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In [6] we showed that if V is a finite-dimensional vector space and if H is 
a symplectic, special orthogonal, orthogonal, special unitary or unitary 
group acting on I’, then with a few exceptions, the stabilizer in H of a totally 
singular subspace is maximal. We further indicated that if the stabilizer in H 
of an arbitrary subspace is maximal, then that subspace will usually be 
totally singular, non-isotropic, or isotropic but non-singular of dimension 1 
(this only occurs in the case of an orthogonal group over a field of charac- 
teristic two). In this paper we consider the stabilizer of a non-isotropic 
subspace with the restriction that either the subspace or its conjugate will 
have a singular l-dimensional subspace. There is one general exception: 
when H contains elements that interchange the subspace and its conjugate. 
We show that in this case the subgroup of H consisting of the elements that 
either stabilize the subspace or interchange it with its conjugate is in most 
cases maximal. There are a number of more specific exceptions listed in the 
next section. 

As in [6], our approach is geometric in nature. We show that any 
subgroup of H properly containing the given stabilizer contains every 
transvection or every semi-transvection in H, and deduce that it must 
therefore be the whole of H. 

1. NOTATION 

Let V be an n-dimensional vector space over a field K. When n is even, let 
A be a non-degenerate alternating form on V and let Sp,(K) be the 
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symplectic group of A. Let Q be a quadratic form on V whose associated 
symmetric bilinear form, given by 

B(x, Y> = Q<x + Y) - Q(x) - Q(Y), VT y E K 

is non-degenerate, and let O,(K) and SO,(K) be respectively the orthogonal 
and special orthogonal groups of Q. If K is a field with a non-trivial 
involutory automorphism J, then let K, be the fixed subfield of J. It can be 
shown that K is a normal separable extension of K, of degree 2. Given 
;1 E K, we shall often write ,i in place of J(A). Let C be a non-degenerate 
hermitian form on V, thus 

C(x, Ay + pz) = wx, Y> +,4x, z), 

C(Ax + py, z) = k(x, z) + PC(Y, zh 

and 

C(Y, x> = C(x, Y>, Vx, y, z E V, VA, ,u E K. 

Let U,(K) and Sun(K) be respectively the unitary and special unitary groups 
of C. We denote the indices of Q and C by v(Q) and v(C), respectively, or by 
v where no confusion arises. 

When we wish to describe a property which relates to more than one of A, 
B and C, we shall often use ( , ) in place of A ( , ), B( , ) or C( , ). We will use 
H to refer to one of Q,(K), O,(K) and U,,(K), and H, to refer to SO,(K) or 
SU,(K). For any subspace U of V, we shall denote its conjugate with respect 
to the appropriate form by U’; it will be evident from the context which form 
is being considered. When H is Sp,(K) or U,(K), we shall use the terms 
“singular” and “totally singular” in place of the usual terms “isotropic” and 
“totally isotropic”; this is solely for convenience. We note that an element of 
H stabilizes U if and only if it stabilizes U’; so the stabilizer in H of U is 
also the stabilizer of U’. We also note that if U is non-isotropic, then we can 
write V = U 0 U’. Throughout this paper we shall say that two subspaces 
are isomorphic only if they are isomorphic with respect to the appropriate 
form. Two vectors x and y are said to be isomorphic if there exists h E H 
such that h(x) = y (whence A (y, y) = A(x, x), Q(y) = Q(x) or C(y, y) = 
C(& xl). 

Let U be a non-isotropic subspace of V of dimension r> 1 such that U’ 
has a singular l-dimensional subspace; this imposes the requirement that 
n - r > 2 and n > 3. Let G = Stab&, let E = Stab,{ U, V}, let 
G, = Stab,,U(= H, n G) and let E, = Stab,,{ U, U’) (= H, n E); if U is 
isomorphic to U’, then G < E and G, < E,, but otherwise G = E and 
G, = E,. We show that E, and E are maximal in H, and H, respectively, 
except in the cases listed below. 
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We denote the dimensions of the maximal totally singular subspaces of U 
and U’ by v, and v2, respectively; by definition, v2 > 0. As we are interested 
in the maximality of certain subgroups, and as G = Stab,U’, we may assume 
that if v, > 0, then r < n -r. Note that this implies that when K is finite, 
r < n - r whatever the value of v,, because if v, = 0, then r < 2. 

Throughout the remainder of this paper, we except (unless stated 
otherwise) the following cases where E, is not maximal in H, and E is not 
maximal in H. 
When H = O,,(K): 

(9 K=GF(5), n=3 and r= 1; 

(ii) K = GF(3) and n - r = 2; 

(iii) K = GF(3), r = 2 and v, = 1; 

(iv> K=GF(3), n=4, r= 1 and v=2; 

(VI K = GF(3), n = 5, r = 2 and v, = 0; 

(vi> K = GF(2), n 2 6, r = 2 and v, = 1; 

(vii) K = GF(2), n = 6, r = 2, v, = 0 and v, = 2; 

(viii) K = GF(5), n = 4, r = 2 and v, = v2 = 1; 

6x1 K = GF(3), n = 6 and U is isomorphic to U’; 

@> K = GF(2), n = 8, r = 4 and v, = v2 = 2. 

When H = U,(K) 

(xi) K = GF(4), n = 3 and r = 1; 

(xii) K = GF(4), n - r = r = 2 and v, = v2 = 1. 

We also except (unless stated otherwise) the case: 

(xiii) H = O,(K), K # GF(3), GF(5), r = 2 and v1 = v2 = 1, 

where E is maximal in H, but E, is not maximal in H,, and the cases: 

(xiv) H = O,(GF(2)), r = 2, vr = 0 and v2 = 1; 
(xv) H = U,(K), K # GF(4), r = 2 and v, = v2 = 1, 

for which we require a separate proof. 

2. PRELIMINARY RESULTS AND DEFINITIONS 

This section has three parts. The first consists of definitions and 
elementary results, including a definition of a semi-transvection. The second 
part consists of vector space properties when H is one of O,(K), U,(K), and 
in the third part we give some field properties of K when it has a non-trivial 
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involutory automorphism. We do not exclude here cases (i)-(xv) listed 
above. 

In the first part, H will be any one of L+,(K), O,(K) or V,,(K) unless 
stated otherwise. 

PROPOSITION 2.1. Let U be a non-isotropic subspace of V. 

(i) If H(U) and H(Y) are the groups corresponding to H of U and 
U’, then Stab, U is isomorphic to the direct product H(U) x H(U). 

(ii) If S, and S, are isomorphisms, U, + W, and: U, -+ W,, respec- 
tively where U,, W, c U and U,, W, G U’, then there is an element of 
Stab, U extending both S, and S,. 

ProoJ (i) See Dieudonne (21. 

(ii) Use (i) together with Witt’s Theorem (cf. [ 1, p. 711). 1 

DEFINITIONS. In Sp,(K), a transvection centered on a non-zero vector x 
is given by 

:vk+v+AA(x,v)x 

for some J. E K\(O}. 

In U,(K), a transvection centered on a non-zero singular vector x is given 

by 

: v t-+ v + X(x, v) x 

for some 1 E K\{O} such that K= -A. Such maps lie in SU,,(K) 
(cf. [2, p. 49 1). 

In O,(K), a symmetry or -1 -quasi-symmetry centered on a non-singular 
vector y is given by 

: v h v - MY, v)/Q(y)l Y. 

In U,(K), if il EK\(l} such that A . L= 1, then the A-quasi-symmetry 
centered on a non-singular vector y is given by 

: v t--+ v + (2 - l)[C(Y, V>/C(Y, Y)] Y. 

Remarks 2.2. A transvection [respectively, quasi-symmetry] centered on 
a singular. [non-singular] vector z E V stabilizes a subspace 2 if and only if 
z E Z U Z’. This is because if z & Z U Z’ and if w E Z is not orthogonal to 
z, then the transvection [quasi-symmetry] moves w out of 2. If z E Z U Z’, 

then the transvection [quasi-symmetry] fixes one of, and therefore both of, Z, 
Z’. 
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Every quasi-symmetry in H lies outside Hi. Let H = U,(K) and let y be a 
non-singular vector in V, then V= (y) 0 (y)‘. The A-quasi-symmetry 
centered on y takes y to Ay and fixes each vector in (y)‘, so it has deter- 
minant A. If R f H, is a coset of H, in H, then there exists ,u E K with 
p . ,G = 1 such that R = (h E H: det h = ,u} (cf. [2, p. 56]), so for any given 
non-singular vector y, there is a quasi-symmetry centered on y lying in R. 

DEFINITION. Let H be one of O,(K), U,(K). Let x be a non-zero singular 
vector in I’, let w  E (x)’ and let p,,, be the isomorphism of (x)’ defined by 

: v b v + (w, v) x. 

We denote the set of elements of H that extend p,,, by P,,, (non-empty by 
Witt’s theorem) and call those elements semi-transvections centered on x. 

Certain properties of semi-transvections in O,(K) have been given by 
Tamagawa in [ 71; we refer to these results (altering the notation) and give 
the corresponding results for unitary semi-transvections. 

Let y be a singular vector in V such that (x, y) = 1; then for a set of semi- 
transvections Px,,, we may assume that w  E (x, y)’ (because otherwise we 
could replace w  by w  - (y, w) x without altering P,,,). If H = O,(K) and if 
P E P&W where w  E (x, y)‘, then Tamagawa shows that 

P(Y) = Y - Q(w) . w - w, 

whence P,, = {p}. If H = U,(K) and p E P,,, where w  E (x, y)‘, then 
consideration of the equations 

WY 1, P(V)) = 02 vv  E ((Y > + (x3 Y )‘I 

and 

C@(Y), P(X)> = 1 

shows that 

P(Y>=Y +Px-w, 

where /I + p= -C(w, w). Indeed, for any such j3 E K there is an element of 
P,,, taking y to y + px - w. 

The elements of P,,,(= P,,o) are the elements of H that fix every vector in 
(x)‘, i.e., P.,, consists of the transvections centered on x, together with the 
identity element. For any P,,,, if p E P,.,, then we can write 
px,, = P * px,, = p,,, * PO 

If we define the product P,,, . P,,, to be (u . p: u E P,,, p E PGw}, then we 
can deduce: 
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PROPOSITION 2.3. If x is a non-zero singular vector in V, then 

P I,” * px., = px,u+w vu, w E (x)‘, 

P ax.w = P.x+!W~ VW E (x)‘, A E K when H = O,(K), 

P ax.w =px,xw VW E (x)‘, A E K when H = U,(K), 

hP,,,h-’ = P,,x,,,w, VW E (x)‘, h E H, 

px,, = px,w $and only ifw E (x). 

If w E (x, y)’ and if we extend {x, w, y} to an ordered base for V, then with 
respect to that base, the matrix of p E P,,, is upper triangular with all the 
diagonal entries being 1. Hence every semi-transvection in U,(K) lies in 
SU,,(K). Tamagawa showed that every semi-transvection in O,,(K) lies in 

SO,(K). 
If H = O,,(K) and if P is a hyperbolic 2-dimensional subspace of V, then 

we define SO(P) to be the subgroup of SO,(K) consisting of the elements 
that fix every vector in P’. 

Result 2.4. (Tamagawa [7, Lemmas 11 and 121). If H = O,,(K), if P is a 
hyperbolic 2-dimensional subspace of V and if T is the subgroup of H, 
generated by the semi-transvections in H,, then H, = T. SO(P), except 
when n = 4, v = 2 and K = GF(2). 

PROPOSITION 2.5. If H = U,(K), then H, is generated by its semi- 
transvections, except perhaps when n = 3 and K = GF(4). 

Proof: Every transvection is a semi-transvection and it is known that H, 
is generated by its transvections, except when H = U,(GF(4)) (cf. [3, p. 49]), 
so the result follows. I 

The following result is evident from the definition of a semi-transvection. 

PROPOSITION 2.6. If Z is a non-isotropic subspace of V and if p E P,, 
where x E Z, then p stabilizes Z if and only if w E Z. 

Remark 2.7. If x is a non-zero singular vector and if w E (x)‘, then it 
can be shown that for p E P,, and v E V, we can write 

P(V) = v  + [P . (x, v> + (w, v>l x - (x, v> w, 

where ,8 = -Q(w) when H = O,(K) and p + ,8 = -C(w, w) when H = U,(K). 
For the second part of Section 2 we shall assume that H is one of O,(K), 

U,(K). 
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PROPOSITION 2.8. A non-isotropic subspace of V that has a singular l- 
dimensional subspace has a base of singular vectors. 

Proof: See [3, pp. 21 and 341. 1 

PROPOSITION 2.9. Any subspace of V that contains a non-singular vector 
has a base of non-singular vectors, except when H = O,(GF(2)). 

Proof. Suppose that the proposition is false and let Z c V be a coun- 
terexample; we show that a contradiction results. Let z be a non-singular 
vector in Z and let w  be a non-zero vector in Z that cannot be expressed as 
the sum of one or more non-singular vectors in Z, then w  must be singular 
and z + Iw must be singular for every A E K/(0}. 

If H = O,(K), then 

O=Q(z+Lw) 

= Q(Z) + IB(z, w) for every J E K\(O). 

As H # O,(GF(2)), we conclude that Q(Z) = 0. But we chose z to be non- 
singular, so we have arrived at a contradiction. 

If H = U,(K), then 

O=C(z+~w,z+Aw) 

= C(z, z) + AC(z, w) + /w(z, w) for every A E K\{O}. 

Thus the non-singularity of z implies that C(z, w) # 0. But if 
A = -C(z, z)/C(z, w), then I E K\(O) and C(z + Iw, z + nw) (= -C(z, z)) is 
non-zero, giving a contradiction. The proposition is therefore proved. 1 

Remark. Suppose that H = O,(GF(2)). A hyperbolic 2-dimensional 
subspace W of V has three l-dimensional subspaces, only one of which is 
non-singular; moreover, if W, is a totally singular subspace of IV’, then 
W + W, contains a non-singular vector, but fails to have a base of non- 
singular vectors. If Z is a non-isotropic subspace, then the standard 
canonical form of Q (restricted to Z) indicates a base of non-singular vectors 
for Z, unless Z is a hyperbolic 2-dimensional subspace. 

This remark, together with Proposition 2.9, yields the following result. 

COROLLARY TO PROPOSITION 2.9. A non-isotropic subspace Z of V has a 
base of non-singular vectors unless H = O,(GF(2)) and Z is a hyperbolic 2- 
dimensional subspace. 

PROPOSITION 2.10. If Z is a non-isotropic subspace of V of dimension 
m > 2 and if z is a non-singular vector in Z, then Z has a base of vectors 
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isomorphic to z, except when H = O,(GF(2)) or O,(GF(3)), and Z is a 
hyperbolic 2-dimensional subspace. 

Proof. If H is one of O,(GF(2)), U,(GF(4)), then V has only one 
isomorphism class of non-singular vectors, so the result follows immediately 
from the corollary above. We suppose now that H # O,(GF(2)) or 
Cm(GF(4)). 

Suppose that the proposition is false; we show that a contradiction results. 
Let 2, be the subspace of Z spanned by the vectors isomorphic to z, then 
z E Z, $E Z, and any isomorphism of Z fixes Z, ; in particular, any symmetry 
or quasi-symmetry centered on a vector in Z stabilizes Z,. Thus by 
Remark 2.2, any non-singular vector in Z lies in Z, or Zb n Z. By the 
corollary above, Z has a base of non-singular vectors, so 
Z = Z, + (Z; n Z); consideration of dimensions show that this sum is direct 
and hence that Z, and Z; n Z are non-isotropic. Moreover, for any non- 
singular vectors u E Z,, v E Zh n Z, the (non-zero) vector u + v must be 
singular. Thus if H = O,(K), then Q(v) = -Q(U), and if H = U,(K), then 
C(v, v) = -C(u, u). It follows that each of Z, and Z; nZ have one 
isomorphism class of non-singular vectors, and in particular that AZ is 
isomorphic to z for each A E K\{O). 

If H = O,(K) with Kf GF(3), then there exists A E K\{O) such that 
A’# 1, i.e., such that AZ is not isomorphic to z, giving a contradiction as 
required. If H = U,(K), then there exists 1 E K\{O} such that A . I# 1 (if K 
has characteristic 2, then we can take A E K\{O, 1 }; otherwise we can choose 
p E K\{O} such that ,E = -,D and take A to be one of ,D, ,D + l), i.e., such that 
AZ is not isomorphic to z, giving a contradiction. 

We have one case left to consider, when H = O,(GF(3)). We have already 
established that Z contains a (non-zero) singular vector, and we have 
excluded the case where Z is hyperbolic of dimension 2, so Z must have 
dimension 23. Thus one of Z,, Zk n Z has dimension >2. However, 
consider a non-isotropic subspace W of dimension >/2 having only one 
isomorphism class of non-singular vectors. Let w  be a non-singular vector in 
W and let w* be a non-singular vector in (w)’ n W, then w* is isomorphic 
to w, but Q(w + w*) = -Q(w); so w  + w* is not isomorphic to w, giving a 
contradiction. Hence we have the required contradiction, even when 
H = OJGF(3)). 1 

Remark. Note that in the last part of the proof of Proposition 2.10, we 
have actually shown that if H = O,(GF(3)), then every non-isotropic 
subspace of dimension >2 contains elements of each isomorphism class of 
non-singular vectors in V. In particular, a hyperbolic 2-dimensional subspace 
has two non-singular l-dimensional subspaces; they are orthogonal but not 
isomorphic. 
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PROPOSITION 2.11. If Z is a non-isotropic 2-dimensional subspace of V 
and if z E Z is non-singular, then Z\((z) U (z)’ n Z) contains a vector w 
isomorphic to z, except in the following cases: (a) H = O,(GF(3)); (b) 
H = U,(GF(4)); and (c) Z is hyperbolic and H = O,(GF(2)) or OJGF(5)). 

Proof. We suppose the proposition to be false and arrive at a 
contradiction. By Proposition 2.10, there is a vector v E Z isomorphic to z 
such that (z, v} is a base for Z; by our supposition, v E (z)‘. Since Z is non- 
isotropic, the characteristic of K must be other than two when H = O,(K). 
We may assume that H # O,(GF(5)), because otherwise z + 2v is singular, 
i.e., Z is hyperbolic, an excepted case. 

If H = O,(K), then K # GF(2), GF(3) or GF(5), so there exists A E K 
such that A.’ @ (0, 1, -l}. Let 

w=(AZ- l)z/(A’+ 1)+2Av/(Y+ l), 

then w  is isomorphic to z, but does not lie in (z) U (z)‘, giving a con- 
tradiction. 

If H = U,(K), then K # GF(4); so there exists A E K\{O, 1, -1 } such that 
I= -A. Let 

w  = z/(1 + n) + Av/(l + A), 

then w  is isomorphic to z, but does not lie in (z) U (z)‘, giving a 
contradiction, and thereby completing the proof of the proposition. 1 

PROPOSITION 2.12. Any complement of a totally isotropic subspace of V 
in its conjugate is non-isotropic. 

Proof. Let W be a totally isotropic subspace of V and let X be a 
complement of W in W’; then the following are equivalent expressions for 
Xnx’:(wnX)nX’; Xn(W’nX’); Xn(W+X)‘; Xn(W’)l; and 
Xn W, but X n W = { 0) so X n X’ = {O}. Thus X is non-isotropic. m 

PROPOSITION 2.13. If H = O,(GF(2)), $2 is a non-isotropic subspace of 
V of dimension m > 4 and if z E Z is non-singular, then Z r7 (z)’ has a base 
of non-singular vectors. If m = 4, then (z) has a non-hyperbolic 2- 
dimensional complement in Z n (z>‘. 

Proof: If m > 6, then any base of non-singular vectors for a complement 
of (z) in (z)’ n Z (see Proposition 2.10), together with z forms a base for 
z n (z)‘. 

Suppose that m = 4 and let X be a complement (necessarily 2- 
dimensional) of (z) in Z n (z)‘. If X is hyperbolic, then it contains non-zero 
singular vectors x and y such that X = (0, x, y, x + y}. The subspace 
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(0, x + y, y + z, x + z} is then a non-hyperbolic 2-dimensional complement 
of (z) in 2 n (z)‘. Thus (z) has a non-hyperbolic 2-dimensional complement 
in Zn (z)’ and a base of non-singular vectors for Z n (z)’ may be 
constructed as above. 1 

For the third part of Section 2, K will be a field with a non-trivial 
involutory automorphism J (implying ) K) > 4) whose fixed subfield is K,. 

PROPOSITION 2.14. If A E K and if A . L= 1, then there exists ,a E K 
such that ,u . flu ’ = A. 

Proof. This follows from Hilbert’s “Theorem 90” (cf. [S]) and the fact 
that K is a normal separable extension of K, of degree 2. 1 

PROPOSITION 2.15. There exists 1 E K such that L . I= 1 and 1” # 1 in 
the following cases: (a) n = 3 and K # GF(4); (b) n is a positive integer and 
K is infinite of characteristic two; and (c) n = 4 and K is jkite of charac- 
teristic two. 

ProoJ: If the characteristic of K is other than two, then we can take 
1 = - 1 for part (a). 

Suppose that K has characteristic two and that n < 1 K, 1. Let /l E K\K,, 
let al, a2,..., a,+1 be distinct elements of K, and let yi = (aiD + P)/(aJ3 + p) 
for i = 1, 2,..., n + 1, then the yi’s are distinct and yi . jji = 1 for each i. Since 
K has at most n nth roots of 1, it follows that one of the yi)s is not an nth 
root. This proves (b) and completes the proof of (a). 

If K is finite of characteristic two, then the multiplicative group of K has 
odd order (> 1). Thus if p E K\K, and if A = /I//?, then A . L = 1 and A4 # 1, 
proving (c). I 

COROLLARY TO PROPOSITION 2.15. There exists ,a E K such that 
p2/p E K\K,, except when K = GF(4). 

Proof: By Propositions 2.15(a) and 2.14, there exists iu E K\{O} such 
that @ . ,K I)” # 1. It follows that p*/,u # w2/El), i.e., that @‘/p) E K\K,. 1 

3. THE SYMPLECTIC GROUP 

Let H = Sp,(K). As U is non-isotropic, r must be even; v, = r/2 and 
v2 = (n - r)/2, so r < n - r. Let F < H such that E < F. We show that F 
contains every transvection in H, whence F = H and G is maximal in H. 

PROPOSITION 3.1. F acts transitively on the non-zero vectors of V. 
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ProoJ Let F,, 5Fz and qj be the sets of non-zero vectors of U, U’ and 
v\(UU U’), respectively; then any element of gj can be written as the sum 
of an element of %F1 and an element of 5F1. Hence, by Proposition 2.1, 5F,, %?? 
and Fj are orbits of G. 

Let f E FjE, then Iv, & U, U’, and so there exist non-zero vectors u, 
v E U’ such that f(u) r+?z U’ and f(v) e U, i.e., u, v E gz, f(u) 65 gz and 
f(v) @ gi. We have three possibilities: (a) f(u) E gs; (b) f(v) E g,; and (c) 
flu) E ck:, f(v) E gz in which case u + v E 5F”, but f(u + v) E gJ. In each 
case wz and 5FJ lie in the same orbit of F. Since G < F, it follows that g, is 
not an orbit of F, so F can have only one orbit. 1 

THEOREM 3.2. E is maximal in H. 

Prooj Let t be any transvection in H, centered on a vector w  say. By 
Proposition 3.1, there exists fE F such that f(w) E U. The element ftf- ’ is a 
transvection centered on a vector in U which (by Remark 2.2) therefore lies 
in G. Hence t E F and so F contains every transvection in H. It is known 
that H is generated by its transvections; so F = H and E is maximal in 
H. 1 

Remark. Let N = G@,,(K), let L = Stab,{ U, U’) and let M < N such 
that L < M. A similar argument to that used above would show that M 
contains H. Let k be any element of N, then since H acts transitively on the 
non-isotropic subspaces of V (by Witt’s theorem), there exists h E H such 
that hkU = U, i.e., such that hk E L. But this implies that k E M, so M = N 
and therefore L is maximal in N. 

4. THE ORTHOGONAL AND UNITARY GROUPS 

Let H be one of O,(K), U,(K), and let F < H and F, <H, such that 
E < F and E, < F,. We show that F, contains every semi-transvection in 
H, , and deduce that F, = H,, whence E, is maximal in H,. We then deduce 
that F = H, whence E is maximal in H. 

Our first objective is to show that there exists fE F,\G, such that 
U’ np has a singular l-dimensional subspace; we refer to this property as 
condition IV. Our approach is to suppose that condition IV is not satisfied 
and to reach a contradiction to this supposition. It will simplify our notation 
if we define the following: 

Condition I. There existsf, E F,\G, and a singular vector z E U’ such 
that if we writefi(z) = z1 + z2, where z, E U and z2 E U’, then zr and z2 are 
non-singular. 

Condition II(a). There exists fi E F,\G, and a singular vector y E U’ 
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such that if we writef,(y) = yi + y,, where y, E U and y2 E U’, then yi and 
yZ are non-singular and f2 U & U’. 

Condition II(b). There exists f, E F,\G, and a singular vector y E U’ 
such that if we writef,(y) = y1 + y2, where y, E U and yz E U’, then y, and 
yZ are non-singular and fi u’ # (y, , yZ). 

Condition III. There exists f3 E F,\G, and a singular vector x E U’ 
such that if we write f3(x) = x, + x2, where x, E U and x2 E U’, then x, and 
x2 are non-singular, and (Un (xi)‘) U (V r7 (x2)‘) contains a non-singular 
vector that does not lie in f, UUf, U’. 

We first consider the action of G, and F, on the singular l-dimensional 
subspaces of V. 

PROPOSITION 4.1. If v, > 0, then there exist singular vectors a,, b, E U, 
a,, b, E U’ and non-singular vectors c, E U, c2 E U’ such that a, + b, and 
a,+b, are non-singular, but a,+b,+a,fb,, c,+c2, c,ta,tb, and 
c2 t a, t b, are non-zero and singular. 

Proof: Let P, and P, be hyperbolic 2-dimensional subspaces of U and 
U’, respectively, and let 0 be an isomorphism: P, + P,. We consider 
separately the cases: H = U,(K), or H = O,(K) and K does not have charac- 
teristic two; H = O,(K) and K has characteristic two, but K # GF(2); and 
H = O”(GF(2)). 

Suppose that H = U,(K), or that H = O,(K) and K has characteristic 
other than two. Let d, be a non-singular vector in P,, then (d,) is non- 
isotropic, so (d,)‘n P, contains a non-singular vector, c, say, such that 
c, + d, is singular (and necessarily non-zero). Let d, = 19(c,), cZ = B(d,), then 
cz + d, is singular, and as P, and P, are orthogonal, c, t cZ and d, + d, are 
singular. Let {a,, b,} and (az, b,} be bases of singular vectors for P, and 
P,, respectively (cf. Proposition 2.8). Replacing a,, b,, a2 and b, by scalar 
multiples if necessary, we may assume that a, t b, = d, and a, t b, = d,. 
The vectors a,, b, , ci , a2, b, and cz now have the required properties. 

Suppose that H = O,(K) and that K has characteristic two, but that 
K # GF(2). By the corollary to Proposition 2.9, P, has a base of non- 
singular vectors {d,, c,}. Replacing c, by a scalar multiple if necessary, we 
may assume that c, + d, is singular. Let c2 = 8(c,), d, = B(d,), then c, t d2, 
c, + c2 and d, t d, are singular. As above, there are singular vectors a,, 
b, E P, and a,, b, E P, such that a, t b, = d, and a, t b, = d,. The vectors 
a,, b,, c,, a,, b, and c2 have the required properties. 

Suppose that H = O,(GF(2)). Since v, > 0 and since we have excepted the 
case r = 2 and v, = 1, it follows that n - r > r > 4. Thus there are non- 
singular vectors c, E P’, f7 U and c, E P; (7 17’. For i = 1, 2, Pi contains a 
non-singular vector dj and two non-zero singular vectors ai, bi whose sum is 
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di. The vectors c, + d,, cZ + d,, c, + c2 and d, + d, are singular, so a,, b,, 

Cl, a*, b, and c2 have the required properties. I 

PROPOSITION 4.2. Suppose that v1 > 0. Let 5~9~ and %Yz be the sets of non- 
zero singular vectors of U and U’, respectively, and let g3 = {u + v: u E (X,, 
v E 5Zz}, then G, acts transitively on each of V, , %‘* and V3. 

Proof. Clearly G and therefore G, acts on each of %Y,, gZ and gjz;;, and by 
Proposition 2.1 the action of G is transitive in each case. As v, > 0, it 
follows that n - r>r> 2; we have excluded the case n-r= r= 2 and 
v, = v2 = 1, so n - r > 3. For 97r, %JZ and %Y3 to be orbits of G,, we need only 
show that given w E g, U gZ U g3, each coset of G, in G contains an 
element fixing w. But (w)’ n U’ has dimension >n - r - 1 > (n - r)/2 and 
so cannot be totally singular, i.e., (w)’ n U’ contains a non-singular vector 
z. By Remark 2.2, each coset of H, in H (other than H, itself) contains a 
quasi-symmetry centered on z; such an element lies in G and fixes w. As 
G, = H, f’? G, it follows that each coset of G, in G contains an element fixing 
w, as required. Hence G, acts transitively on each of %?r, g2 and gj. 1 

Remark. Notice that ‘ZZ is still an orbit of G, if v, = 0. To adapt the 
proof of Proposition 4.2, we would need the non-singular vector z to lie in U. 

PROPOSITION 4.3.’ If Condition IV is not satisfied, then Condition I is 
satisfied. 

Proof: First suppose that v, = 0. By Proposition 2.8, u’ has a base of 
singular vectors, so if f, E F,\G,, then there exists a singular vector z E U 
such that f,(z) & U’. If we write f,(z) = z, + z2, where z, E U and z2 E U’, 
then z, must be non-zero and therefore non-singular. Thus 22 is non-singular 
and Condition I is satisfied. 

Suppose now that v, > 0, then r < n - r. Let h E F,\E,, then hU’ & U, so 
there exists a singular vector v E U’ such that h(v) 4. U. Since Condition IV 
is not satisfied, h(v) @ U’, so if we write h(v) = v, + v2, where vi E U and 
v2 E U’, then v, and v2 are non-zero and are either both non-singular or both 
singular. If they are non-singular, then Condition I is satisfied. 

Suppose that v, and v2 are both singular. Then in the notation of 
Proposition 4.2, v E 5%?* and h(v) E gJ. Thus gZ and 5Yj lie in the same F,- 
orbit; Condition I will be satisfied if this orbit does not lie inside 
g, Ug2U@3. Let a,, b,, c,, a,, b, and c2 be as in Proposition 4.1; then 
a, + a2, b, + b, and a, + b, + c, + a2 + b, + c2 lie in g’;, but c, + c2 and 
a, f b, + a, + b, lie outside %Y, U g2 U U;;. 

Let us suppose that Condition I is not satisfied. Let k E F, such that 
k(a, + a2) E g*;; then as the F,-orbit containing %?Z and g3 lies inside 
W, U qZ U W3, it follows that k(b, + b2) E ei U g1 U %?j and k(a, + a*) + 
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k(b, + b2) = k(a, t b, + a2 t b,) & g2 U g3. But k(b, + b2) E F, U g2 leads 
to a contradiction of the latter statement, so k(b, + b2) E %Fj, implying that 
k(a, t a2) t k(b, t b2) E U:. Thus the P,-orbit containing U;; and gj cannot 
contain gl, i.e., %?? U gj is an orbit of P, and in particular k(a, $ b, + c, + 
a, t b, + c,) E ‘;k; U gj. We can write 

k(c, t c2) = +(a, t a, t b, t b,) t @a, + b, t c, t a, t b, + CJ 

which must lie in ‘gZ U qj, so c, + eZ E gZ U gj, a contradiction. Hence 
Condition I is satisfied. fl 

PROPOSITION 4.4. Suppose that n - r = r t 1. If Condition IV is not 
satisfied, then Condition II(a) is satisfied. 

Proof As n is odd, K does not have characteristic two when H = O,(K). 
By Proposition 4.3, there existsf, E F,\G, and a singular vector z E U’ such 
that if we writef,(z) = z1 + z2, where z, E U and z2 E U’, then z, and z2 are 
non-singular. Condition II(a) is satisfied unless fi U E U’. 

Suppose that f, U c U’, or equivalently Ucf, U’. Thus z, E f, U’; as 
z, + z2 E f, U’, it follows that z2 Ef, U’ and therefore f, U’ = (z2) @ U (by 
consideration of dimensions). By Proposition 2.10, there is a base for U’ of 
vectors isomorphic to zZ; let v be an element of that base not lying in (z2). 
By Proposition 2.1, there exists g E G such that g(zZ) = v; we may assume 
that gE G,, because otherwise we could replace g by g, g where 
g, E G f7g-‘H, is a quasi-symmetry centered on a non-singular vector in 
(v)’ n U’ (cf. Remark 2.2). Clearly gf, U’ #fi U’, so f;-‘gf, E F1\G, and 
&I&J; U’ n U’ =f; ‘U. As Condition IV is not satisfied it follows that 
“, = 0. 

Let f, =J;-‘gf, , then f,(z) @ U’. If we write f*(z) = y1 t yZ, where y, E U 
and yz E U’, then y, and yZ must be non-singular. Since fi U’ fl U’ has 
dimension r, Condition II(a) is satisfied unless r = 1. 

Suppose that r = 1, then n - r = 2. By Proposition 2.11, we may assume 
that the vector v E U’ (as above) is isomorphic to z2, but does not lie in 
(zJ U (z~)‘. Thus g/-i U (=(v)’ r‘l U’) cannot lie in f, U’ (= (z2) 0 U). We 
conclude that f2 U @ U’ and so Condition II(a) is satisfied. 1 

PROPOSITION 4.5. Suppose that n - r = 2 < r and that K does not have 
characteristic two when H = O,,(K). If Condition IV is not satisfied, then 
Condition II(b) is satisJed. 

Proof: We note that H # OJGF(3)) or U,(GF(4)) and that if 
H = O,(GF(5)), then r = 2 and v, = 0. 

By Proposition 4.3, there exists f, E F,\G, and a singular vector z E U’ 
such that if we write f,(z) = z, t z2, where z1 E U and z2 E U’, then z, and 
z2 are non-singular. Condition II(b) is satisfied unless fi U’ = (zl, z2). 



364 OLIVER KING 

Suppose that f, Cr = (zr , z2). Let v E U be isomorphic to z, but not 
contained in (zi) u (z, >‘, constructed by applying Proposition 2.11 to a non- 
isotropic subspace of U containing zi, then we can write v = azr + /?u for 
some non-singular u E Un (zi)’ of, U and some a, /3 E K\{O}. By 
Proposition 2.1, there is an element g E G that fixes z2 and takes zi to v; any 
quasi-symmetry centered on a non-singular vector in U’ n (z*)’ fixes z2 and 
v, and lies in G, so G ng-‘H, contains an element fixing z2 and v (cf. 
Remark 2.2), and we may therefore assume that g E G, . Letf, =f; ‘gf, , then 

.Mz) =.c’(z,) + @3z,) + B!‘(u), 

with f; ‘(z*), f; ‘(zi) E U’ and c’(u) E U, so fi E F,\G,. We know that 
f;‘(z,> =fi(f;‘W) 56 u’ and that f; ‘(a~, + Pu) =fi(f;‘(z,>> U u’ so 
~‘(u)~~,U’.Henceifwewritef,(z)=y,+y,,wherey,EUandy,EU’, 
then yi and yZ are non-singular and f, U’ f (y, , yZ). Thus Condition II(b) is 
satisfied. ti 

PROPOSITON 4.6. Suppose that H # U,(GF(4)). Zf Condition IV is not 
satisfied, then Condition III is satisfied. 

Proof. By Propositions 4.3, 4.4 and 4.5, there exists f, E F,\G, and a 
singular vector y E U’ such that if we write f2(y) = y, + y,, where y, E U 
and y2 E U’, then y, and yZ are non-singular, f2 U & Y when I + 1 = n - r, 
and fi U’ # (yi , yZ) when n - r = 2 < r. We give separate proofs for each of 
the cases: (i) H # OJGF(3)) and K does not have characteristic two when 
H = O,(K); (ii) H = O,(K) and K has characteristic two, but K # GF(2); 
(iii) H = O,(GF(3)); and (iv) H = O,(GF(2)). 

(i) Suppose that H # O,(GF(3)) and that K does not have charac- 
teristic two when H = O,(K). Let Z??, and ,& be the sets of non-singular 
vectors of (yl)’ f7 U and (y2)’ f7 U’, respectively. We show that 9, U S2 $6 

fi u Ufi U’. 
Suppose that $ c f2 U U f, U’ and that .JYZ n f2 U and ~8~ f? f2 U’ are non- 

empty. For any v, E J?& nfi U and any v1 E Z& nfi U’, the vector v1 + v2 
lies in (yZ)’ n U’ but not in f, UUf; U’, and must therefore be singular. Thus 
Av, must be isomorphic to v, for every I E K\(O) and as in the proof of 
Proposition 2.10, this contradicts H # O,(GF(3)). Hence 5$ E f2 U’ or 
,5YZ cfi U. If 5?* E f2 U’, then Proposition 2.9 implies that (y2)’ n U’ z f2 U’. 
But fi U’ would then contain the isotropic n - r-dimensional subspace 
(f,(y)) + ((yZ>’ n U’) which is impossible, so J& Ef,U. Proposition 2.9 
implies that (y2)1 n U’ rf2 U, whence r > n - r - 1. As f2 U e U’ when 
r + 1 = n - r, it follows that r > n - r > 2. 

Suppose that 5YZ E fi U. If .5?, n f2 U and .8, n f2 U’ are non-empty, then 
we arrive at a contradiction, as with gZ. If &!?, cf2 U, then (y,)’ n U E fi U 
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(by Proposition 2.9); so fz U contains ((y,)’ n U) t ((y2)’ n U’). But then 
f2 U’ = (y,, yz), contrary to our choice of f2. Thus 57,5 f2 U', whence 
(y,)‘nUcf,U’. H owever, this implies that fi U' contains the isotropic r- 
dimensional subspace (f2(y)) t ((y,)’ f7 v), contrary to r > n - r. Hence if 
tiz s f2 U U fi U', then 3, @ fi U V fi U', so .g, V c%‘z & fi U V f2 U' and 
Condition III is satisfied with x = y and f3 =fi . 

(ii) Suppose that H = O,(K) and that K has characteristic two but 
that K # GF(2). If {y,, yz} & fi UUfi U', then Condition III is satisfied with 
x = y and f, =fi, because y,, y, E ((y,)’ n U) U ((y2)’ n V). Suppose that 
y, , yz E f2 U Ufi U', then y, , y2 E f2 u’ and f2 Y contains a totally isotropic 
2-dimensional subspace, whence n - r > 4 and (y?)’ n U' has dimension >3. 
By Proposition 2.9, the subspace (y2)’ n U' has a base of non-singular 
vectors. These cannot all lie in fi (I', because otherwise fi U' would contain 
the isotropic rr - r-dimensional subspace (y,) -t ((yz)’ n U'), which would 
be absurd. Let v be a base element not lying in flu'. If v fZ! f,U, then 
Condition III is satisfied. If v E f,U, then for any A E K\(O} such that 
AZ # Q(yJ/Qv), the vector yz + ,lv is non-singular and lies in (y2)’ but does 
not lie in fz U U f, U'; so Condition III is satisfied, with x = y and f, = fi. 

(iii) Suppose that H = GJGF(3)). Notice that there are two 
isomorphism classes of non-singular vectors (corresponding to the values +I 
and -1 taken by Q) and two isomorphism classes of non-isotropic subspaces 
of any given dimension. As will be shown in the proof of Lemma 4.8, the 
failure of Condition IV to be satisfied implies that y, and y2 lie in f2 U'. 

Suppose that n - r > 4, then n - r > r. Let {v, , v2 ,..., v,-,- r] be a base 
for (yz)’ n U' of vectors isomorphic to y1 (cf. Proposition 2.10 and the 
remark that follows it), then none of the vi’s can lie in fi U' (otherwise 
Condition IV would be satisfied by y2 + vi for some i). Condition III is then 
satisfied unless vi E f, U for each i. If vi E fi U for each i, then (yz>’ n U' s 
f, U and r = n - r. Thus fi U n U has dimension <I, and so (y,)’ n U has a 
base of non-singular vectors that cannot lie in f, U; at least one of these 
vectors must lie outside f,U' (by consideration of dimensions) so that 
Condition III is satisfied. 

If n - r = 3, then either r = 1 = v or r = 3 and U is not isomorphic to U'. 
Suppose that n - r = 3 and r = 1 = v. Then (yz)’ n U' is non-hyperbolic 

and therefore has a base {vi, v2} of vectors isomorphic to yi. As above vl, 
v2 ef2 U’; at most one of v, , v2 can lie in f2 U, so Condition III must be 
satisfied. 

Suppose that n -r = r = 3 and that U is not isomorphic to U'. Then the 
subspaces (y2)’ n U' and (yl)’ n U are isomorphic. If (y2)’ n U' is non- 
hyperbolic, then we can use the argument given for the case n - r > 4 to 
deduce that Condition III is satisfied. Suppose that (y2)’ n U' is hyperbolic. 
If Condition III is not satisfied, then either f2 U' n U is hyperbolic of 



366 OLIVER KING 

dimension 2 of fi U’ n U’ is non-hyperbolic of dimension 2. In the first case 
we can find an element g, E G, that fixes f, U’ n U but moves (yZ), so that 
fi’g,fi E F,\G,, but then Condition IV is satislied. In the second case we 
can find an element g, E G, that moves y1 into fi U and moves yZ out of 
f, U’; the element Aig, fi E F,\G, takes y to a vector whose U’ component 
yz is non-singular but not isomorphic to yz. Hence (yf}’ r‘l U’ is non- 
hyperbolic and Condition III is satisfied, with x = y and f, =f; 'g, fi. 

(iv) Suppose that H = O,(GF(2)). A s in (ii), Condition III is satisfied 
unless y,, y, E f, U’. We therefore assume that y,, yZ E fi U’, whence 
n-r>4. 

Suppose that n - r > 6. Proposition 2.9 may be readily extended to give a 
base of non-singular vectors for (yZ)’ n U’ that does not contain y,. None of 
these vectors can lie in fi U’ (otherwise Condition IV would be satisfied) and 
they cannot all lie in f2 U (otherwise y2 E fi U, a contradiction); so 
Condition III is satisfied. 

If n - r = 4, then either v1 = 1, r = 2 and v, = 0, or r = 4 and one of v, , 
v* < 2. 

Suppose that n - r = 4, v2 = 1, r = 2 and v, = 0. By Proposition 2.1, there 
is non-hyperbolic complement of (y2) in (yZ)’ n U’. The non-zero vectors in 
this complement cannot all lie in f2 U and none can lie in fi U’ (otherwise 
Condition IV would be satisfied), so Condition III is satisfied. 

Suppose that n - r = r = 4 and that one of v, , vI < 2. By Proposition 2.1, 
there are non-hyperbolic complements of (y,) in (y,)’ n U and (yz) in 
(y2)’ n U’. None of the non-zero vectors in these complements can lie in 

f2 U’ (otherwise f2 U’ has a 3-dimensional totally isotropic subspace), so 
Condition III is satisfied unless f, U is the sum of these components, i.e., 
v, = 2. But in this latter circumstance v2 = 1 and f2 U’ n U’ is then hyper- 
bolic so that Condition IV is satisfied, a contradiction. 1 

PROPOSITION 4.7. Suppose that H= U,(K), that K is finite and that 
n > 4, then Condition IV is satisfied. 

Proof. It is well known that every non-isotropic subspace of dimension 
>2 has a singular l-dimensional subspace, so n - r > r. Moreover, the case 
n-r=r=2 andv,=v,= 1 is excluded so n-r-23. 

We suppose the proposition to be false and arrive at a contradiction. By 
Propositions 4.3 and 4.4, there exists f2 E F,\G, and a singular vector y E U’ 
such that f2U & U’ when r + 1 = n - r and such that if we write 

f,(Y) = Yl + YZ? where y, E U and yZ E U’, then y, and y2 are non-singular, 
whence (yZ)’ n U’ and (when r > 2) (yl)’ f’? U are non-isotropic. We claim 
that there is a non-zero singular vector v E ((yZ)’ n U’) U ((yl>’ n U) that 
does not lie in f, U U f2 U’. If not, then the fallacy of the proposition implies 
that (yZ)’ n U’ cf2 U (cf. Proposition 2.8) which in turn implies that 
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r = n - r. Thus (yr)’ n U has a base of singular vectors, none of which can 
lie in fi U (otherwise fz U would be isotropic of dimension >r, an absurdity) 
and not all of which can lie in f2 U’ (otherwise f2 U’ would contain the 
isotropic r-dimensional subspace (f’(y)) + ((yi >’ n U)), a contradiction. 
Thus there is a vector v as required. Let t be a transvection centered on v, 
then t E G, and tfi U#f,U (cf. Remark 2.2) so &‘tf, E F,\G,. But 
fi’ti* U’ n U’ contains the singular l-dimensional subspace (y), 
contradicting the fallacy of the proposition. Hence Condition IV must be 
satisfied. 1 

LEMMA 4.8. There exists f E F,\G, such that U’ nfU’ has a singular l- 
dimensional subspace. 

Proof. We have proved the lemma for the case: H= U,(K), K finite and 
n > 4, in Proposition 4.7, so we may except that case in this proof. We 
suppose the lemma to be false and arrive at a contradiction. By Propo- 
sition 4.6, there exist f, E F,\G, and a singular vector x E U’ such that if we 
write f,(x) = x1 + x2, where x, E U and x2 E U’, then x, and xz are non- 
singular and such that there exists a non-singular vector u E (Uf’ (x,)‘) U 
(U’ n (x2)‘) that does not lie in fi U U fi U’. 

Suppose that K does not have characteristic two when H = U,(K). Let s,, 
s, and s, be the -l-quasi-symmetries centered on u, xi and x2, respectively; 
then s,sz, s,,s, E G, and f;‘sls2 f,U’ n U’ contains the singular l- 
dimensional subspace (x), so the fallacy of the lemma implies that 
s, s2 f3 U = f3 U. Thus s, s*(v) - v E f3 U for every v E f3 U. Let v E f, U, then 

(x2, v) = - (xi, v). If H = O,(K), then 

slsAv> - v = -P(x, 3 vYQW1 XI - [W,, v>/QWl xz 
= -P(x, 3 v>lQ(x,>lfdx). 

This implies that B(x,, v) = 0 for every v E f, U, so x1, x2 E f3 U’. Similarly, 
if H = U,,(K), then 

s, sz(v> - v = [-2C(x, 3 V>/C(Xl 1 x,)lf3(4, 

sox,,x,Ef3U’. Hences,s,f,U=s,f,U#f,U,i.e.,~‘s,s,f,EF,\G,.But 
&ls,,s, f, U’ n U’ contains the hyperbolic 2-dimensional subspace (&‘(x,), 
f; ‘(x,)), contrary to the fallacy of the lemma; so Condition IV must be 
satisfied. 

Suppose that H = U,,(K), that K has characteristic two and that K is 
infinite when n > 4. By Proposition 2.1, there exists A E K such that 1 . I= 1 
and A” # 1. Let q be the A”-quasi-symmetry centered on u and let k be the 
element of G taking v to A-‘v for each v E V, then qk E G, and qkf3 U = 
d3 U # f3 U, so & ‘qkf3 E F,\G, . But K ‘qkfJ U’ n U’ contains the singular l- 
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dimensional subspace (x), contradicting the fallacy of the lemma, so 
Condition IV must be satisfied. 1 

We now prove a series of results that will establish that F, contains every 
semi-transvection in H, . 

PROPOSITION 4.9. There exists a non-zero singular vector x E 17’ and a 
non-zero vector z E U such that P,,, E F, . 

Proo$ By Lemma 4.8, there exists fE F,\G, such that jU’ n U’ has a 
singular l-dimensional subspace. Let x be a non-zero vector in such a 
subspace. By Proposition 2.1, there exists g E G such that d(x) = x; by 
premultiplying g by a quasi-symmetry centered on a non-singular vector in U 
if necessary, we may assume that g E G, . Thus gfE F,\G, and g,/(x) = x. 
Hence we may assume that f(x) = x. 

Suppose that f does not fix U’ n(x)’ and let v E U’ n (x)’ such that 
f(v) fz U’ n (x)‘. If we write j(v) = v, + v2 where v, E U and v2 E U’, then 
f(v) E (x)‘, so v2 E U’ A (x)’ and therefore vi # 0. By Proposition 2.6, the 
sets P, y and P,,-,, lie in G,, so F, contains JP,,,f -’ . PXTmV. But 
P.. f - i * px, -v2 = P&V, (by Proposition 2.3), so if z = v,, then z is a non- 
zero vector in U such that F, contains P,,,. 

Suppose that f fixes U’ n (x)‘. Let y be a singular vector in U’ such that 
(x, y) = 1, and write f(y)= yi + yz, where y, E U and y,E U’. We can 
write 

y = (Y> 0 ((4 n W, 

so yi # 0 (otherwisefe G,). Let p E P,,,,; then using the general form of a 
semi-transvection (see Remark 2.7) 

Pf(Y) = P(Yl> + P(Y2> 

=Y1+(Y,~Y,)x+Y,+P~(x~Y2)x-(x~Y2)YI~ 

where /I E K. As (x, y2) = (f(x), f(y)) = 1, the vector p?(y) lies in U’. 
Moreover p fixes (x)’ n U’, so pf fixes U’, i.e., pf E G, . Hence if z = y, , then 
z is a non-zero vector in U such that P,,, L F, . I 

PROPOSITION 4.10. I f  x is a non-zero singular vector in U’ with a 
non-zero vector z E U such that P,,, c F,, then Pxqlr c F, for every L E K. 

Proof. The proposition is trivial if J = 0; so we assume that k # 0. Let y 
be a singular vector in U’ such that (x, y) = 1. If H = O,(K), or if 
H = U,,(K) and A E K,, then the map defined by 

:x-Ax 

yl-+Py 

v t-+ v, vv E (x, Y)' 
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lies in G, ; so F, contains gP,,.g-‘. But gP,,,g-’ = Px,Al (by Proposition 2.3); 
so F, contains P,SAZ. 

Suppose that H = U,(K), that A E K\K,, and that z is non-singular. If 
K = GF(4), then’ A-L=1 and there is a non-singular vector 
u E (Un (z)‘) U (CT n (x, y)‘). Let s, and s2 be respectively the A-quasi- 
symmetry centered on z and the A-l-quasi-symmetry centered on u, then 
slsZ E G,; so F, contains s,s~P~,~(s~sJ ‘, i.e., contains P,,A,. If K # GF(4), 
then by the corollary to Proposition 2.15, there exists ,u E K such that 
ji2 .p-‘@KKo. Since K . 1s an extension of K, of degree 2, there exist A,, 
II, E K, such that A = A, + /l,p2 . ,K’. Let h be the map defined by 

v k-+ v, Qv E (x, Y, x)’ ; 

then h E G, ; so F, contains hP,,,2,h-‘. But hP,,,2,h-’ = Px,A2rs2u-II (by 
Proposition 2.3) and F, contains P,,n,,; so F, contains PxTll 

(= L,, . hpx,AJ-‘)- 
Suppose that H = U,(K), that A E K\KO and that z is singular. Let z,, be a 

singular vector in U such that (z, zO) = 1 and- let 6 E K\(O) such that 
r. 6-l & K, (such exists: take [E K\K, and if c. [-’ E K,, then ([+ 1) . 
([ + l)-’ &K,); then there exists A,, 1, E K, such that A = 1, + A,?. <-I. 
Let k be the map defined by 

:xt-+-+ 

Y~T-‘Y 

zi-+ylz 

zo k-i &, 

v w v, vv E (x, y, z, zo)’ ; 

then k E G, ; so F, contains kP,*Ae, k-l. Now arguing as above, F, contains 
P LIZ 

Hence F, contains Px,nl for every 1 E K. 1 

PROPOSITION 4.11. If x is a non-zero singular vector in U’ with a non- 
zero vector z E U such that P,,= s F, and if u E U is isomorphic to z, then 
Px,. E J’, . 

Proof. If z is singular, then by Proposition 4.2 there exists g E G, such 
that g(x + z) = x + u, i.e., such that g(x) = x and g(z) = u. By 
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Proposition 2.3, P,+, = gP,,,g-’ and therefore lies in F,. If z is non-singular, 
then by Proposition 2.1, there exists h E G such that h(x) = x and h(z) = u. 
If h E G,, then let q be the identity element; otherwise let q be the quasi- 
symmetry centered on u that lies in h-‘H,. Thus qh E G, and F, contains 
qhPx,,(qh)- I, i.e., F, contains Px,nU for some A # 0 (by Proposition 2.3). By 
Proposition 4.10, it follows that F, contains P,,. 

PROPOSITION 4.12. There exists a non-zero singular vector x E U’ such 
that Px,, G F, for every w E U’. 

Proof. By Proposition 4.9 there exists a non-zero singular vector x E U’ 
and a non-zero vector z E U such that P,, C_ F,. By Propositions 2.8 and 
2.10, there is a base {u,, u, ,..., ur} for U of vectors isomorphic to z. Let 
w  E (x)‘, then we can write w  = u + v, where u E U and v E U’ n (x)‘, and 
we can write 

for some li E K. Thus by Proposition 2.3, 

px,, = PX,” * 1’1 PX.lPi’ 
i=l 

By Propositions 2.6, 4.10 and 4.11, the sets P,,, and Px,Ai.i lie in F, ; so 
P,,, G F, . Hence P,,, 5 F, , for every w  E (x)‘. m 

LEMMA 4.13. F, contains every semi-transvection in H, . 

Proof. If x is as in Proposition 4.12 and if we can show that F, acts tran- 
sitively on the non-zero singular vectors of V, then by Proposition 2.3, any 
semi-transvection is conjugate under F, to a semi-transvection centered on x, 
and is therefore contained in F,. We know that the set S?Yi of non-zero 
singular vectors of U is a G,-orbit when V, > 0, and that the set %5?* of non- 
zero singular vectors of U’ is a G,-orbit (cf. Proposition 4.2 and the remark 
following it). As F, does not stabilize U or U’, and as the elements of VZ and 
g1 (when v, > 0) span U’ and U, respectively (cf. Proposition 2.8), it follows 
that @, and VZ cannot be F,-orbits. Thus to prove that F, acts transitively on 
the non-zero singular vectors of V, we need only show that any singular 
vector w  E v\(U U U’) lies in the F,-orbit containing gZ. 

Let us write w  = u + v, where u E U and v E U’; then v is non-zero, so 
there is a singular vector y E U’ such that (y, v) = 1. Let p E P,,“, then p is 
conjugate under F, to a semi-transvection centered on x and therefore lies in 
F,. Using the general form of a semi-transvection (cf. Remark 2.7), 
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P(W) = P(U) + P(V) 

= u + [P - (Y, u) + (u, u)] x - (Y, u> u + v  

+ [P * (Y, v> + (u, v>l x - (Y, v) u, 

so p(w) E gZ. Hence F, acts transitively on the non-zero singular vectors of 
V, whence F, contains every semi-transvection in H,. 1 

LEMMA 4.14. F, = H, and F= H. 

Proof. If H = U,(K), then by Lemma 4.28, every semi-transvection in H, 
lies in F,, so, by Proposition 2.5, F, = H,. 

Suppose that H = O,(K). Let P be a hyperbolic 2-dimensional subspace of 
U’ and let SO(P) be the subgroup of H, consisting of those elements that fix 
every vector in P’; then SO(P) < G,. Let T be the subgroup of H, generated 
by the semi-transvections of H, ; then by Lemma 4.13, T < F, . By Result 
2.4, H, = T . SO(P), so F, = H, (notice that the excepted case of Result 2.4 
is the case n - r = r = 2 and V, = v2 = 1 which we have excepted). 

Each coset of H, in H (other than H,) contains a quasi-symmetry 
centered on a non-singular vector in U, so E contains elements of each coset 
of G, in H. Thus E, < F n H, <H,. We have already shown that if 
E,<F,<H,,thenF,=H,,soFflH,=H,.HenceF=H. m 

We now consider briefly three cases that we have so far excluded. 

PROPOSITION 4.15. Suppose that H = O,,(K), n - r = r = 2 and 
v, = v2 = 1, but that K # GF(3) or GF(.5), then F = H. 

ProoJ First suppose that K # GF(2). Notice that Proposition 4.1 applies 
to this case and that the proof of the analogues of Propositions 4.2, 4.3, 4.5, 
and 4.6, Lemma 4.8, Propositions 4.9, 4.10, 4.11, and 4.12 and Lemma 4.13 
(in the analogue to Lemma 4.8, we would consider the symmetry s,, instead 
of the products slsZ and sOs,) would be very similar to the originals. Hence 
F contains SO(U) and T. It follows that F contains H, , but F also contains 
elements of H\H, ; so F = H. 

Now suppose that K = GF(2). In this case H has order 72 and V has only 
six non-singular l-dimensional subspaces. These fall into four orbits under 
G, two orbits under E and just one orbit under F. Thus F contains every 
symmetry in H. It is well known that the symmetries of H generate a 
subgroup of order 36; as E has order 8, it follows that F = H. 1 

PROPOSITION 4.16. If H = O,(GF(2)), n - r = r = 2, v1 = 0 and v2 = 1, 
then F, = H, and F = H. 

ProoJ: In this case H, is isomorphic to the alternating group A,, and G, 



372 OLIVER KING 

has order 6. Thus F, must have order 12, 30 or 60. But A 5, being simple, has 
no subgroup of order 30; moreover, the only subgroups of A, of order 12 are 
those isomorphic to A,, which has no subgroup of order 6; so F, must have 
order 60. Hence F, = Hr. As in the proof of Lemma 4.14, it follows that 
F=H. 1 

PROPOSITION 4.17. If H = U,(K), n - r = r = 2 and v1 = v2 = 1, then 
F, = H, and F = H, except when K = GF(4). 

Proof. We first show that Condition IV is satisfied. Suppose not and let 
h E F,\E, . Then hU & U’, so there exists a singular vector x E U’ such that 
if we write h(x) = x, + x2, where x1 E U and x2 E U’, then x,, x2 # 0. 

Suppose that xi and x2 are singular. At least one of x,, x2 must lie outside 
hUV hU’; let t be a transvection on such a vector; then t E G, and 
thU # hU (cf. Remark 2.2); so h-‘th E F,\G,. But h-‘thU’ n U’ contains 
the singular l-dimensional subspace (x), a contradiction to Condition IV not 
being satisfied. 

Now suppose that x1 and x2 are non-singular. As argued in the proof of 
Proposition 4.5, we may assume that hU’ # (xi, x2). Let A E K such that 
,l e I= 1 and AZ # 1 (such exists: if p E K\K,,, then one of ,Z/,u, 
@+ l)/@ + 1) g ives the required A), let s, and s2 be the A2 - quasi- 
symmetries centered on x1 and x2, respectively, and let k be the map taking v 
to A-iv for each v E V. Then s,szk E G, and in the manner of the proof of 
Lemma 4.8, the failure of Condition IV to be satisfied implies that x1, 
x2 E hU’, a contradiction. 

Hence Condition IV is satisfied. With one amendment we may use the 
methods of proof of Propositions 4.9, 4.10, 4.11 and 4.12 to show that there 
exists a non-xero singular vector x E U’ such that P,,, s F,, for every 
w  E (x)‘; the amendment is needed in the analogue to Proposition 4.11 when 
z is singular. We need to show that if z and u are non-zero singular vectors 
in U and if P Xll~ F, for every k E K, then P,,,E F,. We may assume that 
u 6Z (z), so C(z, v) # 0. By Proposition 2.14 there exists 9 E K such that 
v.q-‘= - C(z, v)/C(v, z). Let g be the element of G, defined by 

z I--+ -q-h, 

v I-) v, vv E U’; 

then F, contains gPX,-vzg-l. Thus by Propositions 2.3, F, contains P,.. We 
may now use the methods of Lemmas 4.13 and 4.14 (noting that @?i and %?Z 
are still orbits of G,) to deduce that F, = H, and F = H. 1 

We have chosen F, and F arbitrarily such that E, <F, <H, and 
E < F Q H. We noted at the beginning of this section that G, = E, and 
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G = E when U is not isomorphic to U’ and that G, < E, and G < E when U 
is isomorphic to U’. Hence by Lemma 4.13 and Propositions 4.14, 4.15 and 
4.16, we have proved our main result. 

THEOREM. G, and G are maximal in H, and H, respectively, except 
when U is isomorphic to U’ and except in cases (i)-(vii) and (xi) (cf. 
Section 1). If U is isomorphic to U’, then E, is maximal in H, except when 
H = O,(K) and except in cases (ix), (x) and (xii), and E is maximal in H 
except in cases (iii), (viii), (ix), (x) and (xii). 

5. THE ORTHOGONAL AND UNITARY GROUPS: 
THE EXCEPTIONAL CASES 

The cases excluded from the theorem above are all exceptions to the 
theorem. In this section we explain briefly how these exceptions arise. We 
define groups F < H and F, = F n H, (unless stated otherwise) and claim 
that E, < F, < H, and E <F < H. We omit the proof of this claim for 
reasons of space, but it is not difficult to construct elements of H,w,, 
F,\E, , Hv; and FjE in each case. 

(i) Suppose that H = O,(GF(5)) and r = 1. Then U’ has two 
subspaces L, and L, isomorphic to U and these are orthogonal. Let 
F=Stab,,{U,L,,L,}; then G<F<H. 

Suppose that H = O,(GF(5)), n - r = r = 2 and V, = v2 = 1. Let M, be a 
non-singular l-dimensional subspace of U, then U has one other subspace 
isomorphic to M, , namely, Un M’, , and U’ has two subspaces, L, and L,, 
isomorphic to M,, with L, = U’ n L’, . Let F = Stab, {L,, L,, M,, M2} ; 
then E < F < H. 

(ii) and (iii) Suppose that H = O,(GF(3)) and that n - r = 2, or r = 2 
and V, = 1, but not both, i.e., there exists WE {U, U’} not isomorphic to IV 
such that W is a hyperbolic 2-dimensional subspace. As we remarked after 
Proposition 2.10, there are two non-isomorphic subspaces L and M of W. 
One of these subspaces, M say, must be isomorphic to a subspace of W’. Let 
F = Stab,L ; then G = Stab, W < F < H. 

Suppose that H = O,(GF(3)), n - r = r = 2 and V, = v2 = 1. Let L, and L, 
be the two non-isomorphic non-singular l-dimensional subspaces of U and 
let M, and M, be the corresponding subspaces of U’, with L, isomorphic to 
M,.LetF=Stab,(L,,L,};thenE<F<H. 

(iv), (v) and (ix) Suppose that H = OJGF(3)) and that n - r = 3. 
Then U’ has thirteen l-dimensional subspaces, four of which are singular. 
The nine non-singular l-dimensional subspaces lie in two isomorphism 



374 OLIVER KING 

classes of sizes six and three (consider the projective plane derived from U’ 
and cf. [4]). Let L, , L, and L, be the elements of the smaller class; then L,, 
L, and L, are mutually orthogonal. If it = 4, r = 1 and v = 2 (case (iv)), then 
U is isomorphic to L,; let F=Stab,{U,L,, L,, L3]; then G<F<H. If 
n = 5, r = 2 and V, = 0 (case (v)), then by Proposition 2.10, there are two 
subspaces M, and M, of U orthogonal to L,, and these are mutually 
orthogonal. Let F=Stab,,(M,,M,, L,, L,, L,}; then G<F<H. Ifn=6 
and U is isomorphic to U’ (case (ix)), then U has three subspaces M,, M, 
and M, isomorphic to L,, and these are orthogonal. Let F = Stab,{M, , M,, 
M,, L,, L,, L,}; then E <F < H. 

(vi) Suppose that H = O,(GF(2)), n > 6, r = 2 and V, = 1. There is 
only one non-singular subspace L of U, let F = Stab, L; then G < F < H. 

(vii) and (x) Suppose that H = O,(GF(2)), n - Y = 4 and V, = 2. Then 
U’ has two non-hyperbolic non-isotropic 2-dimensional subspaces, W, and 
W,; these are orthogonal. If Y = 2 and V, = 0 (case (vii)), then U is 
isomorphic to W, and W,; let F = Stab,{ U, W,, W,}; then G ( F ( H. If 
r = 4 and v1 = 2 (case(x)), then U is isomorphic to U’ and therefore has two 
(orthogonal) subspaces U, and U, isomorphic to W, ; let F = Stab, ( U, , U,, 
W,, W2}; then EcFcH. 

(xi) and (xii) Suppose that H = UJGF(4)) and that n - r = 2. Then 
U’ has five l-dimensional subspaces of which two, L, and L, , are non- 
singular; L, and L, are orthogonal and isomorphic. If r = 1 (case (xi)), then 
UisisomorphictoL,;letF=Stab,{U,L,,L,},thenG<F<H.Ifr=2 
and V, = v2 = 1 (case (xii)), then U is isomorphic to U’ and therefore has two 
non-singular orthogonal subspaces M, and M, isomorphic to L,. Let 
F=Stab,{M,,M,,L,,L,};thenE<F(H. 

Suppose that H = O,(K), 12 - r = r = 2 and v, = v2 = 1. Then each of U, 
U’ has two singular l-dimensional subspaces, say U,, U, c U and W,, 
W, E U’. Clearly E acts on the pairs {U,, W,}, {U,, W,}, {U,, W,} and 
(U,, WI}; this action is transitive, but the action of E, is not, because E, 
stabilizes {{U,, W, ), {U,, W,}). Let F, = Stab,, { U, + W,, UZ + W,} ; then 
E,<F,<H,. 
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