showed that a Boolean formula ¢ is satisfiable if and only if
in the graph G, there are two node-disjoint simple paths
from s, to s, and from s, to s,.

Assume first that the formula ¢ is satisfiable. In this case,
any fixed satisfying assignment for ¢ can be used to con-
struct two node-disjoint simple paths p, from s, to s, and p,
from s to 5,. The part of p, along the building blocks for the
variables of ¢ is specified by requiring that if a literal y is
true under the satisfying assignment, then p, goes through
the column associated with the complement y of y in the
building blocks for the variables. Thus, p, is required to
contain paths of the form g(g, #) from some of the switches.
The part of p, along the building block for the clauses is
specified by requiring that p, links n, _, to n;, 1 <</, by
going through a path p(e, /) from a switch associated with
an occurrence in clause ¢; of a literal that is true under this
satisfying assignment. Consequently, for every switch in the
graph ¢, at most one of the paths p(e, /) and ¢(g, /) from
that switch is committed to be part of the path p,. We can
now extend this specification to a simple path p, from s, to
s, as follows: if p, contains the path p(e, /) of a switch, then
we require that p, also contains the path p(b, d) of the same
switch; if p, contains the path g(g, 4) of a switch, then we
require that p, also contains the path (b, d) of the same
switch; if p, contains neither the path p(e, /) nor the path
q(g, h) of some switch, then we choose one of the paths
p(b, d)or g(b, d) of that switch and require p, to contain the
path we chose. We can also find a simple path p, from s, to
s, that is node-disjoint from p,. We only have to require
that p, contains either the path p(c, a) or the path ¢(c, a) of
every switch, depending on whether p, contains the path
plb, d) or the path q(b, d) of that switch.

Assume next that in the graph G, there are two node-dis-
joint simple paths p, from s, to s, and p, from s, to 5,. Let
us examine the possible routings of these two paths through
the graph G,; see Figs. 3 and 4. Path p, leaves the first
switch at node a and path p, enters the first switch at node
b. Since b, ¢, e, and g are the only nodes of the first switch
through which a path can enter the switch, it follows that
the intersection of p, with the first switch is a path passing
through the switch. Similarly, since q, 4, f, and 4 are the only
nodes of the first switch through which a path can leave the
switch, it follows that the intersection of p, with the first

128

O—E—

p(cl'fl)

qlg,.h)

FIGURE 6

q(g,h)

KOLAITIS AND VARDI

&

E—

E—S

D

FIGURE 5§

O3

switch is also a path passing through the switch. Since these
intersections are node-disjoint simple paths, Lemma 6.4
implies that p, must enter the first switch at ¢ and path p,
must leave the first switch at & This, in turn, implies that p,
must leave the second switch at node a of it and path p,
must enter the second switch at node & of it. By repeating
the previous argument for each switch, we infer that path p,
must pass through the ¢ node and through the ¢ node of
each switch, while path p, must pass through the node and
through the d node of each switch. In addition, Lemma 6.4
implies that path p, must be made up of segments that are
paths of the form p(a, ¢) or g(a, c¢), and for each switch
exactly one of the paths p(a, ¢), g(a, ¢) is a segment of p,.
Similarly, the part of p, from s, to the top of the building
blocks for the variables consists of segments that are paths
of the form p(b, d) or q(b, d), and for each switch exactly
one of the paths p(b, d), q(b, d) is a segment of p,.

Let us examine the routing of path p, through the
building blocks of the variables. Since p, is a simple path
that is disjoint from p,, the preceding analysis shows that,
whenever p, enters a node g of some switch, it must travel
along the path ¢(g, /) of that switch and exit at node h. As
a result, we have that p, contains exactly one of the two ver-
tical columns of each building block associated with a
variable of . Similarly, whenever p, enters a node e of some
switch, it must travel along the path p(e, /) of that switch
and exit at node f. Thus, p, must go through every node n;
and, moreover, it must reach n, from n;, | by traveling along
a path p(e, /) of some switch.

DATALOG: TOOLS AND CASE STUDY

We now set a literal in ¢ to be true if and only if the path
P, contains the vertical column associated with the literal y.
The preceding comments show that this truth assignment is
well defined. Moreover, this assignment satisfies the formula
. Indeed, assume that p, reaches n, from n,_, by traveling
along a path p(e, /) of some switch that is associated with
the occurrence of a literal y in clause ¢;, 1 <;j</ In this
case, p, can not contain the path g(g, #) of the same switch
and, hence, it must contain the vertical column associated
with y. As a result, y is true and clause c; is satisfied.
This completes the proof that the fixed subgraph
homeomorphism query with pattern H, is NP-hard.

We are ready to return to our goal, which is to show that
the fixed subgraph homeomorphism query with pattern H,
is not expressible in the infinitary logic L. This will
be achieved by playing existential k-pebble games on
appropriate graphs that we will extract from the preceding
NP-hardness proof. Since the winning strategy for Player II
in these games will turn out to be quite complicated, we
introduce first certain k-pebble games on Boolean formulas
that will be used as an auxiliary device to describe the moves
of Player II in the existential k-pebble games.

Usually, a truth assignment is understood to be a
mapping from a set {x,,..,x,} of variables to the set
{true, false} of truth values. In what follows, we will be
considering “extended” truth assignments in which we
keep tract of the truth values assigned to literals, ie., both
variables x; and negated variables x;, 1 <i< k. The under-
standing is that if x, is assigned value true, then x, is assigned
value false at the same time, and vice versa. Similarly, if x;
is assigned value false, then x, is assigned value true at the
same time and vice versa.

DEFINITION 6.5. Let k be a positive integer and let ¢ be
a Boolean formula in conjunctive normal form with
variables x, .., x,, and clauses c,, ..., ¢,. The k-pebble game
between Players I and Il on the formula ¢ has the following
rules:

Player I moves first by placing a pebble either on one of
the literals x,, Xy, .., x,,,, X, or on one of the clauses
¢, .., ¢, of the formula ¢. If the pebble is placed on a literal,
then Player II has to assign a truth value to it; otherwise,
Player II has to select a literal from the clause pebbled by
Player I and assign the value true to it. The game continues
this way until each player has made & moves. If at some
point during these moves a literal has been assigned value
both true and false by Player II, then Player I wins the
game; otherwise, Player I removes some of his pebbles and
the game resumes until again he has placed k-pebbles and
Player II has responded.

We say that Player II wins the k-pebble game on the
formula ¢ if he has a winning strategy that allows him to
continue playing the game “forever.”

If the formula ¢ is satisfiable, then Player II wins the

129

k-pebble game for every k > 1, by playing according to a
satisfying assignment for ¢. On the other hand, if ¢ i1s an
unsatisfiable Boolean formula with k& variables, then
Player I wins the (k + 1)-pebble game on ¢. Indeed, Player I
places one pebble on each positive literal of ¢ during his first
k moves, forcing this way Player I to determine a truth
assignment for all the literals of ¢. Since ¢ is unsatisfiable,
there is a clause ¢ that is not satisfied by this truth assign-
ment. Player 1 wins the (k + 1)-pebble game on ¢ by placing
his last pebble on the clause ¢. It should be pointed out that
there are unsatisfiable formulas with & variables for which
Player I can win the game with as few as two pebbles.
Consider, for example, the formula
Xp AXa A s AXpg AX, VX,V oo v XL)

Player I wins the two-pebble game on the above formula, as
follows. In his first move Player I places a pebble on the
clause (X, vx,v --- vx.) If PlayerIl responds by
making the literal X, true, then Player I wins by placing his
second pebble on the clause consisting of the literal x;.

Let ¢,, k=1, be the complete Boolean formula on the
variables x,, ..., x,. This is the only formula in conjunctive
normal form that has 2* distinct clauses, each with k distinct
literals. For example, ¢, is the formula

(X, VX)) A(X VX)) A(X] V) A (X VX,

Note that each ¢,, k> 1, is an unsatisfiable formula and,
consequently, Player I wins the (k + 1)-pebble on ¢,. In
contrast, Player II wins the k-pebble game on the formula
@, by playing according to the following strategy. Suppose
that Player I places a pebble on a literal . If the truth value
of y is determined at present, the Player II maintains this
truth value; otherwise, Player II assigns a truth value (true
or false) to y arbitrarily. Suppose that Player I places a
pebble on a clause ¢ of ¢,.. This means that at most (k —1)
pairs of literals of the form (x,, ¥;) have their truth values
determined at present. Thus, ¢ contains at least one literal
whose truth value is not determined at present. Player 11
wins by selecting such a literal from ¢ and assigning value
true to it.

THEOREM 6.6. Let H, be a graph consisting of two
disjoint edges. Then the fixed subgraph homeomorphism
query with pattern H| is not expressible in the infinitary
logic L*.

Proof. We have to show that there is no k > 1 such that
the fixed subgraph homeomorphism query with pattern H,
is expressible in the infinitary logic L*. Theorem 4.10 implies
that it is enough to show that for every k> | we can find a
graph A4, with distinguished nodes w,, w,, w;, w, and a
graph B, with distinguished nodes s, s,, 55, 54 such that the
following hold:

130

1. In the graph A, there are two node-disjoint simple
paths from w, to w, and from w; to wy;

2. In the graph B, there is no pair of node-disjoint
simple paths from s, to 5, and from s, to s,;

3. Player I has a winning strategy for the existential
k-pebble game on the graphs (A, w,, w,, w;, w,) and
(B, 51,55, 53, $4).

The graph A4, will consists of just two node-disjoint
simple paths. The lengths of these paths will be determined
later on.

Let ¢, be the complete Boolean formula on the variables
Xy, .., X; and let G,_be the graph associated with it in the
reduction of the SATISFIABILITY problem to the fixed
subgraph homeomorphism query with pattern H,. We take
(B, 81, 52, 53, 54) to be the graph (G, 5|, 55, 53, 54), where
51, 82, 3, 84 are the nodes introduced at the very end of the
construction of G, . Since ¢, is an unsatisfiable formula,
there is no pair of node-disjoint simple paths from s, to s,
and from s, to 5,.

We now focus on certain paths from s, to s, and from s,
to 54 1n G, , which we will call standard paths. Intuitively, a
standard path would be a possible member of a pair of
node-disjoint simple paths from s, to s, and from s; to s,,
if such a pair existed. More precisely, a standard path from
5, to s, 1s a simple path from s, to s, such that for every
switch of the graph G, the path goes through both node ¢
and node a of that switch by containing as a segment exactly
one of the paths p(c, a) and ¢(c, a) of that switch. Note that
there are exponentially many standard paths from s, to s,,
but they are all of the same length, since the paths p(c, a)
and g(c, a) of every switch have the same length.

A standard path from s, to s, is a path from s, to s, such
that from s, to the top of the building blocks for the
variables in G, it goes through both node b and node d of
every switch by containing as a segment exactly one of the
paths p(b, d) and q(b, d) of that switch. A standard path
from s, to s, is also required to contain exactly one vertical
column of the building block of each variable. In addition,
it should go through every node n,, 0 < j < 2% and it should
reach node n; from node n;_ ;, 1 < j < 2k, by traveling along
a path p(e, /) of some switch. Note that again there are
exponentially many standard paths from s, to s, but they
are all of the same length, since the paths p(b, d) and g(b, d)
have the same length in every switch, and all literals have
the same number of occurrences in ¢, , which implies that
all vertical columns are of the same length. It should also be
pointed out that, unlike standard paths from s, to s,, no
standard path from s, to s, is a simple path. Indeed, it is not
hard to show that if a standard path from s, to s, were
simple, then ¢, would be satisfiable.

Let 4, be a graph consisting of two node-disjoint simple
paths from a node w, to a node w, and from a node w, to
a node w, such that the length of the first path is equal to the

KOLAITIS AND VARDI

length of a standard path from s, to 5, in the graph G,
while the length of the second is equal to the length of a
standard path from s;to s, in G, .

Let p be a standard path from s, to s, in B,. Since the
path from w, to w, in A4, is a simple path having the same
length as p, there is a natural mapping f between nodes in
these two paths, such that if x is the ith node in the path
from w to w,, then f(x) is the ith node in the path p. In this
case, we say that f(x) is the node in p corresponding to the
node x in the path from w, to w,. Similarly, if ¢ is a standard
path from s; to s, in B,, then there is a natural mapping g
between nodes in the path from w, to w, in 4, and nodes in
g, such that if = is the jth node in the path from w, to w,,
then g(x) is the jth node in ¢g. Again, we say that g(z) is the
node in g corresponding to the node z in the path from w, to
W,.

The proof of the theorem will be complete once we estab-
lish that Player II has a winning strategy in the existential
k-pebble game on the graphs (A4, w,, w,, wy, w,) and
(By, 51,52, 53, 54). The idea behind the strategy of Player II
is as follows. If Player I places a pebble on a node in the
path from w, to w, in 4, then Player II will place a pebble
on the corresponding node in some standard path from s, to
3. On the other hand, if Player I places a pebble on a node
in the path from w; to w,, then Player II will place a pebble
on the corresponding node in some standard path from s, to
$4. In addition, Player II has to ensure that the mapping
from the pebbled nodes of 4, to the corresponding pebbled
nodes of B, is a one-to-one homomorphism. Player II will
achieve this by making sure that at all times for every switch
of the graph G, all pebbles on nodes of that switch are
either on correponding nodes in the paths p(c, a), p(b, d),
ple, f) of the switch or on corresponding nodes in the paths
qlc, a), q(b, d), gl g, h) of the switch.

We now describe the winning strategy of Player Il in
more detail. If Player I places a pebble on a node in 4,
whose corresponding node is one of the nodes a, b, ¢, d of
a switch, or one of the nodes linking one building block for
a variable to the next, or one of the nodes n ,0<j< 2% then
Player II places a pebble on the corresponding node in B, .
This is the trivial part of Player II’s strategy. We focus next
on the nontrivial part of his strategy and from now on we
assume that all moves of Player I are on nodes other than
the ones described above. In this case Player II views also
each move of Player I as a move in a k-pebble game on the
formula ¢, that is played simultaneously with the existential
k-pebble game on the graphs (A4, w;,w,, w;, w,) and
(B, s, 55, 53, 5,). Player II keeps track of the current con-
figuration of the k-pebble game on ¢, and uses his winning
strategy for this game to determine his moves on the existen-
tial k-pebble game. Recall that during a k-pebble game on
a formula in conjunctive normal form Player I challenges
Player 11 to either assign a truth value to a literal or to select
a literal from a clause and assign value true to it. Player II

DATALOG: TOOLS AND CASE STUDY

has to keep playing in such a way that no literal has ever
value both true and false. We describe next how Player I1
interprets the moves of Player I as moves in the k-pebble
game on the formula ¢,. We distinguish the following four
cases:

Case 1. Assume that Player I places a pebble on a node
in the path from w, to w,. The response of Player II in the
existential k-pebble game will be to place a pebble on the
corresponding node in a standard path from s, to s,.
The node that will be pebbled by Player II is going to be
either in the path p(c, a) of some switch or in the path g(c, a)
of the same switch. The switch is determined by the distance
from w, of the node pebbled by Player I. Player Il interprets
also the move of Player I as a challenge in the k-pebble
game on ¢, to assign a truth value to the literal y with which
this switch is associated in G, .

Case 2. Assume that Player I places a pebble on a node
in the path from w, to w, such that the corresponding node
on a standard path is at a position between s; and the
node at the top of the building blocks for the variables in
G,, . The response of Player Il in the existential k-pebble
game will be to place a pebble on the corresponding node in
a standard path from s, to s,. The node that will be pebbled
by Player II is going to be either in the path p(b, d) of some
switch or in a path g(b, d) of the same switch. Again, the
switch is determined by the move of Player I. In addition,
Player 11 interprets the move of Player I as a challenge in
the k-pebble game on ¢, to assign a truth value to the literal
¥ with which this switch is associated in G, .

Case 3. Assume that Player I places a pebble on a node
in the path from w; to w, such that the corresponding node
in a standard path is the vertical column for some variable
x, or in the vertical column for its negation x,. Player II will
respond in the existential k-pebble game by selecting one of
the two vertical columns and placing a pebble on the corre-
sponding node in the column. He also views this move of
Player I as a challenge in the k-pebble game on ¢, to assign
a truth value to the literal x;.

Case 4. Finally, assume that Player I places a pebble
on a node in the path from w; to w, such that the corre-
sponding node in a standard path is on the segment between
node n,_, and node n, for some j. Player II will respond in
the existential k-pebble game by placing a pebble on the
corresponding node in one of the paths p(e, f) fromn;_, to
n,. Thus, the move of Player I determines a clause c;.
Player II views this move of Player I as a challenge in the
k-pebble game to select a literal from clause ¢, and assign
value true to it.

In all cases, the move of Player Il in the k-pebble game
will also enable him to determine his pending move in the
existential k-pebble game. Player II keeps track of the

131

k-pebble game on the formula ¢, by maintaining at all times
a record of all literals that have a truth value assigned to
them. He also keeps track of all the pebbled nodes that have
caused a variable or a literal to acquire and maintain its
present truth value. In particular, a truth value is removed
from a literal as soon as no pebbled node forces it to have
a truth value.

The moves of Player II in the k-pebble game on ¢, and in
the existential k-pebble game are now described in more
detail. Each of the first three cases above branches into two
subcases depending on whether or not a truth value is
currently assigned to the literal y (Cases 1 and 2) or to the
variable x; (Case 3) determined by the move of Player I. In
Case 1, if the literal y does not have a truth value at present,
then Player II assigns value true to it and pebbles the corre-
sponding node in the path p(c, a) of the switch associated
with y. If y has a truth value, then Player II maintains this
value in the k-pebble game on ¢, and moves as follows in
the existential k-pebble game: if y has value true, then he
pebbles the corresponding node in the path p(c, a) of the
switch; otherwise, he pebbles the corresponding node in the
path g(c, a) of the same switch. In Case 2, if the literal y does
not have a truth value at present, then Player Il assigns
value true to it and pebbles the corresponding node in the
path p(b, d) of the switch associated with y. If y has a truth
value, then Player II maintains this value in the k-pebble
game on ¢, and moves as follows in the existential k-pebble
game: if y has value true, then he pebbles the corresponding
node in the path p(b, d) of the switch; otherwise, he pebbles
the corresponding node in the path g(b, d) of the same
switch.

In Case 3, if the variable x; does not have a truth value at
present, then Player II assigns value true to it and pebbles
the corresponding node in the vertical column associated
with the literal x,. If x; has a truth value, then Player II
maintains it and moves as follows in the existential k-pebble
game: if x,; has value true, then he pebbles the appropriate
node in the vertical column associated with x;; otherwise, he
pebbles the corresponding node in the vertical column
associated with x;.

Finally, we describe the moves of Player II in Case 4.
Since Player I has & pebbles and one of them has just been
used to determine a clause c;, at least one of the k literals
occurring in the clause ¢, does not have a truth value
assigned to it at present. Player II selects such a literal and
assigns value true to it. He also pebbles the corresponding
node in the path p(e, f) associated with the literal he
selected.

We claim that the above constitutes a winning strategy
for Player II in the existential k-pebble game between the
graphs (A, wi, w,, wy, wy) and (B, s,, 5,, 53, 5,). For
this, we have to verify that at all times during the game the
mapping from the pebbled nodes of A, to the corresponding
pebbled nodes of B, is a one-to-one homomorphism. Note

132

that the moves of Player II in the k-pebble game on ¢, are
according to his winning strategy for this game. Thus, no
literal is ever set to both true and false during the k-pebble
game. In turn, this implies that at all times during the
existential k-pebble game the following is true for every
switch in the graph G, : all pebbles of Player II on nodes of
that switch are either on nodes in the paths p(¢, a), p(b, d),
ple, /) of the switch or on nodes in the paths g(c, a), g(b, d).
gig, h) of the switch. From this and from the fact that
Player II always places his pebbles on nodes in standard
paths corresponding to nodes pebbled by Player 1, it follows
that at all times the mapping between the pebbled nodes
of A, and the pebbled nodes of B, is a homomorphism.
Moreover, since in each case the three paths are pairwise
disjoint, it follows that Player I is never forced to place two
pebbles on the same node. Thus, the mapping between the
pebbled nodes of 4, and the corresponding pebbled nodes
of B, is also one-to-one. The proof of the theorem is now
complete. ||

THEOREM 6.7. Let H be a pattern graph in C. Then the
fixed subgraph homeomorphism query with pattern H is not
expressible in the infinitary logic L*.

Proof. Recall that the class C can be described as con-
sisting of all directed graphs that contain at least one of the
pattern graphs H,, H,, H, as a subgraph. We have just
proved that the fixed subgraph homeomorphism query with
pattern H, is not expressible in L®. The same conclusion
can be derived for the pattern graphs H, and H;, by first
modifying slightly the graphs 4, and B,, & > 1, in the proof
of Theorem 6.6 and then playing the existential k-pebble
game on the modified graphs. The pattern graph H, is a
path of length two going through three distinct nodes. In
this case we modify 4, and B, by identifying node w, with
node w, and node s, with node s,. The pattern graph H, is
a cycle of length two. For this pattern graph we modify 4,
by identifying node w, with node w, and node w, with node
w,. We also modify B, by identifying node s, with node s,
and node s, with node s,.

The conclusion of the theorem for arbitrary pattern
graph H in C follows now immediately from the above by
appealing to Lemma 6.3. |

The preceding Theorems 4.10, 6.6, and 6.7 provide us
with tools for establishing that certain other pattern-based
queries on directed graphs are not expressible in L“ and, a
fortiori, are not expressible in Datalog(#). Consider, for
example, the “even simple path query™: given a directed
graph G and two nodes s, ¢ of G, is there a simple path of
even length from s to ¢ in G? As mentioned earlier,
Lakshmanan and Mendelzon [LM89] established that this
query is not expressible in Datalog(#). We conclude by
deriving this result as a corollary to the preceding
Theorem 6.6.

KOLAITIS AND VARDI

COROLLARY 6.8. The “even simple path” query on
directed graphs is not expressible in the infinitary logic L”.

Proof. Towards a contradiction, assume that there is a
positive integer k such that the “even simple path” query is
definable by a sentence of the infinitary logic L*. We will
use this assumption to show that the fixed subgraph
homeomorphism query with pattern H, is expressible in
L*, which will violate Theorem 6.6.

The proof is based on a reduction of the “two disjoint
paths” query to the “even simple path” query. Given a
directed graph G with distinguished nodes s, 55, 53, 5,4, let
G* be the graph obtained from G by doubling every edge of
G, adding a new node ¢, adding an edge from s, to s, and
adding an edge from s, to 7. Here, doubling every edge
means that every edge (u, v) of G is replaced by a pair of
edges (u, w) and (w, v), where w is a new node. It is easy to
verify that there are two node-disjoint simple paths from s,
to s, and from s, to 5, in G if and only if there is a simple
path of even length from s, to ¢ in G*.

Let 4 be a directed graph with distinguished nodes a,, a,,
a,, a4 such that there are two node-disjoint simple paths
from a, to a, and from a, to a, in 4, and let B be a directed
graph with distinguished nodes #,, b,, b3, b, such that
(A,a,,a,,as,a)<>* (B, b, b,, by, b,). We will show that
there are two node-disjoint paths from b, to b, and from b,
to b, in B. Once this is established, we will be able to infer
that the fixed subgraph homeomorphism query with pattern
H, is expressible in L*, by appealing to Theorem 4.10.

Let (4* a,,t) and (B*, b, t') be the result of applying
the above reduction to the graphs (4, a,, a;, a5, a,) and
(B, b, by, by, b,). We now claim that (A* a,, t)<*
(B*,b,,t"). This will be established by showing that
Player II has a winning strategy for the existential k-pebble
game on (A* a.,t) and (B* b,,). In addition to this
game, Player Il plays simultaneously an auxiliary existen-
tial 2k-pebble game on (A4, a,, a;,a;,a,) and (B, b,, b,,
by, b,). Player Il keeps track of the auxiliary 2k-pebble
game at all times and uses his winning strategy in that game
to determine his moves in the k-pebble game. The auxiliary
game and the strategy of Player II for the k-pebble game are
now described in detail. If Player I places a pebble on a node
u of A* that is also a node of 4, then in the auxiliary game
Player II views this as a move of Player I on u. Player II
responds in the k-pebble game by pebbling the node v’ of B
that is pebbled by him in the auxiliary 2k-pebble game
according to his winning strategy. If Player I places a pebble
on node w of 4* that is not in A, then there is a unique edge
(u,v) In A4 such that (u, w) and (w, v) are edges of A*.
Player II views this as a sequence of two moves in the
auxiliary game, namely as Player 1 placing a pebble first on
1 and then on v. Let «’ and v’ be the moves of Player HI in
the auxiliary game played according to his winning strategy.
Since (u, v) is an edge of A, we must have that (i, v’) is an

DATALOG: TOOLS AND CASE STUDY

edge of B. As a result, there is a unique node w' in B* such
that (#', w') and (w', v') are edges of B*. Then Player Il
responds in the existential k-pebble game by placing a
pebble on w'. Finally, if Player I places a pebble on ¢, then
Player II places a pebble on ¢'. It is not hard to verify that
the above constitutes indeed a winning strategy for Player
II in the existential k-pebble game on (A4* a,,?) and
(B* by, 1').

The existence of two node-disjoint simple paths from a,
to a, and from a, to a, in the graph A4 implies that there is
a simple path of even length from 4, to ¢+ in 4*. Since
(A*, a,,)<*(B* b, ') and since we assumed that the
“even simple path” query is definable by a sentence of L, it
follows that there is a simple path of even length from b, to
¢ in B* and, consequently, there are two node-disjoint
simple paths from b, to b, and from b, to b, in B. Theorem
4.10 implies now that the fixed subgraph homeomorphism
query with pattern H, is expressible in L?*, which, however,
Is a contradiction. |

7. CONCLUDING REMARKS

Our emphasis in this paper was on the study of the
expressive power of Datalog(#) by viewing it as a fragment
of the infinitary logic L”. We showed that the game-
theoretic characterization of the expressive power of L®
provides us with tools for investigating the expressive power
of Datalog(#). We believe that these techniques are of
interest not only from a database-theoretic perspective but
also from a complexity-theoretic perspective. These techni-
que enabled us to show that the dichotomies described in
[FHW80] for fixed subgraph homeomorphism problems
are indeed proper in terms of expressibility in Datalog(#).
This is similar in spirit to the result in [AF90], which uses
expressibility in a certain logic to show that reachability in
directed graphs is harder than reachability in undirected
graphs. Our results indicate that the use of expressibility in
Datalog variants to prove separation results deserves
further study.

Finally, we note that in a recent paper Afrati et al
[ACY91] develop further tools to explore the expressive
power of Datalog variants. In particular, using these tools
they show that Datalog(#) does not express all monotonic
polynomial-time queries.

ACKNOWLEDGMENTS

We are grateful to N. Alon, R. Fagin, V. S. Lakshmanan, A. Mendelzon,
N. Megiddo, and M. Yannakakis for stimulating discussions. In particular,
playing pebble games with N. Alon led to Theorem 6.2.

REFERENCES

F. Afrati, S. S. Cosmadakis, and M. Yannakakis, On Datalog
vs. polynomial time, in “Proceedings, 10th ACM Symposium
on Principles of Database Systems, 1991.”

[ACY91]

[AF90]

[AGS89]

[AU79]

[Bar77]
[BF85]

[BG$7]

(Bol79]
[CHS2]

[CHS5]

[Coo74]

[dR87]

[FHW80]

[Gais2]

[GMSV87]

[GS86]

[IK89]

[1L90)

[Imm82]

[Imm§6]

[Kei7l]

[Kol85]

[KV90]

[LM89]

133

M. Ajtai and R. Fagin, Reachability is harder for directed
than for undirected finite graphs, J. Symbolic Logic 55, No. 1
(1990), 113-150.

M. Ajtai and Y. Gurevich, DATALOG vs. first-order logic,
in “Proceedings, 30th IEEE Symp. on Foundations of
Computer Science, 1989,” pp. 142-146.

A. V. Aho and J. D. Ullman, Universality of data retrieval
languages, in “Proceedings, 6th ACM Symp. on Principles of
Programming Languages, 1979.” pp. 110-117.

J. Barwise, On Moschovakis closure ordinals, J. Symbolic
Logic 42 (1977), 292-296.

J. Barwise and S. Feferman (Eds.), “Model-Theoretic
Logics,” Springer-Verlag, New York/Berlin, 1985.

A. Blass and Y. Gurevich, Existential fixed-point logic, in
“Computation Theory and Logic” (E. Bdrger, Ed.), Lecture
Notes in Computer Science, Vol. 270, pp. 20-36, Springer-
Verlag, New York/Berlin, 1987.

B. Bollobas, “Graph Theory,” Springer-Verlag, New York/
Berlin, 1979.

A. Chandra and D. Harel, Structure and complexity of rela-
tional queries, J. Comput. System Sci. 25 (1982), 99-128.

A. Chandra and D. Harel, Horn clause queries and
generalizations, J. Logic Programming 1 {1985), 1-15.

S. A. Cook, An observation of time-storage trade-off,
J. Comput. System Sci. 9 (1974), 308-316.

M. de Rougemont, Second-order and inductive definability
on finite structures, Z. Math. Logik Grundlag. Math. 33
(1987), 47-63.

S. Fortune, J. Hopcroft, and J. Wyllie, The directed
homeomorphism problem, Theoret. Comput. Sci. 10 (1980),
11i-121.

H. Gaifman, On local and nonlocal properties, in “Logic
Colloquium ’81” (J. Stern, Ed.), pp. 105-135, North Holland.
Amsterdam, 1982,

H. Garrman, H. MAIRSON, Y. SaGiv, AND M. Y. VARDI,
Undecidable optimization problems for database logic
programs, in “Proceedings, 2nd IEEE Symp. on Logic in
Computer Science, 1987.” pp. 106-115.

Y. Gurevich and S. Shelah, Fixed-point extensions of first-
order logic, Ann. Pure Appl. Logic 32 (1986), 265-280.

N. Immerman and D. Kozen, Definability with bounded
number of bound variables, fnform. and Comput. 83 (1989),
121-139.

N. Immerman and E. S. Lander, Describing graphs: A first-
order approach to graph canonization, /in “Complexity
Theory Retrospective” (A. Selman, Ed.), Springer-Verlag,
1990.

N. Immerman, Upper and lower bounds for first-order
expressibility, J. Compur. System Sci. 25 (1982}, 76-98.

N. Immerman, Relational queries computable in polynomial
time, Inform. and Control 68 {1986), 86-104.

H. J. Keisler, “Model Theory for Infinitary Logic,” North
Holland, Amsterdam, 1971.

Ph. G. Kolaitis, On asymptotic probabilities of inductive
queries and their decision problem, in “Logics of Programs
’85” (R. Parikh, Ed.), Lecture Notes in Computer Science,
Vol. 193, pp. 153-166, Springer-Verlag, New York/Berlin,
1985.

Ph. G. Kolaitis and M. Y. Vardi, Infinitary Logic and 0-1
Laws, Inform. and Computation 98 (1992), 258-294.

V. S. Lakshmanan and A. O. Mendelzon, Inductive pebble
games and the expressive power of Datalog, in “Proceedings,
8th ACM Symposium on Principles of Database Systems.
1989.” pp. 301-310.

134

[Mos74]
[Pap85]
[Rub75]

[Shm87]

KOLAITIS AND VARDI

Y. N. Moschovakis, “Elementary Induction on Abstract
Structures,” North Holland, Amsterdam, 1974.

C. H. Papadimitriou, A note on the expressive power of
Prolog, Bull. EATCS 26 (1985), 21-23.

A. Rubin, Ph.D. thesis, California Institute of Technology,
1975.

O. Shmueli, Decidability and expressiveness aspects of logic

Printed in Belgium

[UI1189]

[Var82]

queries, in “Proceedings, ACM Symposium on Principles of
Database Systems, 1987, pp. 237-249.

J. D. Ullman, “Database and Knowledge-Base Systems,”
Vol. I, I1, Comput.-Sci. Press, Rockville, MD, 1989.

M. Y. Vardi, The complexity of relational query languages, in
“Proceedings, 14th ACM Symp. on Theory of Computing,
1982,” pp. 137-146.

